
Monte Carlo Tree Search and Its Applications

Max Magnuson
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

magnu401@morris.umn.edu

ABSTRACT
Monte Carlo tree search (MCTS) is a probabilistic algorithm
that uses lightweight random simulations to selectively grow
a game tree. MCTS has experienced a lot of success in do-
mains with vast search spaces which historically have chal-
lenged deterministic algorithms [3]. This paper discusses the
steps of the MCTS algorithm, its application to the board
game Go, and its application to narrative generation.

Keywords
Monte Carlo Tree Search, Heuristics, Upper Confidence Bounds,
Artificial Intelligence

1. INTRODUCTION
In 1997 the field of artificial intelligence (AI) experienced

a monumental breakthrough when IBM’s Deep Blue de-
feated Garry Kasparov, a reigning grand master, in a chess
match [2]. The researchers achieved this by using brute force
deterministic tree searching methods combined with human
knowledge of chess. The human knowledge allows the AI
to evaluate the strategic value of a move much like a grand
master would, and then populate a tree to search for the
best move. This event demonstrated to the world the power
of computers and artificial intelligence.

While computers are capable of outplaying the top play-
ers of chess, the deterministic strategies that they employ do
not scale well into larger search spaces. When there are too
many options available, the deterministic nature of these al-
gorithms take too long evaluating every option and quickly
are overwhelmed. Two applications with very large search
spaces are Go which is a board game about positional ad-
vantage and narrative generation. Go has many more moves
available to the player than in chess, and each of those moves
can have major effects 50 to 100 moves ahead [3]. This makes
the game trees in Go much wider and deeper which vastly
increases the complexity.

Narrative generation has some of the same problems as
in Go. As the number of characters, items, locations, and

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, May 2015 Morris, MN.

actions increase, the search space grows tremendously. An
algorithm needs access to plenty of these agents to produce
interesting narratives, but there are just too many possible
interactions for deterministic algorithms.

In order to address problems with larger search spaces, we
must turn to alternative methods. Monte Carlo tree search
(MCTS) has had a lot of success in Go and in other appli-
cations [2] [1]. MCTS eschews the typical brute force tree
searching methods, and utilizes statistical sampling instead.
This makes MCTS a probabilistic algorithm. As such, it will
not always choose the best action, but it still performs rea-
sonably well given sufficient time and memory. MCTS per-
forms lightweight simulations that randomly select actions.
These simulations are used to selectively grow a game tree
over a large number of iterations. Since these simulations do
not take long to perform, it allows MCTS to explore search
spaces quickly. This is what gives MCTS the advantage over
deterministic methods in large search spaces.

Since MCTS is capable of surmounting problems with vast
search spaces, AI can now perform well in new areas. In
2009, for the first time ever, a computer defeated a top pro-
fessional Go player in a 9x9 game [2]. It took twelve years for
AI to advance from defeating Garry Kasparov to achieving
its first major victory in Go, and it was only on the smallest
board that Go is played on. While not as publicized as deep
blue’s victory, it displays the power of MCTS.

MCTS has been growing in popularity in recent years,
and it demonstrates a lot of promise. In this paper, we will
examine the traditional implementation of MCTS, its appli-
cations to Go, and its applications to narrative generation.

2. BACKGROUND
MCTS combines the random sampling of traditional Monte

Carlo methods with tree searching. Monte Carlo methods
use repeated random sampling to obtain results. In MCTS,
the random sampling is in the form of random simulations
which are used to expand the game tree. The game tree
is then used to decide the next move. MCTS grows the
game tree iteratively. With each iteration, the game tree is
traversed and expanded. Over time, the game tree will con-
verge. This means that the same path in the tree is traversed
in each iteration. This indicates MCTS has found a move
that leads to the most number of simulated wins from the
current state of the game. Because of the random nature of
this process, MCTS is a probabilistic method. MCTS does
not always find the best move, but it has reasonable success
at choosing moves that lead to greater chances of winning.



2.1 The Tree Structure
MCTS encodes the game state and its potential moves

into a tree. Each node in the tree represents a potential
game state with the root node representing the current state.
Each edge represents a legal move that can be made from
one game state to another. In other words, it represents the
transformation from the parent node to the child node. Any
node may have as many children as there are legal moves
from the game state for which it represents.

X
X X

Parent Node

Child Nodes

Figure 1: a small portion of a tree representing Tic-
TacToe

For example, at the start of a game of TicTacToe the root
node may have up to nine children, one for each possible
move. Each following child can only have one less child than
its parent since the previous moves are no longer available
as options.

Figure 1 represents the top portion of a tree for the game
TicTacToe. The AI is making the first move, so the root
node is the first game board. Each child node represents the
potential moves that can be made from the current game
state. It is important to note that this figure is a simplifi-
cation, and that it only shows three of the nine child nodes.
Once MCTS decides which move to make, the chosen child
node becomes the new root node. For example, if MCTS
chose the left child in figure 1, then that child becomes the
new root node and its siblings would be discarded.

Along with the game state, each node has an associated
value that comes from the simulations performed within that
subtree. Only one simulation is performed at each node.
Therefore, a subtree of three would have the values from
three simulations. With this, we can think of each node
as the root of a subtree. The value of that node is rep-
resentative of the estimated strategic value of the subtree.
By choosing the node with the greatest estimated value, the
MCTS algorithm is choosing the path with the most number
of simulated wins. This means that the MCTS algorithm is
maximizing the number of winning moves it can select. This
is what MCTS relies on to be effective.

2.2 The Four Steps of MCTS
The process of MCTS is split up into four steps: selec-

tion, expansion, simulation, and backpropagation. These
four steps are iteratively applied until a decision from the AI
must be made. Typically, there is a set amount of time that
the AI has to make its move, so that is when the algorithm
will make its decision.

Figure 2 shows one iteration of the MCTS algorithm with

2/5

0/1 2/3

1/1 0/1

1

Selection Expansion Simulation

Backpropagation

2/5

0/1 2/3

1/1 0/1

?

2/5

0/1 2/3

1/1 0/1

?

3/6

0/1 3/4

2/2 0/1

1/1

Figure 2: the four steps of MCTS

a game tree that only has two legal moves at each node. The
first number in each node represents the number of wins in
that subtree. The second number is the total number of
simulations performed in that subtree. The ratio of these
two numbers provides us with the estimated value of each
node.

Selection - In the selection process, the MCTS algorithm
traverses the current tree using a tree policy. A tree pol-
icy uses an evaluation function that prioritize nodes with
the greatest estimated value. Once a node is reached in
the traversal that has children (or moves) left to be added,
then MCTS transitions into the expansion step. In figure
2, starting from the root node, the tree policy must make
a decision between the 0/1 node and the 2/3 node. Since
2/3 is greater than 0/1, the tree policy will choose the 2/3
node in its traversal. Once at the 2/3 node, the tree policy
will then choose the 1/1 node because it is greater than 0/1.
This is the first node with children yet to be added, so now
MCTS will transition into the expansion step.

Expansion - In the expansion step, a new node is added
to the tree as a child of the node reached in the selection
step. The algorithm is currently at the 1/1 node, so there
is a child node added onto that node indicated by the node
with the ?. There is only one node added to the tree in each
iteration, and it is at this step.

Simulation - In this step, a simulation (also referred to
as a playout or rollout) is performed by choosing moves until
either an end state or a predefined threshold is reached. In
the case of Go or TicTacToe, an end state is reached when
the game ends. Then based on the result of the simulation,
the value of the newly added node is established. For ex-
ample, a simulation for a node in Go reaches the end of a
game (the end state), and then determines a value based on
whether the player won or lost. In figure 2 the simulation
ended in a 1. Therefore, the value of the new node is 1/1.
One simulation resulted in a win, and one simulation has
been performed.

In the simulation process, moves are played out according
to the simulation policy [1]. This policy may be either weak
or strong. A weak policy uses little to no predetermined
strategy. It chooses moves randomly from either a subset of
the legal moves or from all of the legal moves. A policy may



prefer a certain subsection of moves because those moves
might be more favorable. Perhaps in the game of TicTac-
Toe the corners are considered to be more favorable. We
incorporate this into a simulation policy by having the algo-
rithm randomly choose corner moves until there are no more
corner moves left. Then the policy will choose moves at ran-
dom from the rest of the legal moves. A strong policy uses
a more guided approach to choosing moves. A strong policy
may make the simulation too deterministic or make it more
prone to error [2], so a weak policy is generally preferred.

Backpropagation - Now that the value of the newly
added node has been determined, the rest of the tree must be
updated. Starting at the new node, the algorithm traverses
back to the root node. During the traversal the number of
simulations stored in each node is incremented, and if the
new node’s simulation resulted in a win then the number of
wins is also incremented. In figure 2 only the nodes with
values 0/1 are not updated since they are not an ancestor
of the newly added node. This step ensures that the values
of each node accurately reflect simulations performed in the
subtrees that they represent.

2.3 Upper Confidence Bound
The upper confidence bound applied to trees (UCT) is

used by MCTS as the tree policy in the selection step to tra-
verse the tree. UCT balances the idea of exploration versus
exploitation. The exploration approach promotes exploring
unexplored areas of the tree. This means that exploration
will expand the tree’s breadth more than its depth. While
this approach is useful to ensure that MCTS is not overlook-
ing any potentially better paths, it can become very ineffi-
cient very quickly in games with a large number of moves.
To help avoid that, it is balanced out with the exploitation
approach. Exploitation tends to stick to one path that has
the greatest estimated value. This approach is greedy and
will extend the tree’s depth more than its breadth. UCT
balances exploration and exploitation by giving relatively
unexplored nodes an exploration bonus.

UCT (node) =
W (node)

N(node)
+ C

√
ln(N(parentNode))

N(node)

When traversing the tree, the child node that returns the
greatest value from this equation will be selected [1]. N rep-
resents the total number of simulations performed at that
node and its descendants. W represents how many of those
simulations resulted in a winning state. C represents an
exploration constant that is found experimentally. The first
part of the UCT takes into consideration the estimated value
of the node from the ratio of simulations won to total sim-
ulations. This is the exploitation part of the equation. The
second part of the UCT is the exploration bonus. This com-
pares the total number of simulations performed at the par-
ent node and its descendants to the total number of simula-
tions performed at the examined node and its descendants.
This means that the lower the number of simulations that
have been performed at this node, the greater this part of
the equation will be.

3. USING MCTS TO PLAY GO
MCTS has been very successful in its applications in Go.

The computer Go programs MoGo and Crazy Stone both

use a variation of MCTS, and they have had the best perfor-
mance of any computer Go programs [3]. Those programs’
variation of MCTS take advantage of certain aspects of Go.

3.1 All Moves as First (AMAF)
All moves as first (AMAF) is a methodology that treats

all moves as if they were the next move played. AMAF does
not grant any move extra strategic value based on when it
is played. Therefore, in AMAF moves have no contextual
dependencies on other moves. This is particularly useful
when a move played elsewhere on the board has little or no
impact on the move being examined, or if a game arrives at
the same state regardless of the order in which the moves
are played.

X X
O

X
O

X

X
O

X

X
O

X

A B C

C B A

Figure 3: comparison of two sequences of moves in
TicTacToe

In figure 3 are two possible sequences of moves that can be
played out in the game TicTacToe. Even though the order
of moves A and C are different, it still results in the same
game state. AMAF is useful in analyzing the effectiveness of
this situation since the order in which the moves are played
has no effect strategically. Thus, we can treat playing move
A first or move C first as having the same strategic value.

The AMAF methodology is applicable to Go because many
of the situations only affect what is happening locally. If a
move is made elsewhere on the board, it does not have much
of an effect on the strategic value of the move being exam-
ined. It is also important to note that in Go a move that
repeats a board state is illegal. Therefore, this methodology
will not have any inconsistencies with replaying the same
move.

3.2 Rapid Action Value Estimate
Rapid action value estimate (RAVE) takes the concept of

AMAF and applies it to a tree structure. RAVE can be
thought of as assigning values to the edges of the tree which
represent moves. The value of these moves come from any
simulation performed within the subtree in which that move
was played. The value is a ratio of those simulations that
resulted in a win to the total number of simulations. This is
different from MCTS in that MCTS chooses nodes for the
strategic value of the game state represented by that node.
RAVE chooses nodes for the strategic value of the move.

Figure 4 is a comparison between moves A and B from
node Z. The dotted lines represent simulations performed at
each node with the triangles being the result. In MCTS, the
value of A is the value of the node A points to. In this case,
A has the value 1/3. Likewise, B has the value 2/3. These
values come from the three simulations performed in their
respective subtrees. In the RAVE approach, the value for
move A is determined by any simulation performed by the



Z

1 1 100

A B

A

B

B

MCTS(A) = 1/3

MCTS(B) = 2/3

RAVE(A) = 2/4

RAVE(B) = 2/5

1 0

Figure 4: MCTS vs RAVE

descendants of node Z in which A was played. This accounts
for the simulation performed in the subtree of B that used
move A. Now in RAVE, the value of A is 2/4. The same is
true for the RAVE value of B. B was performed in two other
simulations in Z’s subtree. This makes the RAVE value of
B 2/5.

When determining which node to traverse to from node Z,
MCTS and RAVE would produce different results. MCTS
would choose the node that B is pointing to because the
MCTS value of B is greater than the MCTS value of A.
RAVE would choose the node A is pointing to because the
RAVE value of A is greater than the RAVE value of B.

The RAVE approach is very powerful and allows us to
retrieve much more information out of every simulation.
MCTS only gains one piece of information from each simu-
lation. That information is only the result of the simulation.
In RAVE, every move performed in a simulation provides us
with information. The strategic value of a move in RAVE is
developed much more quickly as a result. This means that
trees generated by RAVE converge more quickly than trees
generated by MCTS.

3.3 MC RAVE
The RAVE approach is very useful and efficient, but it

can sometimes select an incorrect move [3]. In Go, when
the players have close tactical battles, the sequencing of the
moves become very important. In this situation, we can-
not treat the moves as AMAF. We still need the contextual
dependencies of the MCTS approach.

MC RAVE combines the traditional MCTS algorithm and
the RAVE approach into one algorithm. MC RAVE stores
the values of each node from MCTS and the value of each
move from RAVE in the tree structure. MC RAVE takes a
weighted average of the two values to determine which node
to choose in traversal [3]. When very few simulations have
been performed, the RAVE values are given more weight.
In this case, RAVE is more accurate because the contextual
dependencies of moves are less developed. When a lot more
simulations have been performed, the MCTS values will be
weighted more heavily. The MCTS values are given more
weight in this case because the contextual dependencies of
the moves are more strongly developed and are more accu-
rate overall.

3.4 Go Results
AI that use more traditional approaches have had very lit-

tle success playing Go. The deterministic approaches strug-
gle to defeat even low rank amateurs. Now with new Go pro-
grams like MoGo and Crazy Stone implementing MC RAVE,
AI can compete with top professionals in 9x9 Go [3]. Not
only that, but those programs can even compete against the
top pros in handicap games of 19x19 Go. Handicap games
let one player start with some number of pieces on the board.
That is an incredible feat taking into consideration the im-
mense complexity of a 19x19 board.

4. USING MCTS FOR NARRATIVE GEN-
ERATION

Automated narrative generation is an interesting prob-
lem with many applications. One such application is to
video games. Narrative generation provides the user with
a unique experience on each playthrough which can extend
the amount of enjoyment a user receives from a single game.
Narrative generation can also be applied as a learning tool.
Generating an endless number of fun and interesting stories
provides plenty of material for reading practice. These are
only two examples, but there are many more [5].

Kartal et al [5] decided to apply MCTS to narrative gener-
ation because of its huge search spaces. Given the success in
Go, it makes sense to apply MCTS to narrative generation.

4.1 Description of Narratives
The researchers’ algorithm uses various predefined actors

(or characters), items, locations, and actions to generate
a narrative. Actions are used to have actors, items, and
locations interact with one another. Here are a few possible
actions:

• Move(A, P): A moves to place P.

• Kill(A, B): B’s health to zero(dead).

• Earthquake(P): An earthquake strikes at place P.
This causes people at P to die (health=0), items to be
stuck, and place P to collapse.

Each action acts as a function with a list of parameters and
a description of what it does. Actions are important because
they are what progress the story.

In the researchers’ algorithm, the user does not provide
any of the actions used by the algorithm. However, the
user defines the initial setup and goals for the narrative.
An initial setup indicates where actors or items are located.
For instance, the inspector is in his office, or the lamp is at
Becky’s house. The narrative goals are what the user wishes
to occur in the story. Perhaps the user would like there to be
at least two murders and for the murderer to be captured.
Given this information, the algorithm will attempt to gen-
erate a believable narrative while satisfying the goals set by
the user.

4.2 Tree Representation
As stated in section 2.1, the nodes of the MCTS tree rep-

resent the entire state at that node. In narrative generation,
it is somewhat different. Each node only represents a specific
step (or action) of the story instead of capturing the entirety
of the narrative up to that point. In order to retrieve the
narrative up to a node, we would need to traverse up the



tree all the way to the root node. This structuring is similar
to the MCTS tree for Go in that to know the sequence of
moves leading up to a node, we would need to traverse back
to the root. A node by itself does not provide us with the
order in which moves are played, only the current state of
the game.

In addition to encoding for an action, each node also keeps
track of various attributes. Attributes are characteristics of
an actor that help maintain the current state of the story.
An attribute of an actor might be that actors current health.
The health of an actor may go down if attacked. Another
example of an attribute is the location of an actor. It would
not make much sense if an actor traveled to a location that
they are already at – which would be possible if the location
of the character is not stored.

The researchers’ method for tree generation uses a set
threshold during the simulation step. The simulation ends
when either the narrative has reached a certain length, or
when the narrative accomplishes a sufficient percentage of
goals. This differs from Go and other games because nar-
ratives do not have clear end states. This also means that
narrative generation needs a different method of evaluation
because the simulations do not simply end in a win or a
loss. To address this, the researchers’ implemented their
own evaluation function, and its details are outlined in sec-
tion 4.3.

4.3 Evaluation Function
The researchers decided they needed a function which con-

siders both believability and goal completion in its evalua-
tion of a narrative [5]. These two measures are essential
for making a quality narrative. A narrative could easily
complete the goals defined by the user without being very
believable, and a narrative could be very believable while
not accomplishing any goals. Sometimes this results in one
measure being sacrificed for the other. For instance, maybe
a long series of somewhat unbelievable actions are used for
the sake of completing the goals of the narrative. While this
outcome is not perfect, it is preferable over the two extremes.

The believability of a narrative is determined by the math-
ematical product of the believability of all of the actions
performed throughout the narrative. The believability of a
certain action is determined based on its context within the
current state of the narrative. This means that certain ac-
tions are more (or less) believable based on previous events
or attributes: Character A killing character B is less believ-
able if character A is not angry at character B. Character A
looking for clues at character B’s house is more believable
given that character A is a detective. Each action has its
own defined scale of believability ranging from 0 to 1 [5].
The exact details of the scale are outside the scope of this
paper, but they can be referenced in the authors’ paper [5].

Believability is not the only important metric for narra-
tive generation. It is also important that a story completes
most, if not all, of the goals defined by the user. The re-
searchers addressed this by determining the percentage of
the goals the narrative completes and taking its product
with the narrative’s believability. Now, the evaluation func-
tion considers both the believability and goal completion of
a story.

4.4 Search Heuristics
The researchers implemented two different search heuris-

tics into their MCTS algorithm. One heuristic uses selection
biasing during the traversal of the tree, and the other uses
a rollout biasing while performing simulations.

The selection biasing approach uses a table to store the
average value of a specific action. During the traversal of
the tree, the algorithm uses the values from the table in
combination with the value of a node to determine which
node to choose next. The traversal uses a weighted average
between the two values. The value from the table is weighted
more heavily with fewer simulations, and the value of the
node is weighted more heavily with more simulations. This
approach is much like the RAVE approach used in Go, but
the values are stored in a table instead of in the tree. As such
the value from the table is the average value of that action
anytime it has been used in any part of the tree. This is
different from the RAVE approach in that, a moves value is
only from within a subtree.

The other heuristic the researchers implemented is rollout
biasing. This biasing is applied during the simulation step
in MCTS. The rollout biasing uses a table, just like the
selection biasing, to keep track of the average value of an
action. This value is used to bias the random selection of
actions in a simulation. If the average value of an action in
the table is fairly high, then it is more likely for that action
to be chosen. Likewise, if the average value of an action
from the table is fairly low, then the action is less likely to
be chosen. It is important to make clear that the process is
still random, so there will still be variety in the generated
narratives.

4.5 Tree Pruning
In a game situation, MCTS does tree pruning when a new

move is chosen. The siblings that are not chosen are trimmed
because they are less promising. Tree pruning allows the al-
gorithm to reallocate the memory used by the less promising
nodes for future nodes in the more promising path. The au-
thors needed to incorporate some method of tree pruning
into narrative generation because trees generated by MCTS
can get very memory intensive.

The authors only allow their MCTS algorithm to plan
out the narrative one step at a time. When selecting for
the next step, the algorithm runs for a predefined number
of iterations. After those iterations are performed, the al-
gorithm chooses the node with the greatest potential value
from the child nodes of the previously chosen action. The
chosen node effectively becomes the new root node of the
tree while keeping the nodes that precede it. When the new
node is chosen, all siblings of that node along with their
subtrees are discarded.

The authors do note that this approach makes the algo-
rithm no longer probabilistically complete. This means that
it is possible that one of the pruned branches is preferable
to the current path. Even with this flaw, the authors still
found their algorithm to perform reasonably well [5].

4.6 Narrative Generation Results
The authors compared their implementation of the MCTS

algorithm to three different deterministic tree search algo-
rithms: breadth-first search, depth-first search, and best-
first search [5]. Breadth-first search expands each level of
the tree before moving on to the next level. Depth-first
search expands a tree until an end point is reached. At that
point, it backtracks until it finds a new path to expand.



Best-first search is a greedy algorithm that expands the tree
by choosing the most believable nodes to complete the goals
of the narrative. Each of these algorithms should provide
the optimal solution if given enough time and memory.

These four algorithms were compared given a low budget
of 100 thousand nodes and a high budget of three million
nodes. The user goals for this narrative are: at least two ac-
tors are killed and the murderer is arrested. Each algorithm
was run three times and the score of the resulting narratives
were averaged. Here is a table comparing the results:

MCTS
Breadth-
first

Depth-
first

Best-
first

Low
Budget

0.07 0.05 <0.001 0.005

High
Budget

0.9 0.06 <0.01 <0.01

Table 1: average scores of the narratives from the
different algorithms

MCTS outperformed the deterministic algorithms with a
low budget, and the performance difference is even clearer
with the high budget. The authors found that depth-first
search failed to meet either of the goals [5]. Best-first search
would use only the most believable actions to accomplish
the goals, but used up its allocated memory in trying to
do so. Breadth-first search performed the best of the three
deterministic algorithms, but its narratives were not very
believable.

Alice picked up a vase from her house. Bob picked up a
rifle from his house. Bob went to Alice’s house. While
there, greed got the better of him and Bob stole Alice’s
vase! This made Alice furious. Alice pilfered Bob’s vase!
This made Bob furious. Bob slayed Alice with a rifle!
Bob fled to downtown. Bob executed Inspector Lestrade
with a rifle! Charlie took a baseball bat from Bob’s house.
Sherlock went to Alice’s house. Sherlock searched Alice’s
house and found a clue about the recent crime. Bob fled
to Alice’s house. Sherlock wrestled the rifle from Bob!
This made Bob furious. Sherlock performed a citizen’s
arrest of Bob with his rifle and took Bob to jail.

Figure 5: high scoring story from MCTS

Figure 5 is one of the narratives produced by MCTS. It
has traits of a quality narrative. It accomplishes both of
the goals, and the actions are mostly believable. Bob was
aggravated by his interactions with Alice making his actions
more believable. There are some problems with the nar-
rative though. It mentions a character named Charlie in
one line of the story, and he is never mentioned before or
afterwards. Overall, this narrative is reasonable.

Sherlock moved to Alice’s House. An Earthquake oc-
curred at Alice’s House! Sherlock and Alice both died
due to the earthquake.

Figure 6: low scoring story from bread-first Search

Figure 6 is one of the narratives produced by breadth-first
search. While it does accomplish the goal of killing at least

two characters, it fails to accomplish the more complex goal
of arresting the murderer. This narrative is not very be-
lievable. Worse, it is not very interesting. Hardly anything
happens in it. It ends after only three lines. It is clear which
algorithm performed better just from reading the resulting
narratives regardless of their scores.

5. CONCLUSIONS
The Monte Carlo tree search algorithm has been very suc-

cessful in extending the capabilities of AI. MCTS performs
reasonably well on problems with vast search spaces, which
were very difficult for previous algorithms. Before MCTS,
AI struggled to defeat low rank amateurs in Go. Now with
MCTS, AI can compete with high level pros [2]. Also, MCTS
has demonstrated its effectiveness in generating narratives,
another problem with vast search spaces [5].

MCTS has applications outside of problems with larger
search spaces. MCTS can outperform humans in many puz-
zles and real time games [5]. MCTS can compete with
other top algorithms in playing the video game Super Mario
Brothers [4]. Between its success in vast search spaces and
the variety of its applications, MCTS will certainly continue
to be a prominent algorithm in the field of artificial intelli-
gence.

6. ACKNOWLEDGEMENTS
The author would like to thank Elena Machkasova, Peter

Dolan, and Tim Snyder for their feedback on this paper.

7. REFERENCES
[1] D. Brand and S. Kroon. Sample evaluation for action

selection in monte carlo tree search. In Proceedings of
the Southern African Institute for Computer Scientist
and Information Technologists Annual Conference 2014
on SAICSIT 2014 Empowered by Technology, SAICSIT
’14, pages 314:314–314:322, New York, NY, USA, 2014.
ACM.

[2] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver,
C. Szepesvári, and O. Teytaud. The grand challenge of
computer go: Monte carlo tree search and extensions.
Commun. ACM, 55(3):106–113, Mar. 2012.

[3] S. Gelly and D. Silver. Monte-carlo tree search and
rapid action value estimation in computer go. Artificial
Intelligence, 175(11):1856 – 1875, 2011.

[4] E. J. Jacobsen, R. Greve, and J. Togelius. Monte
mario: Platforming with mcts. In Proceedings of the
2014 Conference on Genetic and Evolutionary
Computation, GECCO ’14, pages 293–300, New York,
NY, USA, 2014. ACM.

[5] B. Kartal, J. Koenig, and S. J. Guy. User-driven
narrative variation in large story domains using monte
carlo tree search. In Proceedings of the 2014
International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14, pages 69–76,
Richland, SC, 2014. International Foundation for
Autonomous Agents and Multiagent Systems.


