Monte Carlo Tree Search and Its Applications

Max Magnuson

Computer Science Senior Seminar Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

April 25, 2015

U of Minn. Morris

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Magnuson

Kasparov vs Deep Blue

J of Minn, Morris

Magnuson

Kasparov vs Deep Blue

Great display of artifical intelligence (AI) Techniques employed by IBM

- Brute force deterministic approach
- Human knowledge

Limitation

Scalability into larger search spaces

Monte Carlo tree search (MCTS) is an alternative method

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Outline

Introduction

Naive MCTS Implementation

Applying MCTS to Go

Applying MCTS to Narrative Generation

Conclusion

Magnuson

Monte Carlo Tree Search (MCTS)

- Combines random sampling and game trees
- Lightweight random simulations
- Probabilistic not deterministic
- Useful for problems with larger search spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Applying MCTS to Go

Go

- Board game about positional advantage
- Game board for Chess:
 - ► 8x8
- Average possible configurations for a game of Chess:
 - ► 10¹²⁰
- Game board for Go:
 - 19x19
- Average possible configurations for a game of Go:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

▶ 10⁷⁶¹

Applying MCTS to Narrative Generation

- Useful Applications
 - Video game replay value
 - Educational applications
- The search space scales with the number of characters, items, locations, and actions

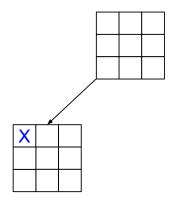
◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Outline

Introduction

Naive MCTS Implementation

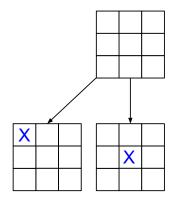
Applying MCTS to Go


Applying MCTS to Narrative Generation

Conclusion

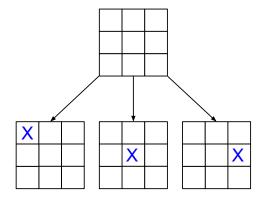
▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

J of Minn. Morris


Magnuson

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

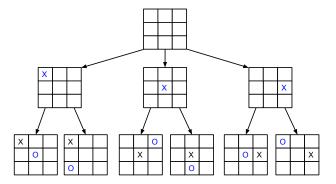
Magnuson


J of Minn, Morris

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Magnuson

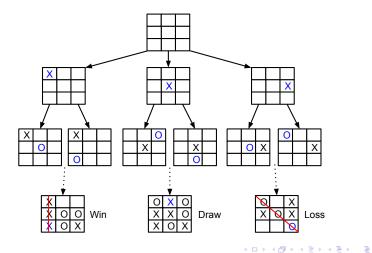
J of Minn, Morris



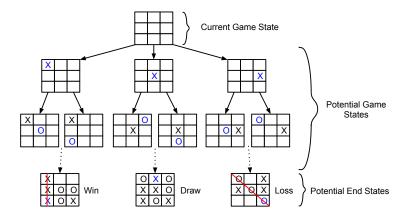
Magnuson

LL of Minn Morris

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶


TicTacToe Diagram More Levels

Magnuson


LL of Minn, Morrie

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Magnuson

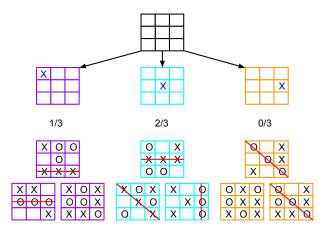
J of Minn, Morris

Magnuson

J of Minn, Morris

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

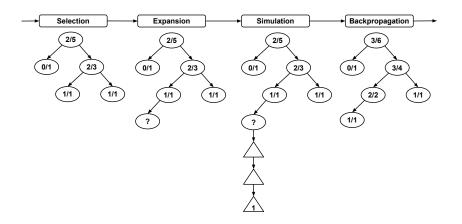
Tree Structure



Magnuson

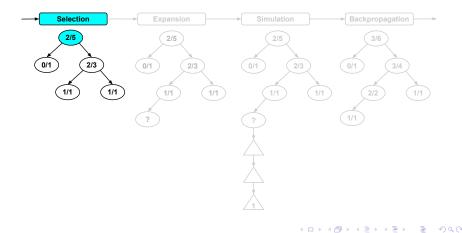
・ロ・・聞・・聞・・聞・ 聞・ のんの

J of Minn, Morris

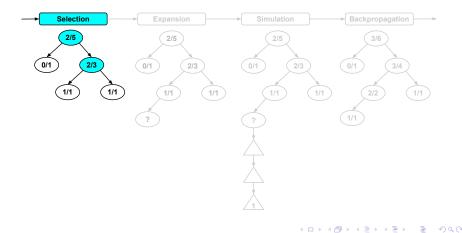

Sampling

Magnuson

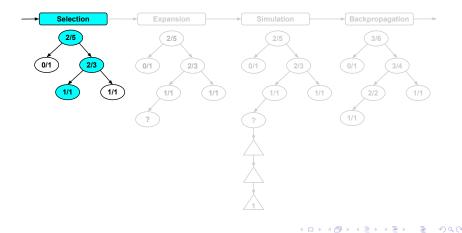
・ロ・・聞・・叫・・ 聞・ うらの


J of Minn, Morris

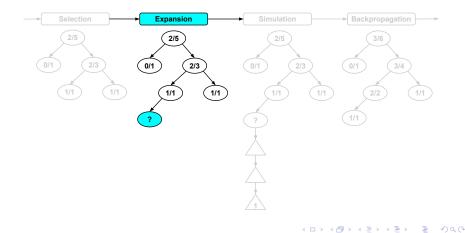
Magnuson


U of Minn. Morris

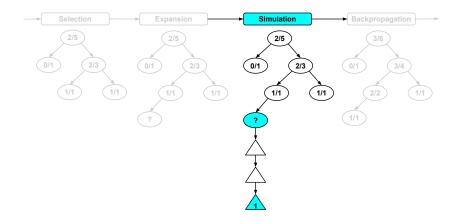
<ロ> <同> <同> < 回> < 回> < 回> = 三目


Magnuson

U of Minn. Morris

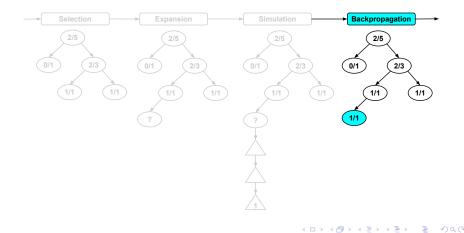

Magnuson

U of Minn. Morris

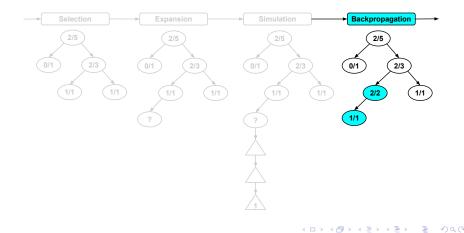

Magnuson

J of Minn, Morris

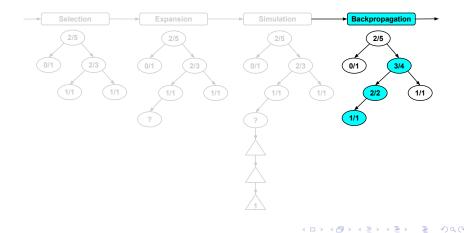
Magnuson


J of Minn, Morris

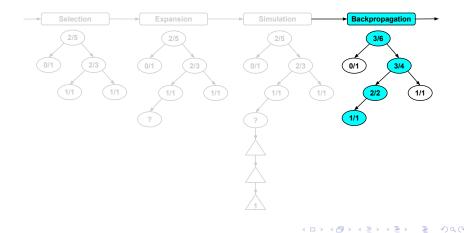
Magnuson


▶ 重 ���(Jol Minn, Morris

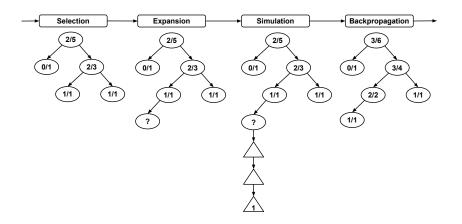
<ロ> (四) (四) (日) (日) (日)


Magnuson

U of Minn, Morris

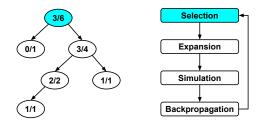

Magnuson

J of Minn, Morris


Magnuson

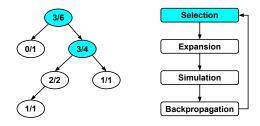
U of Minn, Morris

Magnuson


U of Minn, Morris

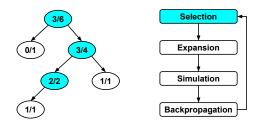
Magnuson

U of Minn. Morris


<ロ> <同> <同> < 回> < 回> < 回> = 三目

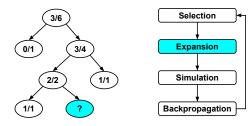
Magnuson

U of Minn, Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

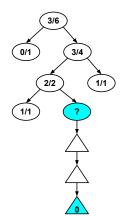
Magnuson

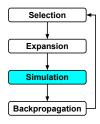
U of Minn. Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Magnuson

LL of Minn, Morrie

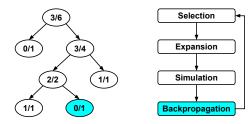

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで



Magnuson

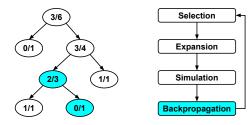
U of Minn, Morris

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ



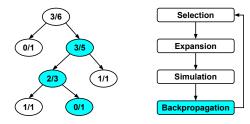
Magnuson

J of Minn, Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

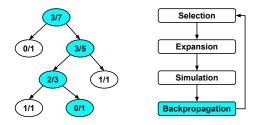
Magnuson

U of Minn. Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

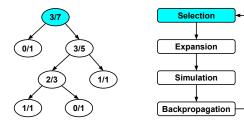
Magnuson

LL of Minn Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

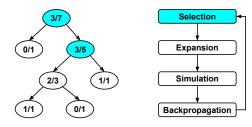
Magnuson

U of Minn. Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

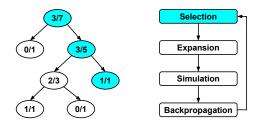
Magnuson

U of Minn. Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

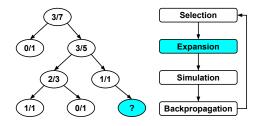
Magnuson

LL of Minn Morris


◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

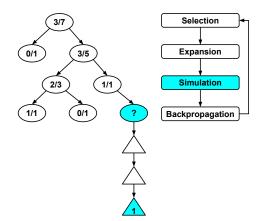
Magnuson

LL of Minn, Morris


◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

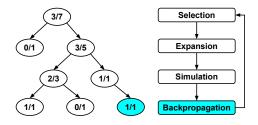
Magnuson

LL of Minn, Morrie


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

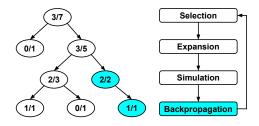
Magnuson

U of Minn, Morris


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

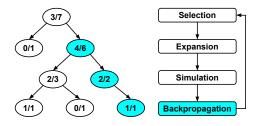
Magnuson

LL of Minn Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

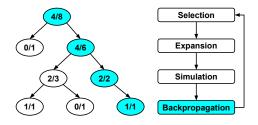
Magnuson

LL of Minn Morris


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Magnuson

LL of Minn Morris


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

Magnuson

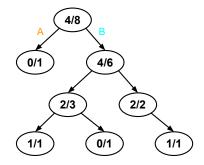
U of Minn. Morris

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Magnuson

LL of Minn, Morris

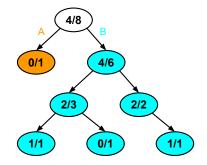
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?


What Happens When We Choose a Move?

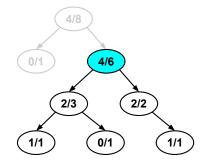
Now we have:

- A tree structure
- A method of generating the tree

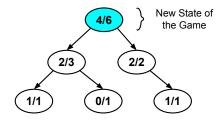
What happens when we need to choose a move?


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ


J of Minn. Morris

Magnuson


J of Minn. Morris

Magnuson

J of Minn, Morris

Magnuson

Magnuson

< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 >

J of Minn, Morris

Exploration vs Exploitation

- We might overlook better paths
- Exploration vs Exploitation
 - Exploration looks at more options
 - Exploitation focuses on the most promising path
- Must find a balance between the two

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Upper Confidence Bound Applied to Trees (UCT)

$$UCT(node) = \underbrace{\frac{W(node)}{N(node)}}_{Value of the Node} + \underbrace{\sqrt[c]{\frac{In(N(parentNode))}{N(node)}}}_{Exploration Bonus}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

- W represents the number of simulated wins
- N represents the total number of simulations
- C is an experimental constant
- Used during tree traversal
- Balances exploration vs exploitation

Outline

Introduction

Naive MCTS Implementation

Applying MCTS to Go

Applying MCTS to Narrative Generation

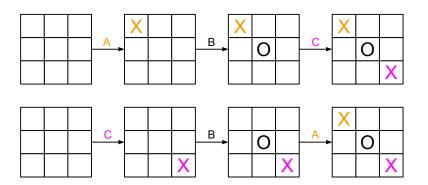
Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

of Minn. Morris

Monte Carlo Tree Search and Its Applications

Magnuson


MCTS applied to Go

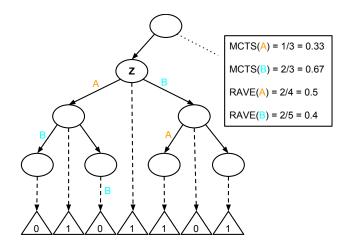
What variations can we make specific to Go? In Go each player takes turn placing pieces on a game board

- How much does the order of these moves matter?
- Can we use this to improve MCTS in the context of Go?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Tree Redundancy

Magnuson

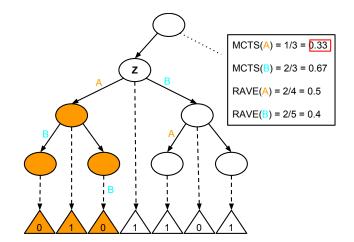

U of Minn, Morris

Rapid Action Value Estimate (RAVE)

- Takes advantage of tree redundancy
- Moves have no contextual dependencies
- Stores the value of a move within a subtree at each node

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

RAVE Diagram

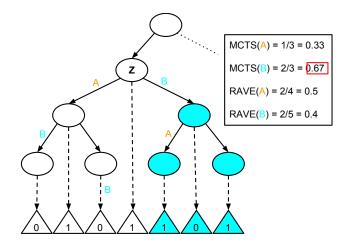


Magnuson

LL of Minn Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

MCTS Values

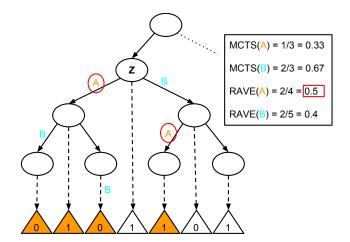


Magnuson

LL of Minn Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

MCTS Values

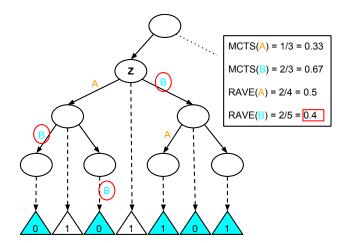


Magnuson

LL of Minn, Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

RAVE Values

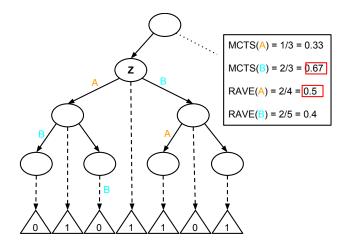


Magnuson

LL of Minn Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

RAVE Values



Magnuson

U of Minn. Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

MCTS RAVE Comparison

Magnuson

U of Minn, Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

RAVE

- Very powerful approach
- Each simulation provides us with more information
- Sometimes we do need contextual dependencies
 - Example: Close tactical battles

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

MC RAVE

- Combines MCTS values with RAVE values
- Uses a weighted average
- Favors RAVE values when fewer simulations have been performed
 - Contextual dependencies are unknown
- Favors MCTS values when more simulations have been performed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Contextual dependencies are more developed

Go Results

- Deterministic approaches could hardly defeat low level amateurs
- Computer Go programs use MC RAVE
 - MoGo
 - Crazy Stone
- Can compete against top pros in 9x9 Go
- Can compete against top pros in handicapped 19x19 Go

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Outline

Introduction

Naive MCTS Implementation

Applying MCTS to Go

Applying MCTS to Narrative Generation

Conclusion

Magnuson

・ロト・西ト・ヨト・ヨー もよう

Narrative Generation

Kartal et al. applied MCTS to Narrative Generation

- Crime story
- User defines the set up and goals for the story
 - Example Setup: The detective starts in his office
 - Example Goal: The killer must be arrested

Unlike Go and other games

- Slightly different tree structure
- Evaluation function needed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Magnuson

Actions

- Actions drive the story
- Actions are believable based on context
 - Example: Inspector searches for clues
 - Example: Character A kills Character B

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Example Actions

Move(A, P): A moves to place P. Kill(A, B): B's health to zero(dead). Earthquake(P): An earthquake strikes at place P.

- Actions take the place of moves
- No clear end state
- The researchers used a set threshold during simulation

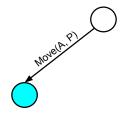
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Evaluation function

- Method of giving nodes value
- Incorporates believability and goal completion
- Ensures stories are interesting
- Value(story) = Believability(story) * GoalCompletion(story)
 - Believability is the mathematical product of every action in a story

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

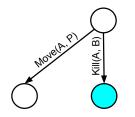
The value is between 0 and 1


Narrative Generation Test

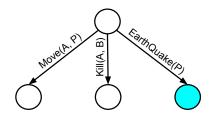
MCTS compared against three deterministic algorithms

- Breadth-first search
- Depth-first search
- Best-first search

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

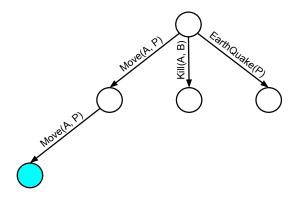

Breadth-First Search

Magnuson

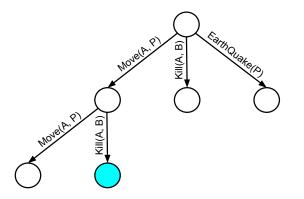

LL of Minn, Morris

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

Magnuson

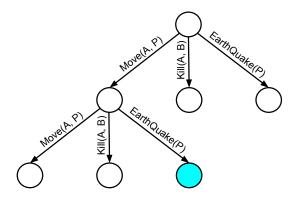

4 日 > 4 目 > 4 日 > 4

Magnuson


the set of the set of the set of the

<ロ> <同> <同> < 回> < 回> < 回> = 三目

Magnuson

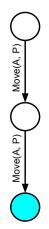

<ロ> <同> <同> < 回> < 回> < 回> = 三目

Magnuson

4 日 > 4 日 >

J of Minn, Morris

Magnuson


Lof Minn Morrie

<ロ> <同> <同> < 回> < 回> < 三> < 三>

J of Minn, Morris

Magnuson

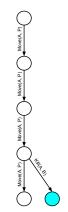
Magnuson

≣▶ < ≣ > € • 9 < 6

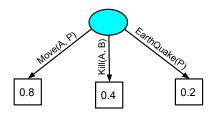
Magnuson

E► E �Q(

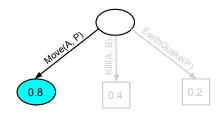
Magnuson


・ロ・・聞・・聞・・聞・ 一間・ 今年や

J of Minn, Morris

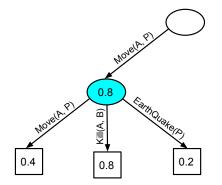

Magnuson

J of Minn, Morris


Magnuson

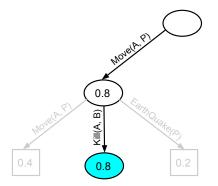
<ロ> (四) (四) (日) (日) (日)

Magnuson

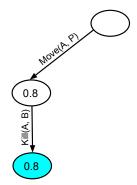

<ロ> <同> <同> < 回> < 回> < 回> = 三目

Magnuson

うせん 聞 ふ聞やふ聞をふしゃ


J of Minn, Morris

Magnuson


・ロ・・母・・ヨ・・ヨ・ ヨ・ うへぐ

J of Minn, Morris

Magnuson

<ロ> <同> <同> < 回> < 回> < 三> < 三>

Magnuson

・ロ・・聞・・叫・ しょうくの

J of Minn, Morris

Test Conditions

Goals for the narrative:

- At least two people are killed
- The killer is arrested
- Each algorithm was given two budgets
 - 100,000 nodes
 - 3 million nodes

Each algorithm ran three times The score of the narratives were averaged

Magnuson

Results

	MCTS	Breadth- first	Depth- first	Best- first
Low Budget	0.07	0.05	<0.001	0.005
High Budget	0.9	0.06	<0.01	<0.01

- MCTS performed the best in both
- Breadth-first came the closest out of the deterministic algorithms

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の Q @

Stories Produced by MCTS

- Stories from MCTS tended to be believable
- Completed both user defined goals
- Some problems
- Overall reasonable narratives

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Low Scoring Example from Breadth-First

Sherlock moved to Alice's House. An Earthquake occurred at Alice's House! Sherlock and Alice both died due to the earthquake.

Magnuson

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Outline

Introduction

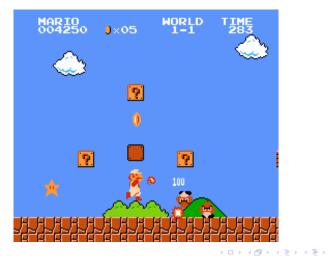
Naive MCTS Implementation

Applying MCTS to Go

Applying MCTS to Narrative Generation

Conclusion

Magnuson


Conclusion

- MCTS successful in extending AI capabilities
- Tackles problems with larger search spaces
- Effective in Go and narrative generation
- Applicable to other problems
 - Can outperform humans in many puzzles
 - Real time games
 - Super Mario Brothers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Magnuson

Any Questions?

Magnuson

▶ E ∽Q(