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ABSTRACT
Brain-computer interfaces are systems that receive input di-
rectly from the brain, and translate it into input usable by
a computer. They have been demonstrated to be an in-
creasingly powerful technology that can be applied to many
spaces, from disability treatment to entertainment. This
paper will discuss interface hardware, data processing tech-
niques, applications of brain input and emerging ideas or
areas in the field.
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1. INTRODUCTION
For as long as computers have been developed, people

have been devising new ways to interact with them. Rel-
atively recently, developments in neuroscience and accom-
panying hardware have enabled devices to monitor and in-
terpret certain types of brain activity. These devices take
many forms, and can be implanted within a person’s skull
or non-invasively attached to the scalp. When paired with
systems designed to interpret the raw data coming from the
brain, sensors can become part of a brain-computer inter-
face, henceforth referred to as BCI. These interfaces are
unique in that the computer receives input directly from
the brain, with no physical movements needed to interact
with other intermediaries such as a standard mouse or key-
board. This makes BCIs ideally suited to those who cannot
use traditional interfaces, such as those who are paralyzed
or have other movement-limiting disabilities.

Figure 1 shows an example of a BCI and its various compo-
nents. Signal acquisition is performed by the hardware com-
ponent, which feeds data to a computer for pre-processing
and feature extraction. Feature translation is handled by the
classifier, which outputs the classified signals to the applica-
tion’s control interface, which then updates the application
state as needed.
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There are many types of BCIs; this paper primarily covers
the operation of non-invasive variants and their applications,
as well as selected techniques and algorithms for intermedi-
ate data processing. As with any input device, a BCI pro-
vides researchers and developers with a new space in which
to innovate. Already, BCIs have been used to help people
with disabilities regain agency, monitor the mental state of
users, and allow new ways to play games and experience
entertainment.

Figure 1: An example of a BCI system, as illustrated
by Plass-Oude Bos et al. [9]

2. HARDWARE

2.1 Electroencephalograms
Of the multiple hardware approaches for measuring brain

activity, electroencephalograms have been widely used in the
development of BCIs. Electroencephalograms, better known
as EEGs, are recorded by placing electrodes onto the scalp
of a user. The number of electrodes varies between setups,
but standards exist that ensure labeling and placement are



consistent. The electrodes measure electrical activity in the
brain, measuring voltages over time. This process produces
a set of waveforms, which can be fed into an input classifier
in order to determine what type of action to register.

2.2 fNIRS
Another class of devices used in BCIs use functional near-

infrared spectroscopy, or fNIRS to capture signals. This
non-invasive method involves measuring the scattering of
near-infrared light by red blood cells, with measurements
taken through the scalp. The light, emitted by LED or laser
diodes, exhibits different patterns of scattering depending
on the levels of hemoglobin oxygenation in the blood. These
measurements have been shown to be correlated with inter-
nal and external stimuli, and are therefore a prime candidate
for utilization as part of a BCI [2]. Devices using fNIRS can
be used on any region of the scalp, but the prefrontal cor-
tex is the most common measurement location due to its
accessibility and importance in higher-level cognition.

3. CLASSIFICATION ALGORITHMS
Once the data has been gathered from the BCI hardware,

it must be converted into useful input. The software com-
ponent responsible for that is called the classifier, which de-
cides what the incoming signals represent. Classifiers consist
of algorithms that place different types of input into classes,
which typically represent discrete intents by the user. Lotte
et al. give a formal definition: “classification consists in find-
ing the true label y∗ of a feature vector x using a mapping
f . This mapping is learned from a training set T . The best
mapping f∗ that has generated the labels is, of course, un-
known” [3]. In other words, the designers of a BCI system
are responsible for choosing a classification algorithm that
correctly labels their input as members of one of some set
of classes. Two families of classifiers will be discussed in
this section, linear classifiers and neural networks, as well as
techniques for improving classifier performance.

When dealing with input from the BCI hardware, system
designers must balance several factors. In an EEG system,
consideration must be given to which features of the input
will be fed into the input classifier. Common features of
EEG signals used in classification include amplitude, power
spectral density, and autoregressive parameters [3]. Ampli-
tude is a direct measurement of the waveform coming from
an EEG and often the most commonly used feature. The
amplitude measured from an EEG is around 100 µV, with
a frequency of up to 50 Hz. One or more of these features
must be extracted, timestamped, and combined to create
feature vectors.

Before classifiers are ready to be used with real data, they
must first be trained. Classifier training is done by giving
the classifier an initial set of pre-classified vectors chosen to
mimic real-world input. The classification algorithm must
then configure itself to respond correctly to any new data
it receives. The training data must be chosen to reduce the
risk of overtraining the classifier, which can lead to poor
performance when dealing with real data later on. This
phenomenon occurs when the classifier is given training data
that may not represent real-world data, or is excessively spe-
cialized or complex. The classifier will become very good at
identifying data that closely matches its training set, but
will fare poorly when faced with more natural input and the
outliers it contains.

In addition to the classifier training, users must undergo
training in order to reliably interact with the BCI. Users
practice emitting the correct brain signals, and over time can
reduce overall noise and improve the classification accuracy
for the BCI. Another facet of user training can be related to
training the classifier itself. If the chosen classifier supports
machine learning, it can modify its classification output by
learning how the user emits brain waves, and tailoring the
classification to match them. Other classifiers rely solely
on the initial training data, which may be collected from
the user and manually classified to produce an accurate rep-
resentation of that user’s input classes. This is important
because every human will emit slightly different brain waves,
even for the same thought or intent. Care must be taken to
minimize the size of the training data set, because the user
training process can be lengthy and demanding.

There are several categories that classifiers can belong to.
Generative classifiers try to build a statistical model of the
classes and their properties. They then compute the prob-
ability of the next input being of each class, selecting the
most likely; this probability is based on their classification
history and the properties of the input. On the other end
of the spectrum, discriminative classifiers use training data
to build boundaries between classes so that any input can
be decisively grouped. The linear classifiers discussed here
are of this type, while statistical classifiers such as the Bayes
quadratic belong to the generative group. The stability of a
classifier refers to the extent to which changes to the train-
ing data affect its performance. Linear classifiers have been
noted to have a relatively high stability, compared to oth-
ers such as the MultiLayer Perceptron, a neural network
based classifier, which can give more varied results when
their training data is tweaked [3]. A desirable property of
classifiers is that they are regularized, meaning that they
generalize well to real-world data and can account for out-
liers in their input. To achieve this, the designers of classi-
fication algorithms and the researchers who tune and train
them must be careful to avoid overtraining.

3.1 Linear Classifiers
Historically, a type of system known as linear classification

has been prevalent in BCI research, with two variants com-
posing the majority of the classifiers [1]. The input for a lin-
ear classifier are vectors in an n-dimensional space, with the
dimensionality depending on the complexity of the signals
being captured. The variant known as linear discriminant
analysis (LDA) operates by attempting to separate distinct
classes using hyperplanes. A hyperplane is a subspace of the
containing space that has dimensionality of one less than its
containing space; for example, the hyperplanes shown in fig-
ures 2 and 3 are one-dimensional lines in a two-dimensional
space. Hyperplanes are suitable for linear classifiers because
given an n-dimensional space, a hyperplane can always di-
vide it into two subspaces. In LDA, this separation is calcu-
lated by maximizing the distance between the target class
and the rest of the classes as shown in figure 2; this process
is repeated for each class. Because of its relatively low com-
putational cost, LDA is well-suited for use in online systems
which must deal with data being streamed in from active
BCI hardware [3]. LDA-based systems have had success
in many researched applications, but they lose effectiveness
when the data becomes less linear, meaning classes may not
be able to be adequately defined by linear boundaries.
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Figure 2: An illustration of LDA separating two
classes with a hyperplane, where x is the input vec-
tor, w is the weight vector and w0 is the threshold.

The second main variant of linear classification is the sup-
port vector machine, or SVM. Similar to LDA, linear SVMs
use a hyperplane to define class boundaries. The key differ-
ence is that the SVM’s hyperplane is positioned to maximize
the margins between it and the closest points of training data
on either side, as seen in figure 3. One advantage of using
an SVM is that it has increased capacity for generalization
on real-world data. They also mitigate the effects of several
issues such as sensitivity to overtraining. SVMs are also
resistant to an effect dubbed the “curse of dimensionality”,
where the “amount of data needed to properly describe the
different classes increases exponentially with the dimension-
ality of the feature vectors” [3]. Parameters can be adjusted
to account for the presence of outliers. In addition, SVMs
can be adjusted to work in a non-linear fashion by adding a
kernel function, which implicitly maps data to higher dimen-
sional spaces [3]. A common kernel function in BCI research
is the Radial Basis Function, or RBF:

K(x, y) = exp(−||x− y||
2

2σ2
)

Here, x and y are the vector coordinates, and σ is a free
parameter. By replacing the feature vectors with a kernel
function, an SVM can operate in higher dimensional feature
spaces without calculating the coordinates in that space.
The function does this by computing the inner products be-
tween the images of all pairs of data in the feature space,
and its real-valued output depends on the distance from the
origin. This has been shown to often be cheaper computa-
tionally than direct computation of coordinates in a higher
dimension, which is why this method is called the “kernel
trick”. A SVM that uses the RBF is known as a RBF SVM,
or Gaussian SVM.

3.2 Neural Networks
Along with linear classifiers, the other most common type

of classifier is the neural network, or NN. At its most basic,
a NN is a system that uses a collection of simulated neu-
rons arranged in successive layers that can produce function
approximations or decisions based on input data, typically
of an unknown format. Each individual neuron’s input is
attached to the output of the previous layer, and the out-
put layer’s neurons determine the class of the input vector.
A NN is capable of classifying any number of individual
classes. Due to their adaptive nature, neural networks are
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Figure 3: A SVM maximizing the size of the margins
between two classes

capable of machine learning, as well as pattern recognition.
The most commonly used NN in BCI classification is the
MultiLayer Perceptron, or MLP. These classifiers are com-
posed of an input layer, an output layer, and some number
of hidden inner layers. As a neural network, MLPs are uni-
versal approximators, meaning that they can approximate
any continuous function, provided that they are composed
of enough neurons and layers [3]. MLPs have been applied
to most BCI problem types, and have been proven to be
very versatile. However, the adaptive nature of these NNs
mean that they tend to be more sensitive to overtraining
than linear classifiers, which necessitates a more thoughtful
design and selection of parameters.

3.3 Combining Classifiers
While most research focuses on the use of one type of clas-

sifier, a recent trend of combining classifiers has emerged.
The classifiers used in these combinations and the meth-
ods of combining vary, but there are three notable methods.
Boosting refers to using several classifiers in series, with each
one focusing on correcting errors made by the previous ones.
These have seen mixed success, with one potential prob-
lem being that they are composed of fairly weak individual
classifiers which are sensitive to mislabeling [3]. The voting
method entails feeding the feature vector into a collection of
classifiers in parallel, and having the final classification be
the class output by the majority. This is the most used of
the combination methods, due to its relative simplicity and
efficiency. Stacking is similar to voting in that it uses a col-
lection of classifiers to initially give their own results on one
feature vector. These results are then input into a “meta-
classifier” that makes the final decision on the classification.

While the success of these methods varies due to the large
amount of possible variables, they are often advantageous in
that they are likely to outperform a single classifier. The use
of different combinations of classifiers in these configurations
has yielded promising initial results, and further research
may uncover new uses for this model.

3.4 Post-Processing Classified Signals
After the raw input has been processed and classified,

there are techniques that can be used to improve accuracy
and reduce the effort users must expend. Classified signals



may not map directly to computer inputs such as key presses
or calls to an application programming interface. The sig-
nals can only be assumed to represent different intents on
the part of the user. It is therefore necessary for the sys-
tem to have a post-classification step, in which the classified
signals are given new meaning in terms of the target appli-
cation. This step also represents an opportunity to further
process and refine the input. Plass-Oude Bos et al. describe
several methods for improving BCI performance after signal
classification [9].

The researchers separate their methods into two cate-
gories: gathering external evidence and transforming clas-
sification. The first category centers around augmenting the
data with additional input or contextual inference. It is sug-
gested that by making systems more multimodal, BCI users
can expect greater accuracy. This can be achieved, for ex-
ample, by using additional types of brain signals and events
to control the interface, or adding input devices like a key-
board or game controller. This technique provides a greater
amount of data for the BCI system to use in its calcula-
tions, which can result in improved accuracy if implemented
correctly.

Contextual information can also increase accuracy and
provide time-saving shortcuts. Consider a simple virtual
keyboard application, and the kinds of word-prediction algo-
rithms often found on modern smartphones. By predicting
what is most likely to be the next input, the BCI can more
accurately choose between two or more input signals that
represent different letters. This concept can be extended
for whole words and even system actions, given the right
implementation. Another method for contextual input is
increasing the action space. In contrast to the keyboard ex-
ample, where the goal was to reduce the number of options
and therefore uncertainty, this method relies on a large num-
ber of potential actions and a low number of inputs. This
makes each input more context-sensitive, such as in a com-
puter game, where players are given the option to “open”
any object that supports that action. This approach needs
application knowledge, and in some cases may cause signals
to become less stationary, meaning that the different con-
texts will influence how the user perceives their own action,
which will in turn be expressed in their emitted signals. An
example of this would be akin to a user’s reaction to two
different items that have the same context, like coffee and
tea; a user may have feelings or associations that introduce
noise in their brain signals. The non-stationarity may need
to be addressed in order to maintain accuracy, or it could
even be used as additional contextual information.

The second category defined by Plass-Oude Bos et al. is
transforming classification. These methods apply additional
processing to the classified signals. One method is described
as a moving average algorithm, which multiplies the most
recent classifications with a smoothing vector, allowing a
more balanced output. This approach works better with
input that tends to have a smooth shape over time, for ex-
ample the throttle of a car, as opposed to the rapid single
inputs of a keyboard. Another method in this category is
the refractory period, or debounce period. This is when a
BCI is prevented from changing states for some period after
the last state change, preventing unwanted activations. This
method has been successfully applied to applications such as
the control of a robotic hand used to grasp objects [9]. BCI
designers must balance the need for reduction of unwanted

state changes with the desired response time of the system.

4. BCI INPUT PARADIGMS
After the input from the BCI has been classified and any

post-processing has been applied, the system must interpret
it in terms of the application. This section discusses two
paradigms in the use of BCI hardware, each facilitating dif-
ferent kinds of interactions. In both cases, classified signals
are converted into data easily consumed by the computer or
application programming interface. The key difference lies
in how the application is designed to use the data, and the
hardware that best meets these needs.

4.1 Active Control
The most direct use of BCI input is to translate it into

discrete actions within a computer system. The method
used most often in this type of interface involves EEG data.
Different interpretations of active control signals can range
from binary input to analog mouse-style input [10]. There
are multiple signals used in the interpretation of EEG data,
one of which is the event-related potential, or ERP. ERPs
are the measurable results of the brain reacting to a stimulus
or significant event of some kind, which is registered on the
EEG. As with many EEG-based interfaces, the participants
must undergo training, so that the software can correctly
classify the signals it is receiving from the interface. In ad-
dition, active control necessitates that a user maintain focus
on emitting the correct signals and minimizing mental noise.
This reduces the viability of combining EEG with other in-
put methods such as mice or keyboards when using an active
control setup, as the brain will be emitting signals in rela-
tion to the operation of the other input devices as well as to
use the EEG.

There is always the capacity for errors in classification
when utilizing an active control interface. Methods to re-
duce these errors have been proposed, one such method be-
ing error-related potentials, or ErrP. A special type of ERPs,
ErrPs are the brain signaling that what the interface has
done was not what they had intended it to, and can be used
as a self-correcting mechanism [4]. In the most simple case
of misinterpreting a user’s choice between two options, reg-
istering an ErrP can tell the system to immediately rectify
the error, and in other situations provide a quick way to
reverse the last action taken.

4.2 Passive Input
The concept of passive input has been explored more re-

cently. In this paradigm, instead of utilizing the BCI as
the primary input device, data captured from the brain is
used as an auxiliary input. Users can interact with other
input devices such as standard computer peripherals while
wearing the BCI hardware. This has previously been diffi-
cult to achieve due to the high amount of concentration that
users must maintain in order to reliably utilize a more direct
BCI. EEGs, with their greater susceptibility to noise, have
been problematic when relied upon for passive input. Often,
fNIRS devices have been selected in these applications due
to their non-invasive nature and robustness under the effects
of noise.

Passive input data has been utilized in multiple applica-
tions, with many of them seeking to monitor and improve
multitasking activities. The BCI is used to monitor a user’s
mental state; it has been shown that fNIRS can distinguish



between up to three states of multitasking. The first state
is referred to as branching, and it occurs when users must
keep primary goals in mind while pursuing one or more sec-
ondary goals. The second is called delay task, and occurs
when the user has or is receiving secondary objectives, but
decides to delay their pursuit. The final state of multitasking
is called dual task, and occurs when a user is switching be-
tween tasks frequently, without keeping information about
non-active tasks in mind [11].

Research on passive input has been done using EEG tech-
niques as well. One such study focused on users controlling
a game resembling a simplified version of Pac-Man. At its
most intense, the game demanded that users provide di-
rectional input via both mouse and EEG simultaneously.
Researchers found that participants were comfortable with
using both techniques. After performing an analysis of vari-
ance (ANOVA) and conducting a questionnaire, the classi-
fication of EEG input was found to be accurate, and that
the introduction of the mouse input condition did not signifi-
cantly degrade the performance of the EEG classification [7].

5. APPLICATIONS
Thus far, most applications of BCIs have been focused

on restoring agency to severely disabled individuals. As
the field has advanced, new applications have emerged that
break those boundaries, forming new ideas about what is
possible for these interfaces. Many emerging applications
rely on the interactive capacity being used for entertain-
ment and games, while others are tying in to technologies
that are also undergoing rapid advancement.

5.1 A General User Interface for BCIs
McCullagh et al. describe a system that aims to provide

a complete interface to a network of technology [6]. Utiliz-
ing the BCI2000 system, which encompasses both EEG and
classification in a single package, users can transmit streams
of data through UDP, a common lightweight network con-
nection protocol. Their system provides a user access to
an XML-based menu, whose items can transmit commands
through multiple protocols upon selection. The system is
intentionally non-specific, as the goal is to build a frame-
work around which users can interact with all kinds of ser-
vices, from medical applications to entertainment services,
and even control networked smart-home devices. The au-
thors emphasize the difficulty of designing a graphical user
interface for BCI users, as the input is limited in complex-
ity. They settle on a four-action menu, with left and right
controlling menu traversal, and up and down controlling sub-
menu navigation and item selection, respectively.

5.2 Medical
Often thought of as the main practical use for BCIs, med-

ical interfaces have been developed for as long as the field
has existed in any serious capacity. When a patient is un-
able to communicate or perform important motor functions,
a BCI can be used as a work-around. This method of in-
teraction typically requires that the BCI is an active input.
Severely paralyzed patients who are unable to speak or type
can utilize a BCI such as a speller, a kind of virtual keyboard
that responds to input from brain signals. Many spellers
have been developed, with several being based on the P300
speller. The P300 is an ERP, utilized here to recognize that
a user has selected a letter, and has a latency of approxi-

mately 300ms, hence the name. Characters are displayed in
a 6 x 6 grid, with the rows and columns flashing alternately
and in random order; this is called the Row-Column speller
Paradigm (RCP). The user focuses on the desired character
and counts the number of times it has appeared. The BCI
then determines that the character at the row and column
coordinate that registered the strongest on the EEG is the
desired character.

While this approach has been successfully employed, there
remain issues with accuracy, due to the flashing rows and
columns causing the user to become distracted and their fo-
cus to waver, with the small distance between two adjacent
characters increasing the severity of the problem. Studies
have shown that up to 60% of errors are due to this prob-
lem [8]. In addition, the visual identification of characters
becomes more difficult when they are surrounded by simi-
lar items. To address these problems, Obeidat et al. have
developed what they call the Zigzag Paradigm (ZP).

In the ZP, every other row of characters is offset to the
right by one half the distance between characters on the
grid. This maximizes the distance between letters, which
reduces the effect of the former issue on selection accuracy.
The new spacing of characters also helps alleviate the crowd-
ing problem, allowing users to better distinguish individual
symbols from their neighbors. In controlled experiments, the
ZP achieved 91% accuracy, compared with RCP’s 80.6%. Of
the ZP-detected errors, 30% were adjacent errors, compared
with 43% for RCP. Additionally, ZP correctly detected ei-
ther the row or column 92.3% of the time, compared with
75% for RCP. Overall, the ZP significantly improved the ac-
curacy of the P300-based speller, as well as reducing user
fatigue [8].

Aside from communication, another major interest is the
operation of robotics or prosthetics directly from the brain.
BCIs have been used to collect motor imagery, or brain sig-
nals related to human motor control. These signals can be
classified and used as input to devices and machines, allow-
ing users to gain agency in the physical world. BCI-driven
machines can take many forms, from prosthetic replacement
limbs to full-body robotic exoskeletons, many of which are
already in development. The concurrent progress in the
prosthetics and robotics fields make these applications some
of the most promising, with predictions of how persons with
disabilities would be able to regain full movement, as well
as general human augmentation.

5.3 Entertainment
A major trend with emerging technologies is to apply

them to entertainment applications, especially games. Many
researchers use custom or modified versions of existing games
to test BCI systems. Often, these modified games help par-
ticipants in research to better understand the context of
their task, such as in the research by Mercier-Ganady et
al. using a game resembling Pac-Man. Portraying a task as
an interactive game helps to remove subconscious barriers
between the user and the interface, especially if the game is
immersive. BCI-based games have seen commercial success
as well. The 2009 release Star Wars: The Force Trainer used
an EEG-like headset to give users control over a “levitating”
ball controlled by a variable-speed fan; a sequel planned for
2015 utilizes the same headset and a holographic display.



5.4 Emerging Applications
Many of the techniques currently used to control games

using a BCI are being researched for use in new real-world
applications. In research done by Poli et al., a BCI is used to
control a spacecraft simulator [10]. Participants were asked
to pilot a spaceship in two-dimensional space to a predeter-
mined destination while remaining a certain distance from
a star. The researchers also combined data from partici-
pants in experiments, trying two methods: first, the ERPs
were averaged and fed into the classifier, and second, the
outputs of the classifier were combined. The first method
was able to reduce the noise by approximately 30%, result-
ing in more accurate classification. One drawback to this
method is that an individual’s ERPs are unique, and there-
fore the unique properties may increase classifier uncertainty
when combined with others. The second method averaged
the output vectors of two participants, and resulted in a
noise reduction of the same magnitude as the first, how-
ever the researchers note that it does not benefit from the
pre-classification noise reduction. Overall, the first method
produced results similar to a single user, while the second
resulted in a significant improvement in mission success.

Along with new capabilities come potential new concerns,
as shown by Martinovic et al. [5]. In their research, they
asked users to perform simple image classification. They
were able to determine by looking at the BCI data which
images were related to or contained sensitive information
about participants such as addresses, credit cards, and ac-
quaintances. This introduces the concept of “virtual interro-
gation”, which could be disguised as a mind-training game or
outright employed by intelligence agencies. The researchers
note that users could counteract this by introducing deliber-
ate mental noise, however this would not help those caught
unaware by these potential schemes.

6. CONCLUSIONS
Two types of hardware have been discussed, EEG and

fNIRS, showing different methods of detecting input from
the brain. There are many types of classification algorithms,
ranging from linear models using hyperplanes to neural net-
works and other systems capable of machine learning. These
elements enable the interpretation of brain signals captured
directly from the scalp of a user, and together make up a
BCI. Medical applications have been developed and con-
tinue to advance, with improvements in classification ac-
curacy and user interface design. New applications in the
realm of entertainment and games have pushed the technol-
ogy forward with their broader appeal and need for ever-
better features and reliability. Efforts are being undertaken
to link BCIs with a large variety of devices through a general
purpose user interface. The advances in BCI research have
improved the lives of many, and through continued research
and development may eventually cause BCIs to become a
mainstream element of computing and modern life.
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