
Evolving Neural Networks in NPCs in Video Games

Katie Reddemann
Division of Computer Science

University of Minnesota, Morris
Morris, Minnesota, USA 56267

redde019@morris.umn.edu

ABSTRACT
This paper will look at how evolving artificial neural net-
works can be used to advance and enhance game play. We
will look at neuroevolution in recent video games and how
it can be applied to video games from the past. Also, we
discuss expanded concepts of Neuroevolution of Augment-
ing Topologies (NEAT) and how evolving neural networks
are applied to video games.

Keywords
Neural Networks, Evolving Game Play, Evolving NPC, Neu-
roevolution

1. INTRODUCTION
The video game industry has grown exponentially over the

years [11]. Millions of video games are sold every year [4].
But just having the most recent, life-like graphics can not
make a game sell. Artificial neural networks and neuroevo-
lution can make a game more interesting.

Many video games feature dull, repetitive non-player char-
acters (NPCs) and many video games have very little to no
artificial intelligence (AI) techniques [5]. A challenge for AI
is the ability to react to the environment around them, do
tasks more efficiently, and react to new situations. Neu-
roevolution can be used in video games to improve NPCs.
These techniques would benefit not only video games but
other parts of computer science, such as robotics, because
of adaptability [5].

Many NPC scenarios are scripted by developers and never
change. The repetitive nature of NPCs may cause a player to
play the game once and never play through it again. Giving
NPCs new behaviors within video games create new and in-
teresting scenarios through each play through. Giving NPCs
a more human-like behavior would make players feel like
they are playing with a fellow human instead of a mindless
machine [2]. Older games had restrictions with resources
so NPCs did not take priority, but with today’s technology,
there are very few restrictions.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, May 2015 Morris, MN.

Figure 1: An example of a neural network [8].

Next, we will talk in depth about neural networks, neu-
roevolution and NEAT. We will look at the video games
Fight and Flight and NERO that implement neuroevolution.
We discuss applying neural networks and neural evolution
to older games like Super Mario. Then, look at the issues
with neural networks and neuroevolution.

2. BACKGROUND

2.1 Neural Networks
Artificial Neural networks are powerful tools because they

can learn new behaviors and even solve problems that de-
signers had not anticipated [3]. They do this using statis-
tical pattern transformation and generalization [5]. Neural
networks work very well with outside input and they don’t
always need specific outputs.

Neural networks are based on of the complex connec-
tions of neural networks in the biological brain[3]. Each
node within the network represents units and the nodes are
connected with links. The links have weights attached to
them. In the example shown in Figure 1, the links are rep-
resented with arrows. The weights attached to them are
shown through the thickness of the arrows. The input nodes
send data through the links to the center nodes. The data
comes from the user. The center nodes are called the hidden
nodes and do all the work behind the scenes [8]. The output
nodes outputs the new data. The more complex the neural
network is, the more nodes it will have.

In Figure 1, when data from node A and node B move



through the link to node C, node C has to decide which one
takes precedence. The link between A and C is a thinner
line, so C could absorb B’s input. Node C could also take
both inputs in but may favor the data from node B [8].

2.2 Evolutionary Computation
Evolutionary algorithms are inspired by biological evolu-

tion that is an iterative process that uses crossover and mu-
tation to create new children. Crossover takes two parents
then takes traits from each of them and creates a new child.
Mutate is when a parent traits is changed to create a new
child. Fitness is a function how well the traits of the child
perform in the context of the problem.

2.3 Neuroevolution
Neuroevolution involves the evolution of neural networks

through evolutionary algorithms. The algorithms evolve the
weights and structures of the networks [5]. The inputs, out-
puts and the hidden nodes are set, then the links between
each node go through the evolution. The simplest way is to
genetically evolve the values of the weights then crossover
and/or mutate a population.

When a neural network is evolved, it uses backpropaga-
tion to calculate the errors and go back through the neural
network. The errors are compared to each other and the
weights of the links are changed. The process could change
multiple links or just one with the biggest error [8]. The
value of the fitness is based on how well the network per-
forms. The fitness is by determined how close the neural
network gets to the desired output.

A method of developing complexity in networks is Neu-
roevolution of Augmenting Topologies (NEAT). The popula-
tion to begin with is small networks that, over time, become
more complex with evolution [5]. NEAT can find the right
complexity for the problem with minimal number evolutions.

Neuroevolution works well for video games. Many popula-
tions can be managed and the neural networks are constant.
They can adapt in real time and because of recurrences,
memory can be implemented [5].

3. VIDEO GAMES THAT LEARN

3.1 Fight or Flight
Fight or Flight is a game that was designed to evolve

multi-modal behavior. Multi-modal behavior is when evolv-
ing agents exhibit distinctly different modes of behavior un-
der different circumstances [6]. The game has two different
modes. Fight involves the player in the center of a ring sur-
rounded by four NPCs. The player can hit the NPCs with
a bat and the NPCs can ram into the player. The player
can only take five hits before dying. Flight is very similar
to Fight. The player is surrounded by four NPCs but the
player is defenseless. The player must run from the NPCs
and get to safety. The NPCs are impervious to damage and
the player will die in five hits [6].

The NPCs are controlled using neural networks and can
tell where the player is and where the other NPCs are. The
NPCs must be able to operate differently between the Fight
and Flight, game modes so they have different objectives. In
Fight, the NPC’s behavior is based on damage dealt, damage
received, and time alive. In Flight, NPC’s behavior is based
on is how much damage is dealt [6]. These objective are the
fitness score. The better the score, the better the NPC.

3.1.1 Algorithm
A modified evolutionary algorithm, NSGA-II (Non-Dom-

inated Sorting Genetic Algorithm) is used to evolve the
NPCs. It works well because the NPCs have multiple objec-
tives and the algorithm helps optimize decisions. NSGA-II
sorts the population of neural networks into non-dominated
Pareto fronts by fitness score. The Pareto method will make
sure that the NPCs will not become better if it costs other
NPCs getting worse [10]. The NPC’s neural networks are
cloned and then mutated. This is when the neuroevolution
takes place [6].

The neuroevolution is similar to NEAT. The evolution can
change the weights of links, add new links between nodes
or clone nodes and put them elsewhere in the neural net-
work. When mutation takes place, the links can have dif-
ferent weights and connections, and there could be some
disarray. So there is a final mutation called Merge Muta-
tion. This reduces network structure to prevent bloat while
preserving fitness.

In Figure 3, Merge Mutation has determined that merging
the gray nodes in A will preserve fitness while shrinking the
network. The dashed lines are links between the nodes that
will be deleted. Merge Mutation merges the two nodes then
deletes the unnecessary connections.

Figure 3: Merge Mutation on a tree.

To encourage multi-modal behavior, the output nodes de-
fine the agents behavior, but it is difficult to determine which
mode the output came from. The preference node’s value is
attributed to different behavior outputs whether it is dam-
age dealt, damage received or time alive for Fight or damage
dealt for Flight.

There is a potential problem with the algorithm: how to
divide the objective output. There could be two modes (one
for Fight and one for Flight) or there could be four modes
(one for each objective). A new method is devised to figure
out the optimal number of output modes. This New Mode
Mutation adds nodes until the desired output is reached.
The new networks need to be monitored just in case the
changes are too drastic.

3.1.2 Experiment
The NPCs networks were evolved then the final network

was copied to four NPCs that would become a team. Be-
cause the neural networks are the same, the NPCs could
expect the same results from each member from the team.



Figure 2: (a) Fight features player swinging a bat around to damage attacking NPCs. The NPCs are
surrounding the player to ram and deal damage. (b) Flight has the player running away from the NPCs. The
bars on the darker NPCs represent sensors from detecting the player.

The fitness score is calculated for the whole team, so team-
work is a necessity. The calculated score makes the team
more valuable than the individual NPC.

Because humans will not remain interested for the amount
of evolutions it would take to evolve the NPCs, a bot was
created to be the opponent of the NPCs. The bot and the
evolved NPCs will act differently for each type of game. In
Fight, it will chase the nearest NPC and swing its bat while
moving. In Flight, the bot will move backwards away from
the nearest NPC. This is to keep the NPCs in its line of
sight. This made it harder for the NPCs because they move
at a constant speed.

The first few generations had trouble evolving any new
methods. The bot was too fast so it was slowed. When
the NPCs evolve enough to beat the slowed bot, the speed
was increased little by little. Goals are the way the NPCs
progress, one for each objective. Once the goals are met the
difficulty is raised.

1Mode and ModeMutation were the experimental condi-
tions. 1Mode use neural networks with one output mode
which has two nodes (one for Flight and one for Fight).
ModeMutation would begin with neural networks that have
one output mode but will gain more as mutation takes place.
The output mode will need three output nodes (two nodes
from objectives and a preference node) [6].

3.1.3 Results
The NPCs under the ModeMutation condition were twice

as successful as the NPCs under 1Mode. The ModeMutation
NPCs survived four of ten trials when the bot was full speed
while the 1Mode NPCs only survived two out of ten. The
ModeMutation NPCs were well rounded in all objectives and
1Mode’s NPCs focus more on individual objectives.

The ModeMutation NPCs developed a multi-modal be-
havior through a corralling tactic in Fight. One NPC would
become bait and the bot would chase after it. The other
NPCs would follow behind the bot using a diagonal tactic
to cover more distance and catch up with the bot. The
NPCs would circle the bot and attack. The NPCs would
make sure to hit the bot so it would be pushed back into the

center of the corral.
The 1Mode NPCs lacked teamwork. Individuals were un-

balanced in there objectives. In once instance of the trails,
the NPCs in Fight would avoid taking damage. That is all
they focused on. The NPCs did no damage only avoided
being hit and managed to live throughout the whole trial.
The 1Mode NPCs had extreme scores but rarely had good
scores across all objectives.

The ModeMutation NPCs met the goals better than the
1Mode NPCs. The evolved team had better scores across the
board and had better attack strategies. The ModeMutation
NPCs developed the desired multi-modal behavior.

The use of neural networks and neuroevolution created
a smarter NPC. The NPCs learned over time using the bot
and could possibly do the same against a player. There could
be more strategies that could evolve from playing against a
player and more unexpected outcomes.

3.2 NERO Video Game
NERO (NeuroEvolving Robotic Operatives) is a video

game that was created by a team of over 30 students for
a two year period. Players would act as a drill instructor
or a trainer [5]. They would teach the team of NPCs called
agents through training skills. The game starts with the
agents having no skills, but they can learn. The player must
design exercises and goals that, ideally, will increase in diffi-
culty. This allows the agents to learn the basic skills then be-
come more advanced. The agents have sensors that include
enemy radar, an ”on target” sensor, an object rangefinder,
and line-of-fire sensors.

The player controls ideal behavior of the NPCs through
sliders. The sliders specify the reward and punishment, for
example, when their agents attack enemies, follow team-
mates, get hit, etc. Each slider is a fitness component. The
components are normalized to a Z-score, and then the fitness
is computed as the sum of the normalized components multi-
plied by their slider level [5]. The agents learn through their
evolving neural networks that are evolved though rtNEAT
[7].



Figure 5: A training sequence in NERO [7].

Figure 4: Replacement Cycle in rtNEAT [7].

3.2.1 Real-Time Evolution
Real-Time Evolution (rtNEAT) is when neural networks

evolve during game play. rtNEAT uses NEAT as a base. In
NEAT, each generation of neural networks is mutated and
replaced, which makes it difficult to use in real time. In rt-
NEAT, the worst agent in the generation is removed every
few game ticks (a set time within the game) and replaced
with a child of the two best agents. In Figure 4, the fit-
ness is calculated for each NPC. The neural networks of the
two agents with the best score (circled) crossover and mu-
tate to create a child. The child replaces the lowest scoring
agent. This takes place continuously over the course of a
game. This allows for game play to flow smoothly. rtNEAT
is flexible enough to revert an entire population of agents to
be less complex then build a new behavior. The player can
interact with agents and have the complex neural networks
react fast enough.

3.2.2 NERO Game Play
There are two game modes in NERO: training and battle.

The training begins with fifty agents on a field. As rtNEAT
replaces agents and adds complexity to neural networks, be-
havior changes and the agents learn how to complete goals
set up by the player [5]. The player creates a specific field to

complete a goal. The player can add turrets and walls, and
even create a maze to teach the agents. Once the particular
goal is completed, the player creates a harder field to train
in. In Figure 5, the player starts out with a single turret
on the field. The goal is to defeat the turret and to learn
how to avoid getting hit. The player decides if the agents
have completed the goal in a satisfactory matter. Then the
agents move on to a more difficult field. The progression of
the fields adds turrets and walls to change the behavior of
the agents. A strategy that could evolve is using walls as a
shield agents enemy bullets and trying to avoid the enemy
as much as possible. Another strategy is to aggressively seek
the enemy and fire [5]. After these training levels, the player
can save their team for use in the battle mode and for later
training.

In battle mode, the player chooses twenty of their best
agents. They can pick from different teams they have saved.
The opponent the player faces is another player. The oppo-
nent has a team that they have trained. The victor is the
one with the last agent alive or the most agents left alive if
time runs out which happened frequently with teams that
avoided enemies [5]. Depending on the strategies each player
used, one may have an advantage over the other. The agents
that tend to avoid the enemy did poorly against teams that
were aggressive and ran towards the enemy.

Having a player see their progress in real time could make
a video game more engaging. The player must spend time
and effort building their team and interacting with the NPCs
to create their ideal team. In general, the players agreed that
the game play was interesting and entertaining [5].

4. APPLYING NEUROEVOLUTION TO
OLDER GAMES

Neuroevolution could be applied to existing games to make
their replay value higher. By making game modifications
(mods), extra features that are added to a game, neural net-
works and neuroevolution can be added. The mods are easy
to implement and safe to use because they do not change the
original structure of the game [5]. Many games allow mods
already and are even open sourced. Open sourced games
are a good opportunity for adding neural networks and neu-
roevolution. People do not necessarily need the permission
of the creator to change the game.



4.1 Super Mario Evolution
Infinite Mario Bros is a public domain clone of Super

Mario Bros made by Nintendo. It is playable on the web,
and the Java source code is also available. The game fea-
tures Mario, who is player-controlled. Mario can walk and
run left and right, jump, and shoot fireballs. There are three
states that Mario can be in: small, large, or fire.

The goal of each level is to get to the end and lower a
flag. Sub-goals include collecting coins, reaching the end of
the level quickly, and getting a high score by killing enemies
[9]. The enemies damage Mario; if he is large, the enemies
turn him small and renders him unable to kill them. If he
is small, the enemies kill him and he loses a life. If he is a
fire state, the enemies turn him to the larger form. Mario
will lose a life if he falls into a hole regardless of what state
he is in. There are items within the game. These items can
be hidden or out in the open and have different effects on
Mario.

4.1.1 Adding Evolution
The mod will create infinite number of neural networks to

complete the level. To add neural networks and neuroevo-
lution, timer had to be removed from the game because it
would be obsolete [9]. The dependency on graphics was re-
moved and there was some refactoring done on the original
code to make it more usable and readable. The new, modi-
fied software was a single-threaded Java application. There
was also a TCP interface for controllers.

Figure 6: The sensor grid that surrounds Mario [9].

The nodes in the neural networks would have input val-
ues of 0 (on) or 1 (off). The constant value would be one.
The inputs would be: if Mario was on the ground, if Mario
could jump, how many environmental obstacles there were
or how many enemies are present. Mario would have a grid
of sensors put around him (Figure 6). The grid will not tell
where coins or items are and Mario cannot ”see” past the
grid, like the enemy that is below. The inputs fed into two
different neural networks, either a Multi-Layer Perception
(MLP) or Simple Recurrent Network (SRN) [9]. The net-
works would have 10 hidden nodes and three different sizes
of links between them: small, medium and large.

HyperGP is a hybrid neuroevolution/genetic programming

algorithm. HyperGP evolves the link weights of neural net-
works as a function of their coordinates (x, y) in a grid called
a substrate using genetic programming. HyperGP is used to
evolve SRN to become HyperGP SRN. HyperGP SRN was
used to evolve 100 generations of 100 individuals.

4.1.2 Testing
The fitness was based on how far Mario could progress

through levels. The levels were between 4000 and 4500 units
long, and were randomly generated. After the evolution
was run, the generalization capacity for best network in the
population was tested. The tests would run each size of
SRN, MLP, and HyperGP SRN. Each evolved Mario was
tested one level at at time starting at a difficulty of level 0,
the easiest level. Success was reaching a fitness score of 4000
or above. This would be interpreted as clearing a level or
being close to it [9]. The difficulty was raised after the level
was cleared.

Many of the evolved Marios had problems clearing differ-
ent levels of the same difficulty. There were problems with
jumping on moving platforms because the sensor grid was
to small. The evolved Marios had issues with enemies where
he would not jump over them but run in to them [9].

4.1.3 Results
The average maximum level for SRN and MLP were fairly

similar. The neural networks with more links did worse then
the medium and smaller ones. Overall the smaller network
links with the simplest complexity performed better [9]. The
HyperGP SRN had similar averages over the sizes, but it did
not out perform the other networks.

Neural networks work very well with Infinite Mario Bros.
But in the long run, generalization may become a problem
[9]. Time and space are also issues. A more advanced ar-
chitecture might be needed to combat these problems. A
way to handle enemies might be to create a separate neural
networks that are specifically designed to jump over enemies
or jump on them. Items and coins are other networks that
would need to be created. This would allow for more diverse
behaviors from Mario [9].

Mario is a popular game and has many fans. Updating
games like this could appeal to a wide audience. Neuroevo-
lution can add new and interesting scenarios that may bring
the player back to an older game.

5. ISSUES
The issue that may arise is that games are not designed

with NPCs learning through evolution in mind. Getting the
necessary information from such games could be challenging.

A way to get around this is to create an interface that
could be used across many games. TIELT (Testbed for In-
tegration and Evaluation of Learning Techniques) is in de-
velopment [5]. This Java application connect a game engine
to a decision system. The system learns about the game and
allows the researchers to test many different environments.

Creating neural networks that appeal to an individual
player could prove difficult [1]. Evolving NPCs is a way
to appeal to the player, but there are limitations. The game
has to gather a large audience to sell well, which may cause
more generic scenarios to appear.

Another issue, is the unexpected results that neuroevolu-
tion can generate. This can lead to erratic game behavior
and cause bugs to surface [1]. Testing and debugging this



is quite challenging, because it is difficult to reproduce the
errors that occur.

6. CONCLUSIONS
Applying neural networks to games can make them more

interesting and increase their playability [6, 7]. The neural
networks adapt well to new situations and can even react
to situations that developers did not predict. Some games
are already taking advantages of neural networks and neu-
roevolution. Fight or Flight featured two different neural
networks evolving to defeat a bot. The NERO video game
had agents evolve using feed-back from the players. Older
games could benefit from neural networks. Infinite Mario
Bros had neural networks and neuroevolution woven into it
to have Mario complete his own game [9].

7. ACKNOWLEDGMENTS
I would like to thank Elena Machkasova, Kristin Lam-

berty, and Lucas Ellgren. I would also like to thank my par-
ents, Jim and Karen Reddemann for supporting me through
out my life.

8. REFERENCES
[1] D. Charles. Enhancing gameplay: challenges for

artificial intelligence in digital games. University of
Utrecht, The Netherlands, November 2003. ACM.

[2] C. Delgado-Mata and J. Ibáñez Mart́ınez. AI
opponents with personality traits in Überpong. In
Proceedings of the 2Nd International Conference on
INtelligent TEchnologies for Interactive
enterTAINment, INTETAIN ’08, pages 1:1–1:8, ICST,
Brussels, Belgium, Belgium, 2007. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[3] D. Johnson and J. Wiles. Computer games with
intelligence. In Procs. 10th IEEE Intl Conf. on Fuzzy
Systems, pages 61–68. IEEE, 2001.

[4] V. Ltd. USA yearly chart: The year’s top-selling
games at retail ranked by unit sales, 2014.

[5] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V.
Karpov, K. O. Stanley, and C. H. Yong.
Computational intelligence in games. In G. Y. Yen
and D. B. Fogel, editors, Computational Intelligence:
Principles and Practice. IEEE Computational
Intelligence Society, Piscataway, NJ, 2006.

[6] J. Schrum and R. Miikkulainen. Evolving multi-modal
behavior in NPCs. In Proceedings of the 5th
International Conference on Computational
Intelligence and Games, CIG’09, pages 325–332,
Piscataway, NJ, USA, 2009. IEEE Press.

[7] K. O. Stanley, B. D. Bryant, I. Karpov, and
R. Miikkulainen. Real-time evolution of neural
networks in the nero video game. In Proceedings of the
Twenty-First National Conference on Artificial
Intelligence (AAAI-2006), pages 1671–1674, Boston,
MA, 2006. Meno Park, CA: AAAI Press.

[8] J. Suarez. Intro to neural networks, 2009.

[9] J. Togelius, S. Karakovskiy, and J. Koutńık. Super
mario evolution. In Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, pages
156 – 161, Milano, 2009.

[10] Wikipedia. Pareto efficiency, 2015.

[11] Wikipedia. Video game industry, 2015.


