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ABSTRACT
Online Social networks are an increasingly important part
of our culture. They are now one of the dominant ways
in which some people communicate, and the rate of that
communication can be almost instantaneous. For that rea-
son, the spread and diffusion of information throughout a
network is an interesting phenomenon to understand. It es-
pecially can be a useful tool for marketing purposes where,
specifically, the influence maximization problem is relevant.
The goal of influence maximization is to find any given num-
ber of nodes (people) in a network that could spread some
specific information to as large a portion of the network
as possible. Solutions for this problem have been proposed
since about 2003, and already several good approximation
algorithms are in use. Current research mostly aims to im-
prove results with novel techniques that focus on estimating
more accurate influence probabilities between nodes. Other
research in the area aims to include more information such
as the susceptibility of certain people to certain information.
Still other research aims to find trendsetters of a certain ex-
pertise in a network. There are many ways in which we can
understand how information spreads in an online social net-
work, and this information can be used as an advantage in
influencing an entire online network of people.
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1. INTRODUCTION
Online Social networks have become a large part of mod-

ern culture, but are still a relatively new way for commu-
nities to interact. Understanding how they can affect our
society is important and relevant. The spread of influence in
a network via the word-of-mouth effect is particularly worth
understanding in the interest of both marketing, and in un-
derstanding how information is spread and received through-
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out an online community. In this paper, the influence maxi-
mization (IM) problem will be defined, and current research
into novel ways of improving the accuracy of existing solu-
tions will be discussed.

2. BACKGROUND
Finding a way to spread specific information to as large

a portion of a network as possible is an interesting and rele-
vant problem. This issue has been defined as influence max-
imization [2]. The article Online Influence Maximization
gives the following explanation of the problem:

Given a promotion budget, the goal of IM is to se-
lect the best seed nodes from an influence graph.
An influence graph is essentially a graph with
influence probabilities among nodes representing
social network users.

In essence, the end goal is to find a given number of seed
nodes, which are specific users within the network with the
highest expected influence spread, to introduce a product or
idea to (for example, giving them free samples of a prod-
uct) who will then cause a chain reaction of spreading the
word to many of the nodes around them, who will spread
the word to more nodes, etc. Influence probabilities are a
way of quantifying the likelihood of the spread of informa-
tion between two nodes [2]. Once a node has adopted the
information or idea being spread, it is considered active [2,
1].

Influence maximization is based on previous information-
diffusion problems that have been studied in the social sci-
ences in the context of understanding the adoption of medi-
cal and agricultural technologies across a region [1]. The in-
dependent cascade model has been adopted from these other
problems and is commonly used when working on influence
maximization problems [2, 1]. It is sometimes also referred
to as an event cascade model, or an information diffusion
model. In its simplest form the independent cascade model
starts with k number of active nodes in an influence graph.
The active nodes will then attempt to influence adjacent
nodes with the connecting influence probabilities of success.
If success is achieved, the adjacent node has now been acti-
vated, and begins to attempt to influence its adjacent nodes.
At the end of the simulation the amount of activated nodes
are counted. Finding the best k seed nodes is an NP-hard
problem, meaning the only way to find the absolute best so-
lution is to explore every possible solution. Exploring every
possible solution would be generally unfeasible due to time
constraints, so the first step to getting a solution is to create
an approximation algorithm [1].



Many effective approximation algorithms already exist
as this problem has been well studied since early this millen-
nium. Several approaches have been developed using meth-
ods such as greedy hill-climber techniques, which involve
choosing an initial working solution algorithm and having a
program that modifies the algorithm in some way, and then
checking to see if the new algorithm is a better solution by
comparing algorithm results to previous results from run-
ning the model. If it is better, the new algorithm is now
the working solution. The current working solution is then
modified again, and checked for improvement again. This
process is continued for a specified amount of time, or until
the rate of return begins to diminish on improvements to
the algorithm.

There are several current IM algorithms that are well
developed and used. The most recent algorithm, called Two-
phase Influence Maximization (TIM) was developed in 2014
and will be discussed in this paper as a modern example of
an IM algorithm.

3. METHODS
One of the most recent algorithms designed for influence

maximization is TIM, which will be discussed here. Then,
I will describe other current IM research, which is finding
creative ways to improve results outside of designing new
algorithms.

3.1 TIM
Prior to TIM, existing algorithms for IM had to at-

tempt to balance approximation guarantees with practical
efficiency, often leaving much to be desired in one way or
another. The creators of the TIM algorithm aimed to create
an algorithm with greatly reduced running time, while still
achieving the same quality of results as existing algorithms.
This would make large networks viable options for IM as the
computing time needed for IM on the order of thousands of
nodes can take days, but in reality, these techniques aim to
be applied to billions of nodes, so time becomes an impor-
tant limiting factor.

One of the original solution algorithms to the IM prob-
lem was published in 2003 by Kempe et. al., and was simple
and effective. However, the run-time of a data set of even a
few thousand was days long [1]. Since then, many algorithms
have been proposed and used for IM, but they often sacrifice
effectiveness of solutions for faster computation time.

TIM stands for Two-phase Influence Maximization. It
is shown to return a solution equivalently good to Kempe’s
original algorithm in near-linear expected time. The time
complexity of TIM is nearly optimal under the independent
cascade model.

TIM is given G (the social network), k (the number
of desired solution seed nodes), and two parameters l (a
constant most often set to 1) and ε. ε is calculated using G
and another variable r which is almost always set to 10000
based on recommendations in previous literature.

In the first phase G and k are fed as input into Algo-
rithm 1 which returns the mean of the expected spread of
influence, KPT∗. Then, also using n - the size of the net-
work, TIM computes θ:

θ = λ/KPT ∗

where the equation for λ is:

λ = (8 + 2ε)n · (l logn+ log(nk ) + log 2) · ε−2

Once the mean of the expected spread of influence is calcu-
ated, the second phase can begin. TIM gives G, k, and θ as
input to Algorithm 2, whose output S is the final result, a
size-k node set of optimal seed nodes.

The parameter θ is designed to minimize the expected
running time while ensuring solution quality. An RR set
(seen in Algorithm 2) is a Reverse-Reachable set. That
is, for each node, it is the set of other nodes in G that
have a path to that node. A random RR set is an RR set
from a randomly sampled single node from G. RR sets are
called reverse-reachable sets because they are determined
by starting at a node, removing and storing the identity of
each connected node, and then going forward from each of
the connected nodes until there are no more connections to
follow. This, in essence, finds all the nodes that could po-
tentially reach the node in question (thus reverse-reachable)
but can also be considered the nodes that the initial node
could influence.

In summary, Algorithm 1 takes in a network and desired
number of seed nodes, and provides the expected spread of
influence per node. This is used to calculate how many nodes
should be randomly selected to ensure that enough potential
quality seed nodes will be selected. This information is then
used in Algorithm 2 which takes a random sample of nodes
and returns the desired number of best seed nodes.

Algorithm 1 KPT Estimation (G,k)

Input: G (the network), k (desired number of seed nodes)
Output: KPT (mean of the expected spread of influence)

1: for i = 1 to log2 n− 1 do
2: Let Ci = (6l logn+ 6 log(log2 n)) · 2i

3: Let sum = 0
4: for j = 1 to ci do
5: Choose a random node and generate its RR set

6: k(R) = 1− (1− (w(R)
m

)k) //determining the size
of the RR set

7: sum = sum+ k(R)
8: end for
9: if sum

ci
> 1

2i
then

10: return KPT ∗ = n · sum/(2 · ci)
11: end if
12: end for
13: return KPT ∗ = 1 //All nodes are expected to be in-

fluenced by any single node (extremely small or inter-
connected network)

TIM+ was also developed by the authors as a more gen-
eralized algorithm that does not assume use of the influence
cascade model.

In a test round, it was found that when k = 50, εis
greater than or equal to 0.2, and l = 1, TIM requires less
than one hour to process a network with 41.6 million nodes
and 1.4 billion edges. It is believed by the TIM authors that
this is the first result in the literature that demonstrates
reasonably efficient IM on a billion-edge graph[5]. Figure 1
shows the running time of TIM and TIM+ compared to two
common IM algorithms.



Algorithm 2 Node Selection (G,k, θ)

Input: G (the network), k (desired number of seed nodes),
θ (computed in 1)
Output: S (solution seed nodes)

1: Initialize a set R = ∅
2: Generate θ random RR sets and insert them into R
3: Initialize a node set S = ∅
4: for j = 1 to k do
5: Identify the node vj that covers most RR sets in R
6: Add vj into S
7: Remove from R all RR sets covered by vj
8: end for
9: return S

Figure 1: Run time of TIM and TIM+ compared
to two previously preferred IM algorithms, RIS and
CELF++. Taken from [5].

3.2 Dealing with Incomplete Data
As described in the background section, influence max-

imization results depend upon influence probabilities be-
tween nodes. This information is often determined using
action logs of users’ past activities in the network. However,
this information can be both difficult to acquire and even
more difficult to process, especially in large networks. In a
2015 paper Online Influence Maximization, a method is dis-
cussed for solving IM problems with missing or incomplete
influence probability data using a multiple-trial approach.
Any existing IM algorithm can be used with this method [2]

In summary, the approach (called Online Influence Max-
imization by the authors) begins the same way as most other
IM approaches: by selecting a specific starter set of seed
nodes and beginning a cascade from those nodes. However,
as the cascade is run, user-feedback is used to update in-
fluence information. Then, another cascade round is per-
formed, using the updated influence maximization informa-
tion to choose new seed nodes.

In detail, first a selection of S starting nodes are selected
using an existing IM algorithm. The influence probabilities
between nodes are modeled as an average of a Beta distribu-
tion with some given initial α and β such that between two
nodes the influence probability is the expected value of the

Figure 2: A graphic summary of the multi-trial ap-
proach. Taken from [2].

probability density function of a beta distribution with α
and β indicating prior belief or knowledge, such that, while
such information is missing, α = β = 1.

influence probability = E[P ∼ B(α, β)].

Once the initial seed nodes have been selected, a real-
world trial is started where an attempt is made to activate
the seed nodes (perhaps by sending them an advertising
message.) once the trial is complete, feedback information,
which can consist of things like Retweets or likes, is gath-
ered. This information is used to determine if a node was
successfully activated. If a node was activated by another
node, the influence probability between those two nodes is
updated by adding 1 (success) to α :

updated influence probability = E[P ∼ B(α+ 1, β)].

If a node was not activated (failure) the influence probability
between nodes is updated by adding 1 to β :

updated influence probability = E[P ∼ B(α, β + 1)].

New seed nodes can be chosen using the updated influence
graph, and another trial can be run. This can continue as
long as the budget for trials does not run out, the improve-
ments made each trial are not trivial, or the marketing cam-
paign continues. This method for dealing with incomplete
or missing influence data has been shown to find almost
the same solution as is found when all the influence data is
known, in a preliminary trial. [2]

3.3 Better Results Using Similarity Analysis
Similarity analysis is another field of study with social

networks. According to the article Influence and Similarity
on Heterogeneous Networks similarity analysis is:

...proposing methods for measuring nodes simi-
larities, based on the network structure and node
features.[6]

The article, by Wang et alia, goes on to propose using sim-
ilarity findings to improve IM results and vice versa. They
begin by taking a given network and splitting it into an in-
fluence network and a separate similarity network. A simi-
larity network is similar to an influence network (or influence
graph) but the nodes are connected with a similarity score
instead of an influence probability. The two networks are
then connected back together by what the paper refers to as
information tunnels. The researchers named this configura-
tion an influence similarity (IS) network.



Figure 3: The separation of the similarity network
and the influence network. Taken from [6].

This technique is application dependent, so before any
work can be done, one type of node in the network needs
to be fixed as the type of nodes on which similarity findings
will be done, and another type of node needs to be chosen
for the influence maximization findings. The categorization
should be meaningful to the specific application.

The influence probability between two nodes, using this
technique, is based on those nodes connections in the sim-
ilarity network. This paper specifically deals with hetero-
geneous networks – networks with different types of nodes,
like most social networks, therefore, the similarity scores be-
tween nodes are asymmetric. So a node Y could be more
similar to a node Z, than node Z is to that Y. Tradition-
ally, similarity score is computed by considering the number
of common neighbors of the two nodes as a starting point
for their similarity score. This starting score is then updated
with an iterative process that takes into account the updated
similarity values of the other nodes in the network so that
two nodes’ similarity depends on other nodes’ similarities as
well.

The change proposed by Wang et al. is to use influ-
ence probability information of connected nodes to weight
the similarity score. So if a node W has a high influence
probabilities with other nodes, the similarity score of nodes
connected to W in the similarity network will be weighted
to be higher than their original similarity scores. If the in-
fluence probability between nodes is extremely low, then the
similarity scores will be weighted to be lower than its origi-
nal scores. Then, the reverse will be done between the two
networks. If nodes have high similarity scores, then con-
nected nodes’ influence probabilities will be weighted to be
higher than they originally were. Lower similarity scores
between nodes will weight influence probabilities between
nodes to be lower. Using the new influence probabilities be-
tween nodes, seed nodes are chosen. These seed nodes are
shown to be better than seed nodes chosen using uniform or
poorly informed influence probabilities between nodes.

The technique was tested on a citation network. First,
a paper citation network was used as a similarity network.

Figure 4: The g index scores of the IS network on
comparison of seed nodes found using randomly as-
signed influence probabilities (IS Generated), and
constant influence probabilities (IC) on different sec-
tions of a network. Taken from [6].

Then, an influence network was created using citation in-
formation. For example, if Author A cites Author B in
their paper, then Author B has influence on Author A. Then
similarity scores and influence probabilities were found us-
ing the new technique, and, finally, seed nodes were chosen
from the influence network. These seed nodes were com-
pared with seed nodes chosen from a network with uniform
influence probabilities, as well as seed nodes chosen from
a network with randomly generated influence probabilities.
As can be seen in Figure 4, the seed nodes chosen using
the IS technique are shown to have a higher g-index than
the comparison seed nodes. A g-index is used for academic
authors, and takes into account the number of papers they
have published, the number of times their papers have been
cited, and how exceptional some of their papers have been
(so that it is better to have a few truly well cited articles and
some lesser cited articles than to have many articles that are
all cited about the same). A high rating on the g-index is
a good indicator of influence for an author, and therefore it
makes sense that seed nodes with a higher g-index are better
choices. [6]

The paper also went on to show that the similarity anal-
ysis done using influence probabilities was better than cur-
rent similarity analysis methods.

3.4 Including Susceptibility Information
The 2015 paper Virus Propagation in Multiple Profile

Networks poses an interesting argument about the reality of
information spreading through a network [3]. It points out
that how information spreads throughout a network par-
tially depends on how much each node or person in the net-
work personally cares about that information. The example
the paper gives is that if a new PS4 game becomes available,
PS4 fans are very likely to share this information (e.g. by
Retweeting information about it, or sharing links on Face-
book.) Meanwhile, nodes that do not play PS4 games are
much less likely to share or spread this information. The
paper refers to this phenomenon as the susceptibility or sen-
sitivity of nodes towards certain information. Higher sen-
sitivity indicates that a node will become activated more



easily in response to that information. Lower sensitivity in-
dicates that it will be much harder to activate those nodes,
but not impossible.

This paper looks at influence maximization in terms of
a virus which is attempting to infect as much of a social net-
work as possible. It uses an SIS model, which is an epidemi-
ological model where each node can be in any of the two
states: susceptible to infection or infected. As implied by
our previous discussion, we use this epidemiological model
in the general setting of information diffusion, meaning that
a virus may as well correspond to a piece of information
diffused on a social network subject to the rules posed by
the SIS model. The paper’s authors believe that this is the
first time information diffusion in a network has been ap-
proached in such a way. This is assuming a heterogeneous
network in relation to the virus where nodes have different
levels of sensitivity against the virus. All nodes have the
potential for infection even with a low sensitivity. The SIS
model is also used to model no-immunity viruses such as
influenza (common flu or cold).

The authors split nodes into two types, those with high
sensitivity to the virus or information, and those with low
sensitivity. Note that this model also includes a healing rate
where over an amount of time a node can heal or become
inactive after being activated. Nodes with high sensitivity
(easy to infect) have a slower healing rate than those with
low sensitivity.

This study also looks at two types of influence graphs
clique graphs and arbitrary graphs. In clique graphs all nodes
are connected to all other nodes. In this section, however,
we will only focus on the results found for arbitrary graphs.
It is also important to point out that rather than focusing
on which nodes to infect at the beginning of a campaign, the
authors were looking for a fixed point of equilibrium, which
is, basically, how much of the network is infected when the
infection is neither growing nor declining. They were more
interested in the behavior of the network than in solving
a specific influence maximization problem. However, their
findings can be used in future influence maximization studies
or techniques where the sensitivity of nodes is a factor in the
spread of information. [3]

Although this paper did not have much in the way of
applicable results, the authors did conclude that exploring
a network with included susceptibility information was very
complex and difficult, but also relevant for future work with
information diffusion in a network. They suggest that de-
mographic data, such as age, could be used to determine if
a node has high or low sensitivity to an idea or product, and
that such information should be taken into account when ex-
ploring how specific information spreads in a network. For
example, the current main demographic for buyers of video
games are teens and young adults. In an influence graph or
network, influence probabilities could be weighted so that
teen and young adult nodes are more susceptible to activa-
tion.

3.5 Finding Trendsetters
So far, we have reviewed the current fastest and most

reliable IM algorithm, potential solutions for unknown influ-
ence information, improving results with the help of similar-
ity scores, and the idea of using susceptibility information
when determining the spread of influence. Now we will look
at finding a specific type of influential node: trendsetters.

Trendsetters are people who adopt and spread new ideas
before these ideas become popular (which they eventually
do). Trendsetters may not necessarily be well known or well
connected, but their ideas still spread successfully through a
network. Trendsetters are also early adopters, so they may
be more susceptible to ideas in their area of expertise. In
this way, they may also be relevant in any future suscepti-
bility studies like the one discussed above. Trendsetters are
relevant, as past research using number of Twitter followers
has shown that a greater number of connections does not
necessarily indicate a greater ability to influence [4].

Trendsetters must be two things: they must have a spe-
cific area of interest in which they have managed to spread
content, and they must be early adopters of the information
or products in that specific area. In this way, time is espe-
cially important to the problem of discovering trendsetters;
we must be able to tell who will adopt ideas the fastest.
The paper, Finding Trendsetters in Information Networks,
suggests a novel approach to identifying trendsetters by in-
cluding timing information in a given social graph [4]. In
this research, rather than using influence graphs along with
algorithms to determine the most influential nodes in a net-
work, a social graph of nodes connected to other nodes with
edges is used with the goal of ranking nodes in order of how
much of a trendsetter they are. This is called their Trend-
setter Rank (TR).

Rather than creating a theoretical model of a given net-
work and estimating a solution, this study was looking at
past events and finding the trendsetters using Twitter data.
They then compared the findings using TR (which includes
time-of-adoption data) with another influential user ranking
system called Page Rank (PR).

One test study done was on an Iran-election timeline,
which was a very important topic in 2009. The main hash-
tag used to talk about this was #iranelection, and other
related tags included #iran and #tehran. It is very impor-
tant to have a way to categorize what trends you are looking
for, and Twitter makes this easy with hashtags. This sort
of information could also be gleaned using a set of related
memes, pins on Pinterest, or similar shared articles as ex-
amples for other social networks. Figure 5 shows the best
result using the new TR method compared to the currently
used PR method. The red dot shows the trendsetter chosen
using TR, the green x shows the trendsetter using PR.

Another example is the #musicmonday which became
popular on twitter and encouraged users to share music on
Mondays. An example just like this that springs to mind
is #tbt or #throwbackthursday where social media partic-
ipants share old pictures of themselves on Thursdays. The
researchers had Twitter data since the beginning of #mu-
sicmonday, making it a prime candidate for analysis. Their
results compared with PR results can be seen in Figure 6.
Again, the red dot shows the trendsetter chosen using TR,
and the green x shows the trendsetter using PR.

Notice how in both graphs TR chooses earlier adopters
than traditional PR, and the ideas of those adopters spread
noticeably well throughout the network. Those are the defin-
ing characteristics of trendsetters. PR found the top trend-
setters in both of these cases to be much more well known
and famous members of society, but you can see from the
graphs that the trend was already growing and spreading
before those members began using the specific hashtags.



Figure 5: 2009 Iran Election Timeline. The red
dot shows the trendsetter chosen using TR, where
the green x shows the trendsetter chosen using PR.
Note how much earlier in the timeline the TR cho-
sen trendsetter adopted the hashtag. Taken from
[4].

Figure 6: #musicmonday Twitter adoption time-
line. The red dot shows the trendsetter chosen using
TR, where the green x shows the trendsetter chosen
using PR. Again, the TR chosen trendsetter shows
up much earlier in the timeline. Taken from [4].

4. CONCLUSION
Influence maximization is an interesting problem in to-

day’s increasingly online-oriented culture. It is a well funded
area of research due to its implications for marketing efforts,
however, it has other potential uses in areas such as infor-
mation or political campaigns.

Influence maximization is a complicated problem. Try-
ing to turn a full social network containing a diverse group of
people with complex social connections into something that
can be understood as some sort of graph with nodes and
influence probabilities is no small task. In spite of existing
solutions, there is still room for progress.

It is likely that some improvements to existing algo-
rithms will be made to improve the computation time of
influence maximization problems, in the same way TIM did.
But a lot of new research has started to focus on including
more relevant data into influence maximization infrastruc-
tures in an attempt to improve results and to start with a
more realistic understanding of the data.

Including information that takes into account the simi-
larity of nodes and not just the number of connections each
node has is important. Also important is considering what
specific information is attempting to be spread, and how sus-
ceptible each node is to adopting or to continue spreading
that information is also important. It is also useful to look

at who is a trendsetter and who is not.
More information about the users of a social network is

created every day. This information is complicated to work
with and add into models, but ultimately, it will greatly
improve our understanding of these networks as well as im-
prove the results of computations of things like influence
maximization. The goal of influencing other people in a so-
ciety will never go away, but the ways we do so will continue
to evolve.
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