Influence Maximization in Online Social Networks

Resa Brockman

University of Minnesota, Morris

April 30, 2016

Trendsetters

The What and Why of Influence Maximization (IM)

- Finding the x number of the most influential people (*seed nodes*) in a network
- Why? Marketing

The Goal

To spread information (*influence*) to as large a portion of a network as possible.

Overview

Current Algorithm

Incomplete Data

Trendsetters

Outline

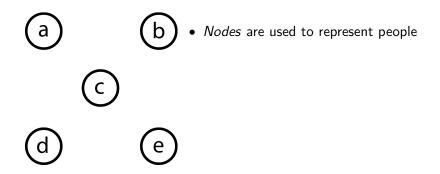
Overview

Current Algorithm

Incomplete Data

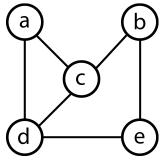
Trendsetters

Overview

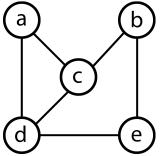

Current Algorithm

Incomplete Data

Trendsetters

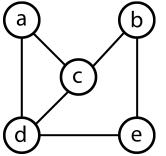

The Setup

• A network can be represented as an *influence graph*

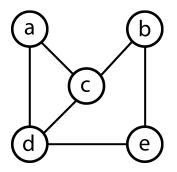

Graphic courtesy of Michelle King

• A network can be represented as an *influence graph*

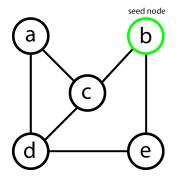
- *Nodes* are used to represent people.
- Nodes are connected by *influence probabilities*


• A network can be represented as an *influence graph*

- *Nodes* are used to represent people.
- Nodes are connected by *influence probabilities*
- They can be asymmetric

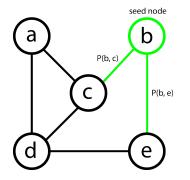

Graphic courtesy of Michelle King

• A network can be represented as an *influence graph*

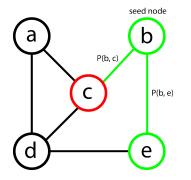


- *Nodes* are used to represent people.
- Nodes are connected by *influence probabilities*
- They can be asymmetric
- Or symmetric

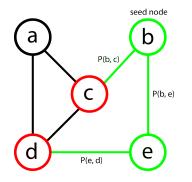
Graphic courtesy of Michelle King



• Also called an Event Cascade Model or Diffusion Model



1. Some seed nodes are *activated*


Graphic courtesy of Michelle King

- 1. Some seed nodes are *activated*
- Each activated node tries to activate connected nodes with the connected influence probability

- 1. Some seed nodes are *activated*
- Each activated node tries to activate connected nodes with the connected influence probability

- 1. Some seed nodes are *activated*
- Each activated node tries to activate connected nodes with the connected influence probability
- 3. Final *influence spread* is determined

Early Solutions

- Solutions were adopted and modified from information diffusion research in the social sciences
- As such, IM has been formulated as a combinatorial optimization problem since 2003
- Early solutions were simple and effective, but extremely computationally expensive

Combinatorial Optimization

Finding an optimal object from a finite set of objects. In many such problems, exhaustive search is not feasible.

Trendsetters

Two-phase Influence Maximization (TIM)

- In use since 2014
- Returns a solution equivalently good to the best (in terms of accuracy) previous algorithm (2003)
- Near linear expected time under the independent cascade model
- TIM requires less than one hour to process a network with 41.6 million nodes and 1.4 billion edges

TIM Summary

- 1. TIM is given:
 - The social network (G)
 - The desired number of seed nodes (k)
- Algorithm 1 determines the expected spread of influence per node (t)
- 3. Using t, TIM calculates how many nodes it needs to sample for the most optimal solution (θ)
- 4. Algorithm 2 randomly samples θ nodes and chooses the best k seed nodes out of those

Reverse-Reachable (RR) Sets

- The set of nodes that can reach a given node
- Found by removing edges with 1-probability of activation between the two nodes
- If an edge is successfully removed, it is added to the RR set

Algorithm 1: Determine the Expected Spread of Influence

- Sample $log_2n 1$ nodes
- For each sampled node, determine its RR set (spread)
- Sum the spreads of each node, and divide by number of nodes sampled (average spread)
- Return the average spread (t)

$\mathsf{Calculate}\ \theta$

- Recall that θ is the number of nodes that should be sampled for a good but computationally reasonable result
- Calculating θ is one of the most important contributions of TIM to improving IM accuracy
- Generalizing some very complex math: $\theta \ge \frac{n}{m}t$ / maximum expected spread of a k sized node set
- In actuality, using an estimation smaller than numerator provides equally good and computationally less expensive results

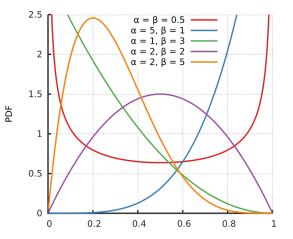
Algorithm 2: Return k Seed Nodes

- This is the second algorithm (second phase) of TIM
- Creates a set of θ RR-sets (*R*)
- Choose the node from R set with the largest spread
- Remove nodes from R that cover the same nodes
- Continue until k nodes have been chosen

Incomplete Influence Data

- Influence probabilities come from users' logs of past activities
- It is not uncommon for influence probabilities to be missing or unavailable
- Usually, a given influence probability used for all missing data
- Leads to poorly chosen seed nodes

Multiple - Trial Solution


- New as of 2015
- Researchers named this approach *Online Influence Maximization* (OIM)
- Can be used with any existing IM algorithm (TIM used)
- Requires real-world trials (budget permitting)

OIM Summary

- 1. Assign influence probabilities where missing
- 2. Choose seed nodes using existing IM algorithm
- 3. Run real-world trial, collect user feedback data
- 4. Update influence probabilities
- 5. Repeat according to time-frame or budget

Influence Probabilities - Using Beta Distribution

- Probability can range from 0 to 1
- Beta Distribution has two parameters: $B(\alpha, \beta)$
- α will be the success parameter, β the failure parameter

OIM Setup

- For missing influence probabilities α and β are both initially set to 1: B(1,1) (uniform distribution)
- For existing influence probabilities, set α and β accordingly
- Use IM algorithm (e.g. TIM) to find k seed nodes
- Run real-world trial

Update Influence Probabilities

- Feedback information from the trial consists of:
 - The set of ultimately activated nodes
 - The set of edge activation attempts and outcomes (successful/unsuccessful)
- This is used to update the influence probabilities
 - If an activation attempt was a success, add 1 to α : $B(\alpha + 1, \beta)$
 - If an activation attempt was a **failure**, add 1 to β : $B(\alpha, \beta + 1)$

Repeat

- Using the updated probabilities, new seed nodes can be chosen, and another real-world trial can be run.
- This can continue as long as:
 - The budget for trials does not run out
 - The improvements made each trial are not trivial
 - The marketing campaign continues.
- OIM is best used in networks where feedback information and activation success is easy to determine
- Micro-blogging networks are ideal for this (and most IM work)

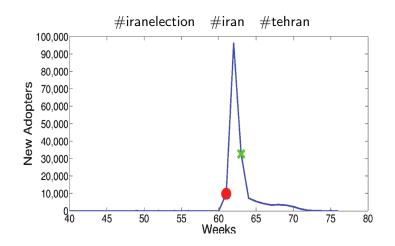
Everybody Wants to be a Trendsetter

- Another way to find and define influential people in a network: *trendsetters*
- A trendsetter is defined by two things:
 - 1. Having a specific area of interest or expertise
 - 2. Adopting new ideas or trends in this area before most others (Specifically trends that eventually become very popular)
- Trendsetters can only be found after some trend of interest has become popular
- Trendsetters are found with a ranking algorithm

PageRank

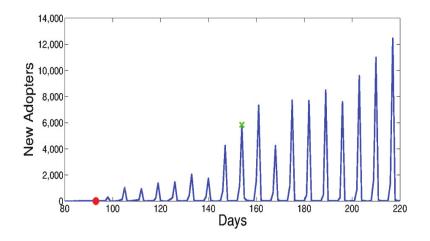
- PageRank was developed by Larry Page, one of the founders of Google
- PageRank counts the number and quality of links to a page to estimate its importance
- First algorithm used to order Google search results
- PageRank can be generalized and used on any graph or network

Generalized Pagerank Algorithms


- Twitter uses a pagerank algorithm to recommend accounts to follow
- A pagerank algorithm has been used to rank streets in order of popularity (high traffic)
- Pagerank algorithms can be used to determine the most essential species in an ecosystem
- To find trendsetters, a pagerank algorithm is combined with time information

Ranking Trendsetters

- Approach developed using Twitter
- 1. Define a trend using hashtags
- 2. For each user, determine:
 - How many trend hashtags the user used
 - How many followers the user has
 - When the user began using the hashtags (new)
- 3. Use modified pagerank to rank users
- 4. Results can be compared to previous Twitter trendsetter ranking results


Trendsetters

2009 Iran Election Timeline

Trendsetters

#MusicMonday

Incomplete Data

Trendsetters

Trendsetters

Summary

• TIM is the best influence maximization algorithm

Trendsetters

Summary

- TIM is the best influence maximization algorithm
- Missing information can still yield good influence maximization results

Summary

- TIM is the best influence maximization algorithm
- Missing information can still yield good influence maximization results
- There is more than one way to determine who is influential in a network

Summary

- TIM is the best influence maximization algorithm
- Missing information can still yield good influence maximization results
- There is more than one way to determine who is influential in a network
- Everything is a marketing tool in the end, even our friends

Incomplete Data

Trendsetters

Acknowledgments

Thank you KK, Elena, Michelle King, computer science faculty, and everyone who came to see the presentations today!

Overview

Current Algorithm

Incomplete Data

Trendsetters

Questions?