
Using Dropout to Reduce Overfitting in Neural Networks

Joshua Paul Chapman
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

chapm250@morris.umn.edu

ABSTRACT
Perfecting unsupervised learning is a major goal in artifi-
cial intelligence. Deep neural networks using unsupervised
training are a promising answer to this problem; although
they are prone to overfitting, which limits their effectiveness.
Methods such as validation, averaging, and L1 and L2 regu-
larization have been used to reduce overfitting. While these
methods have been successful in reducing overfitting they of-
ten take up enough resources that it becomes preferable to
not use a neural network. Dropout is a technique that han-
dles overfitting while taking up fewer resources than other
methods, and generalizes to all types of neural networks.
Maxout utilizes dropout and improves performance of neu-
ral networks even more by leveraging dropouts effects. This
paper describes both dropout and maxout, as well as results
of using each approach.

1. INTRODUCTION
The main topic of this paper is the introduction of two

methods that improve the performance of deep neural net-
works by reducing overfitting, and approximately averaging
many neural networks. Before dropout, very deep neural
networks were often not thought to be a practical machine
learning algorithm because they were prone to overfitting,
which caused significant accuracy loss [6]. Dropout is a ma-
jor improvement to deep neural networks because it is not
only much better at reducing overfitting than other meth-
ods, it also generalizes to be effective with all neural network
algorithms [8]. When it was tested, it improved performance
in deep neural network with a variety of different data and
architectures. Dropout’s generality and universal improve-
ment for deep neural networks has made it extremely pop-
ular. For this paper I will be focusing on a specific type
of neural network algorithm called the restricted Boltzmann
machine because it seems to have been subjected to the most
testing. I will also introduce another neural network im-
provement that is built on top of dropout called maxout.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, May 2016 Morris, MN.

Weigh
t

Weight

Figure 1: Shallow neural network

2. BACKGROUND

2.1 Deep Neural Networks
Deep neural networks are a special kind of neural networks

so I will describe some properties of regular neural networks.
Neural networks are very effective at finding complex pat-
terns in data. This makes them very powerful at solving
problems that humans are good at, which historically com-
puters have not been good at, such as image recognition,
speech recognition, translating, and market trends. What
makes these problems so hard for computers is that they
have very complex and dynamic patterns that cannot sim-
ply be programmed in by humans. For instance no two
pictures of yourself are exactly the same, there is always
something slightly different such as background, lighting, or
position. Neural networks work better than regular algo-
rithms for these problems because they can generalize to
find these patterns in noisy data [12].

A neural network is a set of n nodes called artificial neu-
rons which I will just refer to as neurons. The first layer
is called the input which is composed of n neurons, each of
which is connected to m neurons in the second layer called
the hidden layer, each of which are connected to the output
layer. Each edge between the neurons carries a weight. A
visual representation is shown in figure 1 Deep neural net-
works work the same as neural networks, except there are
multiple hidden layers. Multiple hidden layers allows them



to find more complex patterns in data. In order to dis-
tinguish between neural networks with one hidden layer and
deep neural networks I will refer to neural networks with one
hidden layer as shallow neural networks. I will use just the
term ”neural network” when the distinction between deep
and shallow networks is irrelevant.

2.1.1 Activation Functions
In order for the inputs from a previous layer to be trans-

lated into an output, a neural network needs an activation
function. Activation functions are equations that take in a
set of inputs from a layer, and represent them as a single
output value. Only neurons in the hidden layer and output
layer have activation functions. The first activation function
was the step function. It was relatively simple activation
function that followed this formula

Output =

{
0 if

∑
i xiwi <= thresholdV alue

1 if
∑

i xiwi > thresholdV alue

where x is the input, w is the weight between the input and
the neuron, and i is the range over input nodes. Step func-
tions do not scale well to detecting more complex patterns
because outputting 0s and 1s does not express much data.
In order to create neural networks that could more accu-
rately label complex patterns, the sigmoid function replaced
the step function [1]. The sigmoid function can label more
complex patterns because its activation function goes from
the range zero to one. Sigmoid functions are also preferred
over other activation functions because their derivatives are
easy to calculate which makes it faster to train neural net-
works with more advanced training techniques. An example
of the sigmoid function is

Total =

(
inputs∑
i=0

wixi

)
(1)

Output = SigmoidFunction(Total) =
1

1 + e−Total
(2)

More recently rectified linear neurons, also called ReLU,
have been replacing the sigmoid neurons. The ReLU neuron
is much faster to compute because the activation function
is simply max(0, x) where x is the net input to the hidden
neuron [3].

2.1.2 Training
Before a neural network can be useful, it first must be

trained. I will walk through how training works for static
image recognition, although neural networks can be trained
to recognize any pattern given proper data representation.
There are many different ways to train a neural network,
but all neural networks require some sort of training.

Initially all the weights in a neural network are the ran-
domly assigned. There are many different ways to decide
how to distribute these weights but the specifics are not
relevant to this paper. In order to train a neural network
to recognize static images, it must be handed many pho-
tos either labeled or unlabeled. The industry standard is
to use 20% of the data for training and the rest for testing.
In image recognition neural networks recognize relationships
between pixels. For instance if you wanted to train it to tag
a dog in a picture you would randomly hand it thousands or
millions of pictures of dogs, and pictures without dogs. For
the first few pictures it will map all the pixels of the pic-
tures onto the neural network, assigning weights to groups

of pixels that are similar in structure. Since it has processed
few pictures so far, it might under-fit the data. Which is
recognizing similarities in the picture that have nothing to
do with dogs but are often in pictures with dogs, such as
trees, humans, or grass. This is a reason why it is important
to have a diverse set of pictures. If there is anything that
is similar in all the pictures besides the essence of a dog it
will have no way of knowing what is fundamental to what a
dog looks like, or more generally what the pattern of what
a dog looks like, as they come in many different sizes, col-
ors, and environments. Eventually, given enough pictures,
weights that represent the pixels that represent parts of the
dog will be heavily correlated, such as the ears or tails for
many different angles. It will be able to detect the pattern
which represents a dog. A well trained neural network will
eventually be able to use these parts together to provide
evidence that the image has a dog in it. When handed a
picture, the input layer receives groups of pixels from the
image which are near each other. Then the hidden layer(s)
try to find a correlation between the pixels that represent a
dog. If it finds sufficient proof that a dog is in the picture it
will be able to tag the cluster of pixels where there might be
a dog. If it does not find enough proof that there is a dog
in the picture, it will tag it as not having a dog. When the
neural network has been fully trained the unique structure
is called the model.

There are two major categories of neural network learn-
ing algorithms, supervised and unsupervised [9]. Supervised
neural networks work by training the neural network us-
ing a labeled input set. After a training sample is sent
through the supervised network an error, or cost is calcu-
lated. The cost is the difference between what the neural
network thought the training sample was, and what it actu-
ally was given the input. Then that cost is back propagated
through the weights; which adjusts them so that they reduce
the cost [7]. There are many ways to calculate how to back
propagate, but the specifics are not relevant for this paper.
Unsupervised neural networks are not given labels for the
input data; instead they find patterns in the data and out-
put groups that have similar patterns. Supervised training
does not require as much data, but requires people to label
all the data. Unsupervised training needs much more data,
and is more prone to find non-relevant patterns, but does
not need humans to label data.

2.2 Overfitting in Neural Networks
Overfitting occurs when a model is overly complex, rel-

ative to how much data there is for training. The main
cause for overfitting is that neurons begin to co-adapt [2]. A
simple example of co-adaptation would be if there were two
hidden neurons in the same layer, neuron A, and neuron B.
If overfitting started to occur the input to neuron A could be
[0.4, -0.6, 0.7, 0.1, 0.9], and the input to neuron B could be
[0.4, -0.6, -0.7, -0.1, -0.9]. When these neurons output their
result to the next layer, only the first two indexes actually
convey any information: the rest cancel each other out. The
relevant information becomes dependent on the not relevant
information being canceled out. This leads to lower cost
because neuron A and B are still decreasing the cost by a
small net amount. Co-adaptations that actually occur in
neural networks are typically much more complex, but the
end result is still the same. Despite some techniques that
have been developed to reduce overfitting, it has remained



a serious issue with neural networks.
These co-adaptations allow the neural network to ”mem-

orize” parts of the training data to decrease cost. This can
happen because a training set is ran through a neural net-
work many times. Given a complex neural network and a
small enough training set it will stop learning the pattern it
is supposed to learn and instead memorize random noise in
the data to decrease cost. While this might decrease cost, it
does not generalize to test data as the new data will not have
the same random noise which will cause the neural network
to increase error.

2.3 Methods to Prevent Overfitting
There are a few methods that researchers have developed

to prevent overfitting, although they are often computation-
ally expensive, or require performance sacrifices. One way
to combat overfitting is to have an excess of diverse data.
Unfortunately, this is very costly as you need to have the
resources to get more data, and it will take longer to train
the data to the neural network.

2.3.1 Regularization
Regularization is the most popular way of preventing over-

fitting. Regularization works by artificially reducing com-
plexity in a model. Once a model becomes too complex,
regularization starts reducing the influence of both noise
and the real data by pulling the weights toward zero. This
reduces overfitting and allows more complex models, but
harms the predicting power of the model as complexity is
intentionally crippled. There are two different types of reg-
ularization, L1 and L2. L1 regularization works by pulling
low importance, or weights that already are not large rela-
tive to other weights, toward zero, sometimes reaching zero
which effectively removes them. It does this because weights
of low importance that develop later on are often focusing
on noise. L2 regularization pulls all weights toward zero, but
never allows them to get to zero [13]. This works because
it is often not that useful that high importance weights be
excessively high, as they just need to have a high enough
weight to confirm that the pattern is present or not. Low
importance weights that are often noise have much more
to gain by having their weights increase so reducing their
strength reduces their influence much faster than high im-
portance.

2.3.2 Validation
Another popular way of preventing overfitting is valida-

tion. Validation, also called early stopping, is a method
where you section off about 20% of the training data set to
test on. If during training the cost decreases, but the ac-
curacy of running the neural network on the validation set
stays the same or decreases, then training stops [11]. This
method works quite well to prevent overfitting but it re-
quires sacrificing part of the data set which could be used
for training. It can also be difficult to find a subset data
that truly represents the rest of the data.

2.3.3 Averaging
Averaging the outputs is another way that researchers

have tried to prevent overfitting. This is done by break-
ing up the input sets and training a neural network for each
of them. Then instead of taking one output, you average
the output probability of all the neural nets. It is simple yet

Figure 2: Deep Boltzmann Machine vs Deep Belief
Network

effective. One major downside to this method is that creat-
ing multiple neural networks is computationally expensive
as large neural networks can take days to fully train. This
is why it is not often thought of as a reasonable choice.

2.4 Restricted Boltzmann Machines
For this paper, the main type of neural network I will

be talking about is the Restricted Boltzmann Machine. Re-
stricted Boltzmann Machines (RBMs), can be used to create
deep neural networks. RBMs most often are used to create
powerful unsupervised neural networks. A RBM is com-
posed of a hidden layer and a visible layer where each visible
neuron has an undirected connection to all hidden neurons.
RBMs are used to increase the relationship between neurons.
If it seems clear given the input that a visible neuron has
a positive relationship with another visible neuron, it will
transform the visible neuron to make it more probable that
the hidden neuron that they share will activate. In order
to make a deep neural network from an RBM the outputs
from one RBM become the inputs to the next. A deep neu-
ral network that is formed only using RBMs is called a deep
Boltzmann machine or DBM. A three layer deep Boltzmann
machine is shown on the right in figure 2 here h represents
hidden layers, v is the input layer, and the W represents
weights. Every layer is a RBM. There is also the deep be-
lief network, or DBN shown on the left in figure 2 which
is similar except only the output and last hidden layer are
restricted Boltzmann machines, and the rest of the layers
operate like a normal neural network [5]. This is done so
that the neural network can learn the patterns of its inputs
with RBMs using unlabeled data. Then once most of the
training data has gone through, a small amount of labeled
training data can be presented so that the neural network
part of the DBN can learn what the data it has categorized
is named. The amount of labeled data needed to create an
accurate model is much smaller than a regular neural net-
work would need. In the real world this is a huge advantage
because most of the data in the world is not labeled.



3. DROPOUT

3.1 Dropout Deep Neural Networks
Dropout is a technique introduced to prevent the prob-

lems of overfitting in deep neural networks, and average
many models quickly [8]. Training a neural network with
dropout is similar to usual training. The main difference
in training a neural network with dropout is that there is a
0.5 probability that any neuron’s weight will be set to 0. It
has been found that the optimal probability to drop units is
about 0.5 for hidden units, and 0.2 for visible units, although
these numbers are somewhat arbitrary. Setting the weight
to 0 means that that neuron will not be activated and can
be thought of as dropped out. One large advantage to this is
that you are essentially randomly sampling from 2h different
architectures where h is the amount of hidden neurons, and
each architecture has the same weights. It is important that
the architectures have the same weights because it has the
effect of L2 regularization [10]. Unlike the L2 regularization
I described earlier which works by pulling all weights toward
0, when a model shows signs of overfitting, dropout adjusts
the weights toward the correct value. Although a caveat to
dropping neurons is that training takes two to three times
longer than without [8].

There is one more step to complete the dropout method,
averaging the different architectures. This step is taken af-
ter training is complete. Averaging is done by dividing all
the outgoing weights by 1/(1 − p), where p is the proba-
bility of dropping a unit. Since 0.5 is the standard, you
would halve all outgoing weights. It has been mathemati-
cally proven that this method will perform averaging while
training on shallow neural networks. It cannot be proven
mathematically that it scales to deep neural networks, but
in practice it approximately does. Dropout does this much
faster than previous methods, which required building many
models from scratch with different training sets. Figure 4
depicts how a variety of neural network algorithms work
with regularization and with dropout. When the lines start
diverging is when overfitting starts to occur. Regulariza-
tion minimizes damage done but does not improve much on
the model. Dropout not only reduces overfitting but allows
progress to be made.

While dropout works well to prevent overfitting there are
some cases where it can increase error rate. To test this,
dropout neural networks were compared to regular neural
networks on data set sizes of 100, 500, 1000, 5000, 10000 and
50000 with the only difference being whether or not dropout
was applied [8]. The results are displayed in figure 3. For
very small data sets relative to the amount of parameters
dropout increases error rate because there is so little data
that overfitting happen regardless of dropout. This effect
disappears as the data set gets large enough for dropout to
become effective. It stops decreasing error once the data set
gets to about 10000 because the data set got large enough
overfitting did not occur. So there is a certain range of data
that dropout is effective: not so small that overfitting occurs
regardless of dropout, and not so large that overfitting is not
an issue. One could argue that these are not major issues. If
there is such a small data set that overfitting occurs despite
dropout, it is a sign that there is not enough data for proper
representation of the pattern; which is an issue that only
more data can solve. If there is so much data relative to the
size of the network that overfitting does not occur regardless

Figure 3: Dropout vs not Dropout

Figure 4: Dropout vs Regularization

if dropout is used or not, then the model would become
more accurate if the size of the network were increased and
dropout used.

3.2 Maxout Deep Neural Networks
Dropout is a powerful tool that can improve almost any

deep neural network when applied, but activation functions
have been optimized for older regularization techniques.
Older regularization techniques were improved by making
each neuron less influential so that overfitting could be de-
tected faster. This allowed regularization to reduce the in-
fluence of noise as soon as it appeared, without reducing the
influence of meaningful patterns. In contrast dropout starts
preventing overfitting immediately instead of waiting for it
to appear. Part of the reason that dropout works so well
is because it makes each neuron more independently useful.
Since dropout implements immediately, and makes neurons
more independently useful, its performance is hindered by
activation functions that are optimized for older regulariza-
tion.



Figure 5: maxout

Maxout is a technique that solves this problem, and makes
it so that the approximate model averaging that occurs with
applying dropout to deep neural networks is closer to the
actual model average [4]. It does this by introducing a dif-
ferent type of activation function: the maxout neuron. The
maxout neuron is composed of one neuron that contains the
activation function, called the maxout operator, and k neu-
rons that receive outputs from the previous layer, and only
outputs to the maxout operator. Because the k neurons
only output to one neuron, and do not contain an activa-
tion function they are called linear neurons. An example of
a maxout neuron is shown in the top rectangle in figure 5.
The larger colored neuron is the maxout operator, and the
small white neurons are the linear neurons. A hidden layer
with maxout neurons is called a maxout layer.

By doing this a deep neural network acts more like a shal-
low neural network which means that when averaging with
dropout the approximate averaging is going to be closer to
actual averaging. Dropout training also works differently
with a maxout deep neural network; instead of all neurons
having the same probability of being dropped, the weights
inside the maxout neuron are never dropped. For exam-
ple the weights between the maxout operator and the linear
neurons in figure 5 are never zero. The maxout neurons ac-
tivation function is hi(x) = max(zij)

j∈[1,k]
, zij = xTW...ij where

hi is the maxout neuron, x is the input from the previous
layer, W is the weights, j represents the linear neurons spe-
cific to a maxout operator, i represents the specific maxout
operator, and T means transpose. zij = xTW...ij translates
to calculate the weighted sums of the inputs for a given lin-
ear unit, and max(zij)

j∈[1,k]
means find the maximum value of

all the linear units for a given maxout operator. [4]. Un-
like the sigmoid function, the maxout neuron does not have
an upper limit. This has the effect that neurons increase
their influence much faster. This is not that different from
ReLUs, the only difference being that maxout neurons do
not have a lower bound 0. In fact a ReLU can be cre-
ated using a maxout neuron with two linear neurons, one
of which always outputs 0 to the maxout operator. ReLUs

Figure 6: maxout activation functions

are not the only activation function that maxout neurons
can create. It has been mathematically proven that max-
out neurons can approximate any activation function given
enough linear neurons [4]. A visual example is shown in
figure 6. The dashed lines represent the linear neurons ap-
proximation, and the solid lines represent the true values. A
ReLU and absolute value function can be created with two
linear neurons, while the quadratic function needs five to be
a good approximation. These activation functions are not
hard coded in for each neuron but are learned during train-
ing because the weights between the linear neurons and the
maxout operator change with training.

4. RESULTS
One of dropouts strengths is that it can improve almost

any deep neural network. In order to prove this the re-
searchers applied it to many different neural networks and
compared the results to neural networks not using dropout.
Table 1 is a description of the data used for comparison [8].

Table 1: Data labels
Data Set Domain Dimensionality Training set Test set %

MNIST Vision 785 (28 x 28 greyscale) 60K 10K
TIMIT Speech 2520 (120-dim, 21 frames) 1.1M frames 58K frames

MNIST is a bench marking image recognition test data
set that is used with most new neural network techniques to
make sure there is a fair comparison. As shown in all test
cases; dropout beat all other equivalent method that did
not use dropout, and by quite a significant margin. For this
test the researchers also used another regularization tech-
nique that works well for dropout but is not relevant for
this paper. When [4] was published this was the best score
anyone had gotten with the MNIST data set. The method
used was a deep Boltzmann machine using dropout with a
logistic unit it achieved an error of 0.79. When the same
architecture was used without dropout it had an error rate
of 0.96. Similar results were achieved when comparing a reg-
ular neural network and a dropout neural network: without
dropout it achieved an error rate of 1.60, with dropout error
was reduced to 1.35.

This might not seem like a fair comparison because the
dropout neural network had 3 layers and 1024 neurons, while
the neural network had 2 layers with 800 neurons; but if the
neural network had as many layers and neurons it would
have became worse due to overfitting. So because of dropout
neural networks are allowed to have more layers, and neurons
without having to worry as much about overfitting. It is
also important to see that the best regular neural network
method was using Maxout with a slightly larger error of
0.94. Although it is hard to compare networks because of



the maxout neurons unique structure, we can compare the
total number of neurons to get a rough estimate of how
computationally expensive each method was. It is specified
in the architecture column that maxout had two layers and
(5x240) units. This means that there was five linear neurons
inside each maxout neuron, and 240 maxout neurons. So we
can calculate how many neurons there were total by doing
5*240 which comes out to 1200 total neurons. The closest
method to that amount of neurons used ReLUs and received
an error rate of 1.06.

Table 2: MNIST
Method Unit Type Architecture Error %

Neural Network Logistic 2 layers, 800 units 1.60
Dropout NN Logistic 3 layers 1024 units 1.35
Dropout NN ReLU 3 layers 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers 2048 units 1.04
Dropout NN + max-norm constraint ReLU 3 layers 4096 units 1.01
Dropout NN + max-norm constraint ReLU 3 layers 8192 units 0.95
Dropout NN + max-norm constraint Maxout 2 layers (5 x 240) units 0.94
DBN Logistic 500-500-2000 1.18
DBM Logistic 500-500-2000 0.96
Dropout DBN Logistic 500-500-2000 0.92
Dropout DBM Logistic 500-500-2000 0.79

In order to show that it works on different types of data
they also looked at speech recognition. This data set called
TIMIT is a recording of 680 speakers from 8 major dialects
of American English reading sentences in a noise-free envi-
ronment. For the regular neural network dropout decreased
error rate by 1.6%. When using deep belief networks accu-
racy increased by 3%.

Table 3: TIMIT
Method Phone Error Rate%

Neural Network (6 layers) 23.4
Dropout NN (6 layers) 21.8
DBN (4 layers) 22.7
DBN (6 layers) 22.4
DBN (8 layers) 20.7
Dropout DBN (4 layers) 19.7
Dropout DBN (8 layers) 19.7

5. CONCLUSIONS
Overfitting has prevented deep neural networks from be-

ing applied to many problems which they could otherwise
have had great success. Dropout is an effective tool that
reduces overfitting without having to hinder complexity. It
does take two to three times longer to train a model, but for
many problems the extra computing power is worth not hav-
ing to find more training samples. Both dropout and max-
out are major innovations in the field of neural networks and
greatly expanded the amount of problems that neural net-
works can solve. One of the major benefits is that dropout
and maxout have made unsupervised training much more
viable, which means that we can apply neural networks to
problems without the large amount of people power needed
to label data; which was a major cost for training neural
networks.

Acknowledgments
Thanks to KK Lamberty, Elena Machkasova, Snuffy Linder,
and Andrew Latterner for their help and feedback.

6. REFERENCES
[1] Improve Neural Network Generalization and Avoid

Overfitting.
http://www.mathworks.com/help/nnet/ug/improve-
neural-network-generalization-and-avoid-
overfitting.html,
2016.

[2] P. Baldi and P. J. Sadowski. Understanding dropout.
In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
26, pages 2814–2822. Curran Associates, Inc., 2013.

[3] G. Dahl, T. Sainath, and G. Hinton. Improving deep
neural networks for lvcsr using rectified linear units
and dropout. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International
Conference on, pages 8609–8613, May 2013.

[4] M. C. B. Goodfellow, Warde-Farley. Maxout networks.
pages 1319–1327, 2013.

[5] G. Hinton. A practical guide to training restricted
boltzmann machines. Momentum, 9(1):926, 2010.

[6] S. Lawrence, C. L. Giles, and A. C. Tsoi. Lessons in
neural network training: Overfitting may be harder
than expected. In In Proceedings of the Fourteenth
National Conference on Artificial Intelligence,
AAAI-97, pages 540–545. AAAI Press, 1997.

[7] M. A. Nielsen. neuralnetworksanddeeplearning.
Manning Publications Co., 2015.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, Jan. 2014.

[9] Stergiou, Siganos. Neural Networks.
https://www.doc.ic.ac.uk/ nd/surprise-
96/journal/vol4/cs11/report.html,
2016.

[10] L. Wager, Wang. Dropout Training as Adaptive
Regularization. ArXiv e-prints, July 2013.

[11] Wikipedia. Cross-validation — Wikipedia, The Free
Encyclopedia, 2016.

[12] Wikipedia. Deep learning — Wikipedia, The Free
Encyclopedia, 2016.

[13] Wikipedia. Regularization — Wikipedia, The Free
Encyclopedia, 2016.


