
Introducing Computer Science using Block-Based
Programming

Z.D.R. Copic
Division of Computer Science

University of Minnesota, Morris
Morris, Minnesota, USA 56267

copic006@morris.umn.edu

ABSTRACT
This paper will focus on several studies dedicated to teaching
Computer Science (CS) with Scratch and the results of said
studies. These studies aim to make CS concepts easier to
grasp and be retained. This paper will also survey various
advantages in using block-based coding as an educational
tool, studies done using the Scratch programming language,
and the conclusions of the studies. Using Scratch could be a
new and better way to teach programming at all ages given
how easy Scratch is to use and manipulate. Also, this survey
will focus on studies ranging from an hour after to school,
to several hours a day in a Summer session.

Keywords
Block-Based Programming, Scratch, Computer Science Ed-
ucation

1. INTRODUCTION
With the ever present need to learn, the subject of how to

teach computer science comes up on occasion. What is the
best way to do it? Are there even different ways to go about
teaching the concepts of computer concepts? This paper
will focus on answering these questions with the block-based
program Scratch and different ways to introduce computer
science concepts through this language. We will begin with
some background, on Scratch and other concepts that need
it. We follow by some good-programming practices that
should be present in all computer science coding. We will
then delve into various setups to teach these concepts with
Scratch, such as in a Summer Camp, After School, or in a
regular class.

2. BACKGROUND
Scratch is a block-based coding system designed specifi-

cally for children ages eight to sixteen and was developed
by MIT Media Lab’s Lifelong Kindergarten group, led by
Mitchel Resnik [8]. It is based on Squeak, which is a variant

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2016 Morris, MN.

of Smalltalk, and it is an object-oriented, class-based, and
reflective [9]. Reflection is the ability of a program to exam-
ine and modify its own structure and behavior at runtime [7].
Code is represented visually by blocks such as in Figure 1,
and was started up in 2003 at MIT. It has garnered sup-
port from various companies such as Microsoft and Google.
It has been steadily gaining steam but recently took off in
2013 with more comments from its users, more projects, and
more users1. Also, it is used globally. It is available in more
than 150 different countries and it also is translatable into
forty plus languages making it a very versatile starting lan-
guage. Looking at Figure 1, we can see a simple script
built in Scratch. Figure 2 is the Graphical User Interface
(GUI) in which the script in the second column would be
interlocked together and ran. The first column has several
categories in which some premade scripts are already there
for the user. The third column, or pane, is where the sprite
would be if there is one, and this is also where if one were to
say “Hello, world!” this is where it would appear. A sprite
is a two dimensional bitmap that is integrated into a larger
scene. Going through Figure 1, it is read from the top to
the bottom. When the green flag is clicked (the green flag is
in the upper right of Figure2), the phrase“Hello, world!”will
appear in the third pane of the Scratch GUI. The third block
down will end the script and the phrase used previously will
disappear from the GUI.

Another concept used in this section is story-boarding.
Story-boarding is a way of graphically organizing ones ideas
in the form of slides or panes in a sequential, visual way and
is used in programming practices, theater, and any other
interactive media such as in Figure 3 [10]. It is useful for
identifying specifications for a given software that you or a
team is developing. Furthermore, it can also help develop
the interface the client wants in a much more interactive
manner instead of just describing the software with a list or
general outline. It also points out to the user how the given
software will work and this is also a far cheaper solution
than modifying software to appeal to the user.

3. GOOD PROGRAMMING PRACTICES
This section discusses testing and documentation. It also

includes what was done in a few studies, and the problems
and solutions associated with them.

3.1 Documentation
One aspect of good programming practices is proper doc-

umentation. Trying to instill this in a middle/high school-

1https://scratch.mit.edu/statistics

Figure 3: An example of a what a storyboard might look like

Figure 1: An example of Scratch and its block-based
coding

Figure 2: The interface of Scratch

er can be rather challenging. However, the Web Platform
(which will hence forth be referred to as WP) was built for
this and implemented in a workshop that uses a system very
similar to story-boarding. In the WP, the user takes snap-
shots and gives them captions to try and accurately describe
what is going on. The workshop used a Visual Programming
Environment, Scratch, to guide a group of students aged,
thirteen to eighteen, on their journey in constructing and
coding a “smart cup” to actively document what they were
doing [6]. The smart cup is a normal cup with hardware at-
tachments that is programmed to display the temperature
of the liquid within the cup. The reasoning behind making
the smart cup was to have the students make several gadgets
using Scratch and see how well they could use their knowl-
edge learned and apply it to the hardware of the smart cup.
They met once each week, thus adequate documentation was
needed to remember where they left off, what were their in-
tentions, and where they need to go. In theory, this seemed
like a good approach but in practice did not work out due to
several reasons. The first and biggest reason as to why the
WP did not take was due to how Scratch works. Scratch is a
visual based code, which leaves documenting afterwards un-
necessary and thus left the WP unused. Also, the students
felt that the extra step was highly unneeded and was more
of an after-thought than anything. Given this information
and results, the students did learn how to document code,
though not in the way intended, and why documenting is a
good idea as it reminds one where they left off from.

3.2 Testing
Games are a superb framework in which to work out how

something works or how one is supposed go about building
it. Constructionist Gaming really emphasizes this, and it
creates a fun environment in which to work. Construction-
ist gaming is the idea of making a game (from nothing or
based on an already established game), and implementing
it within a group of peers. This sounds very simple and
straight forward but it involves a lot of logic, coding, team-
work, and testing. In doing constructionist gaming, a group
of students (high school freshman, four girls, thirteen boys,
ages thirteen to fifteen) use technology mixed with board
games to make augmented board games. These students had
to test their board game in at least two ways [5]. The first
was play-testing, where they had to work out the specifics
of their game. The hardware side of testing would be sim-
ilar to this. They made a board game and rules that go
along with it, then proceeded to play it repeatedly in order
to make sure that: 1) The rules made sense in the context
of the game. 2) The board pieces and future features (not
yet functional) would actually work with what they already
had, and 3) that it was actually fun to play. The second bit
of testing they did was on the code they made for the elec-
tric parts of the board game they created, the augmented
side of their workshop project. They strived to make sure
the code performed as intended and that it would not break
due to some unforeseen problem.

To prepare them for this, the workshop gave them sev-
eral “debug’ems” where they were given either incomplete
or broken code (in Scratch) and asked to solve or fix them.
Through these debug’ems, they learned to recognize simple
errors and were able to fix the little errors that came up
during their project with minimal help from the instructors.
[5]. Through this simple workshop they learned a lot about

testing and how important it was in making sure that a
given product they produce is fully functional and unlikely
to break due to user interaction.

4. TIME SPENT ON LEARNING
This section is on several studies, their goals, and the

results of the studies.

4.1 Several Hours a Day
This section is on a study that focuses on students in a

summer camp as they learn various CS concepts such as
conditionals and synchronizing sound with speech bubbles
in Scratch.

4.1.1 Setup
Summer is an oppurtune time to gather data from chil-

dren for research purposes as this is the time they have the
most free time avaiable. Summer camps are intended to
teach children through disciplined, organized activities so
that the lessons learned are retained for those who may wish
to pursue further instruction in these areas. A group of re-
searchers took on a group of middle-school students to teach
basic lessons about computer science without the use of ex-
ams or similar artifacts. In this summer program, they will
be using Scratch to code various projects that are given out
in the two weeks the camp takes place. The camp had 5
lessons, with each lesson taking about 2 days to complete.
This subsection, and the following subsections unless other-
wise specified, take their info from study by [3].

4.1.2 Goals
The outreach program had three goals in total. The first

goal was to attract middle school students from underrep-
resented groups with non-CS themed backgrounds. Second,
to engage participants in interdisciplinary activities that al-
low them to learn about computer science and develop skills
for computational thinking in the context of those-non CS
themes. And finally, to assess the learning of CS content
that took place during the camp. It consisted of 35 individ-
uals, and 10 of these campers were repeats (they attended
the camp before). The studies assessment focused on the in-
dividuals that were taking this camp for the first time. The
curriculum were subject to two constraints. (1) The inter-
disciplinary themes influenced the computer science content
of the lessons because of the culminating project- a digital
story-telling project. (2) Assessment influenced the struc-
ture of the lessons. Each lesson was in two parts, the first
was not assessed and it was the teaching of one or more CS
concepts with scaffolding and support. The second part of
the lesson was assessed and it consisted of a small project
where the participants applied their new knowledge to a
similar, but new, problem.

4.1.3 Learning Process
Lesson 1 was Scratch basics and it’s mini project was a

Name Poem. The basics were the “stage” (where the code
was placed), sprites, how blocks are combined into scripts,
and 2 CS concepts, Event-driven programming and Ini-
tial state. Event-driven programming in Scratch means
that when blocks that say “When Green Flag clicked” are
clicked an event will occur depending on what that script
contains. Sprites have certain attributes, such as position

Table 1: The Side-Scroller Quiz
Question Answer Results
If you want the cat rather than a panda, what would you change? sprite 100%
If you want the cat to go into a cave rather than a temple, what do you change? scene or background 82%
How could you make the monkey turn red? color effects or costume 91%
How do you make the bees keep going up and down? repeat or forever 73%
How can you keep track of how many times the bat has been hit by a banana? variable 73%
How do you make the bat disappear on the third hit, not the first hit? if 28%

and size, that if changed need to be initialized when the
“green flag” is clicked to restart after completion. The Name
Poem project had the campers spell out their assigned ani-
mal, and when each letter was clicked an adjective starting
with that letter would appear on screen. [3] For example,
the character“Bear”would become Big, Elusive, Adaptable,
Rough.

Lesson 2 was about multi-sprite synchronization through
conversation between two sprites. In this lesson, 2 more CS
concepts are introduced and they are Broadcast/Receive
and Say/Sound Synchronization. Broadcast/receive is
used to control timing in Scratch. A collection of scripts can
be associated with each sprite and runs as a separate paral-
lel thread. This can be thought of as “message-passing” in
other languages. Say/Sound Synchronization is used when a
speech bubble is displayed at the same time as an audio file
plays. Unintentionally, this also taught another CS concept,
thinking sequentially. The blocks of speech and sound must
be done in a sequence that is logical and lines up with the
audio, otherwise the two sprites will make no sense. The
project done here was having two sprite animals have a con-
versation with one another.

Lesson 3 was about scene changes and the project for this
lesson was Mayan Conversation. The scene changes were
used to expand on message passing and sequential order by
introducing Visibility (the ability to hide or show an ob-
ject) and backgrounds. The Mayan Conversation reinforces
message passing, sequential order, visibility to make a con-
versation in the Mayan Language. The campers are given
the first two glyph with their respective recordings and they
are to sequence them like a scene.

Lesson 4 was about Complex Animation and the project
was another Name Poem but with motion. Complex An-
imation teaches the campers how to create more realistic
motion with sprites and it requires several of the above con-
cepts to do. The Lesson 4 project has the campers add
motion to the Name Poem they created in the first lesson
with their assigned animal.

The Culminating Project was introduced after the fourth
lesson. The project was about animating a Mesoamerican
Animal Myth, this project must also include their assigned
animal, three scenes, and at least two characters.

Lesson 5 was an Interactive Conversation with an op-
tional project, a side-scrolling game. This lesson contained
warm-ups introducing Input, Variables, and Condition-
als (if/then/else).

4.1.4 Assessment
Campers were given a quiz at the end of the program to

determine what they have learned and retained. The quiz,
shown in Table 1, displays the questions asked and what per-
cent of the campers answered correctly. As one can see, all

were adequately answered by the majority except for if con-
ditionals but seeing as it was the last thing taught with little
time left, this is not unexpected. In spite of the constraints,
this camp managed to teach middle school children basic
computer science concepts in just two weeks using Scratch.
The researchers also realize that their sample size is small,
and with a Summer program, they will only reach a small
part of the population. However, it is highly likely that the
integration of computer science will have a broader impact.
They expect that by pairing their lessons with a curriculum
that teaches variables, loops, and conditionals, students can
use computer science thinking and apply it to other subjects
required in schools.

4.2 Weekly
This section focuses on a study done for one hour each

week after school.

4.2.1 Setup and Goals
A second approach used to teach kids about Computer

Science is after school workshops. In Kafai and Vasude-
van’s afterschool workshop they taught once a week in a
small program that ran for eight weeks after school. [5]
The idea was to introduce coding in a Constructionist man-
ner in order to teach students Computer Science concepts,
such as testing mentioned earlier. The researchers were aim-
ing to highlight intersections between learning programming
and creating games across digital and tangible modalities.
[5] They focused their analysis on the high school students’
projects, interactions, and reflections on how they concep-
tualized the integration of screen and board game elements,
realized computational concepts and practices, and reflected
on their board game design experience connecting coding
and crafting.

4.2.2 The Workshop
The researchers, Y. Kafai and V. Vasudevan, gradually in-

troduced gaming, coding and then crafting to the students.
In Session 1, the students had the workshop explained to
them in detail and they played board games. After the
games were done, they reflected on the design of the games.
Sessions 2 and 3 consisted of the students designing their
board games and testing them for bugs or flaws in logic. Ses-
sions 4, 5, and 6 were about Scratch. They were taught the
basics of Scratch programming. To ease their comfort with
Scratch some simple programs were created, that were either
incomplete or wrong, and the students were tasked with fix-
ing or completing them. These programs or “debug’ems”
were directly related to any coding that might be necessary
for their augmented game boards. Also, the students tested
the digital components of their board games, such as digital
dice, to get a feel for how the technology would affect game-

play. Sessions 7 and 8 focused on completing their board
game designs, Scratch code, and integrating other digital
components. In the final session, they played their created
games and got feedback from adults that worked in various
creative fields. [5]

4.2.3 The Code Used
The researchers taught the students concepts like move-

ment, appearance, event-based functionality, and some ba-
sics of parallelism. The students broke up into pairs, and
solved “debug’ems”. These programs are simple, and almost
complete but intentionally have flaws. One team opted to
code in digital dice, musical introduction, and digital loca-
tions (e.g. skip a turn, go back to start) to move in their
game. [5] They also included player selection, and abilities
as part of their code. All this was done in Scratch, with the
majority of it being done from scratch.

4.2.4 Results
In this setting there were mixed results. The students

tended to gravitate towards what they thought they were
good at. For instance, one of the students in team Cairo
gravitated toward Scratch because he felt comfortable in a
logical environment and was not at at all comfortable in an
artistic setting. A different student, Jordan, gravitated to-
wards Scratch at first because he knew nothing about it but
then because he found it too challenging shied away from it
but not before he completed a die rolling program. On the
other end of the spectrum, one student did not really par-
ticipate at all due to her lack of comfort with both program-
ming and artistic skills. [5] What we can really draw from
this study is that more time than once a week is needed to
teach basic CS concepts and to attract more students to the
course. Increasing comfort levels with coding makes it easier
to bridge the gap of confusion concerning CS concepts and
still providing a learning environment in which students can
easily learn and apply these concepts.

4.3 Applying certain techniques and results
This section focuses on several studies as well. It also

gives background on two techniques and applies these to
both secondary and post secondary school.

4.3.1 Background on Prominent Techniques Used
A different approach is in a school setting and also uses

Scratch. Two researchers focused on two different tech-
niques for transferring knowledge from one context to an-
other. They are termed “bridging” and “hugging”. [4] Bridg-
ing is learning a concept in one area through real life ex-
amples within a single language. When presenting a new
topic in a language, a Bridging conversation would include
how the concept is applied in other contexts like in a real-
world scenario or a different coding language. Hugging on
the other hand, is more aligned with the second interaction.
For instance, a concept is taught in one language and then
the same concept is taught in a different language but using
very similar problems to those used in the first language.

4.3.2 College Level
In a college level class, one researcher applied bridging and

hugging to her mixed Alice/Java course. [2] Alice is a VBE
similar to Scratch. Compared with her Java only class, stu-
dents achieved on average a twenty percent increase in con-

trast to her Java-only course, with similar gains in other
subjects of the course. Also, another result of her class
that became apparent was that the block-based language,
Scratch, lacked sufficient support for simple problems con-
cerning inheritance and parallelism that are supported in
Java. She also had problems with teaching conditionals to
her students in both courses. Conditionals seem to be a re-
curring theme in being difficult to understand no matter the
background of the student.

4.3.3 Middle School Study 1
In a middle school setting, one researcher taught a group

of students with Scratch then later had some of those same
students take a High School CS course. [1] Those that had
previously taken the Scratch course performed much better
than those who had not. These students scored higher than
other students in the same class when bounded loops were
taught. Though one subject that did not seem to matter
if one had taken a previous course or not was variables and
conditionals. The two groups both seemed to be at the same
level of understanding when it came to this subject. Again,
the concept of conditionals and how they are applied was a
difficult concept to understand. Overall, the teachers found
that they could cover material at a significantly higher rate
because of their previous knowledge, and concepts learned
with Scratch were easier to teach in a different language.

4.3.4 Middle School Study 2
The setup for this study involved ten 4th to 6th grade

classroooms at five schools across California. [4] In two of
these schools (Schools B and E) they collect only snap-
shots of projects and do not observe them. In the other
three schools (Schools A, C, D), they observed instruction
of the students and they also interviewed students. The re-
searchers in observing the three classrooms wrote field notes
following each class session. In all of the schools, they col-
lected the final projects and snapshots of the projects when
each project was run (green flag clicked) with 4 or more
changes. Their goal was to assess students in their ability
to initialize objects in Scratch through identifying features
in their final projects in hopes of correcting their teaching
methods for further classes. They specifically wanted a cat
sprite to be initialized in an Activity called Animal Race.
The correct script initializes two of the cats attributes, size
and position.

The researchers met and compared notes. They discussed
what worked and what did not, changes in lessons, and fo-
cused on points where students made errors from the per-
spective of experts in computer science. The sum of this
meet-up was that differences in Text Based Language (TBL)
like Java and Visual Block-Based Language (VBBL) were
made much more apparent because the experts had been us-
ing TBLs their entire life and made analyzing the field notes
somewhat difficult. [4] Even with this minor setback, they
identified pieces of knowledge derived from the lens of tradi-
tonal TBLs but expressed in a way applicable to Scratch. [4]

The results of the study showed when initialization oc-
cured in a given students project in the final snapshot. As
in Figure 4 we see that School C was the best in correctly
initializing the cat before the sprint and that School B was
the worst as a little over 50% of the class did not even ini-
tialize the cat. School C did so much better than the other
schools because it specifically spent three sessions on Ani-

Figure 4: Whether or not the cat was initialized and
the timing of the initialization

mal Sprint with very targeted help. The other schools did
not spend nearly as much time and it shows with roughly
half in both schools not initializing the cat. Also, students
in schools B and C had some trouble with a concept call a
race condition. A race condition occurs when two or more
threads try to update an object at the same time. Surpris-
ingly, School E had either no trouble with this error as they
sequenced their project in a logical manner. In Scratch, a
race condition would occur when one would have two scripts
for one sprite both run at the same time.

5. CONCLUSIONS
Teaching with Scratch first and as early as possible makes

the transition to TBLs much easier. Ranking each strategy, I
would say that most effective way to teach Computer Science
using Scratch would be in a class-like setting for a few hours
each day as early in life as possible. The earlier the teaching
it seems the more likely it is to be learned at a faster paced,
except for conditionals. Conditionals really seemed to bog
everyone down even into the college level and it was not until
my second year into the CS discipline that I fully understood
the logic behind them. With this in mind, I conclude

Acknowledgments
I would like to acknowledge Nic McPhee, Peter Dolan, KK
Lamberty, and Elena Machkasova for their help, support,
and feedback. I would also like to acknowledge Stephen
Adams for his feedback. Also, big thanks to my parents for
putting up with me for all these years and supporting my
decisions.

6. REFERENCES
[1] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari.

From scratch to “real” programming.
Trans. Comput. Educ., 14(4):25:1–25:15, Feb. 2015.

[2] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and
S. Cooper. Mediated transfer: Alice 3 to Java. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages
141–146, New York, NY, USA, 2012. ACM.

[3] D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill,
M. Len, G. Dreschler, G. Aldana, P. Almeida-Tanaka,
B. Kiefer, C. Laird, F. Lopez, C. Pham, J. Suarez, and

R. Waite. Assessment of computer science learning in
a scratch-based outreach program. In Proceeding of the
44th ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 371–376, New York,
NY, USA, 2013. ACM.

[4] D. Franklin, C. Hill, H. A. Dwyer, A. K. Hansen,
A. Iveland, and D. B. Harlow. Initialization in scratch:
Seeking knowledge transfer. In Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, pages 217–222, New York,
NY, USA, 2016. ACM.

[5] Y. Kafai and V. Vasudevan. Hi-lo tech games:
Crafting, coding and collaboration of augmented
board games by high school youth. In Proceedings of
the 14th International Conference on Interaction
Design and Children, IDC ’15, pages 130–139, New
York, NY, USA, 2015. ACM.

[6] E.-S. Katterfeldt and H. Schelhowe. Considering visual
programming environments for documenting physical
computing artifacts. In Proceedings of the 2014
Conference on Interaction Design and Children, IDC
’14, pages 241–244, New York, NY, USA, 2014. ACM.

[7] Wikipedia. Reflection (computer programming) —
wikipedia, the free encyclopedia, 2016. [Online;
accessed 23-March-2016].

[8] Wikipedia. Scratch (programming language) —
wikipedia, the free encyclopedia, 2016. [Online;
accessed 23-March-2016].

[9] Wikipedia. Squeak — wikipedia, the free
encyclopedia, 2016. [Online; accessed 23-March-2016].

[10] Wikipedia. Storyboard — wikipedia, the free
encyclopedia, 2016. [Online; accessed 24-March-2016].

