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ABSTRACT

Attackers of computer systems must preform reconnais-
sance on the system prior to attacking it. Knowledge gained
through reconnaissance often allows them to find ways in
which to exploit the system. Moving target defense (MTD)
is a security strategy that inhibits the reconnaissance phase
of an attack by making the system change the way it is
configured, while it is running, at random intervals. The
changes a moving target defense implements should main-
tain system functionality as well as security. Depending on
the system being protected the possible number of param-
eters that can change can be very large. Finding ways to
change the parameters that ensure system security is chal-
lenging, but with the help of genetic algorithms it can be
done effectively. This paper describes the basics of mov-
ing target defense, highlights three specific challenges that
go in to the making of an MTD, and explains how genetic
algorithms can be leveraged to address those challenges.
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1. INTRODUCTION

A Moving Target Defense (MTD) is a security strategy
implemented in a system that thwarts attackers by changing
the system in ways that makes any information an attacker
has gathered useless. Neutralizing the reconnaissance phase
of an attack can stop the entire attack [2].

There are three challenges that an MTD faces before it
can be a successful defense strategy: unpredictability, cov-
erage, and timeliness [6]. Genetic algorithms can be used
to address these challenges, and assist in the creation of a
powerful MTD.

This paper will discuss the basics of moving target de-
fenses, outline the challenges an MTD faces, and show how
genetic algorithms can be used effectively to create a moving
target defense.
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Moving target defense and the basics of genetic algorithms
will be defined in the background section, and how genetic
algorithms can be leveraged in the creation of a moving tar-
get defense will be described in sections 3 and 4.

2. BACKGROUND

2.1 Moving Target Defense

The idea of a MTD is to take a static system and make
itdynamic. A system can be defined as a computer or server
that needs to be protected, and a static system is one whose
characteristics or properties are not changed once deployed.
To make a system dynamic the configuration, or set of sys-
tem properties, must be changed. This change should occur
at some frequency, potentially random, and the configura-
tions implemented by the MTD must maintain system func-
tionality as well as protect the system without disrupting its
services.

2.1.1 Purpose

Systems whose properties remain static are in danger of
being exploited. Their static nature allows attackers of the
system to study the configuration to find potential vulnera-
bilities and exploit them. Studies show that attackers spend
around 70 percent of their time on this research, or recon-
naissance [1]. Making a system dynamic helps limit the
usefulness of reconnaissance, because potential vulnerabili-
ties that exist in one configuration may be non-existent in
another that is used later in the system’s lifetime.

2.1.2  Creation

MTDs can protect a system by targeting three different
levels of the system. These levels are: memory, network
configurations, and host-level infrastructure [1].

An MTD that focuses on making the storage of mem-
ory dynamic would involve changing where parts of memory
are stored in the system. This change would help deter at-
tacks like buffer overflow attacks because attackers could
not make assumptions about where interesting information
is located. Many systems already implement address ran-
domization, which can be considered a form of moving target
defense. Address randomization alters the location of data
and instructions a program is using in memory throughout
its run-time. This method is effective for protecting private
information, but is only applicable to single-application sys-
tems|2].

An MTD operating in the network level of a system aims
to modify the network addresses of parts of the system. At-



tackers of a system that implemented a dynamic network
configuration would be unsure of what computer they were
interacting with at a given time. This particular form re-
quires the collaborative use of many resources, and can be
difficult to implement. Distributed systems, like a computer
lab, may need to have each part the system know how to
find the other parts of the system. If an MTD is changing
the way a system can be found, then all of the systems need
to know that the change was made and when it was made
so that the system as a whole can maintain its functionality.

An MTD created for host-level infrastructure focuses on
changing multiple system properties directly[1]. Genetic Al-
gorithms are most useful in the creation of an MTD that
affects the host-level infrastructure, and this area will be
the focus of the rest of the paper.

2.1.3 Implementation

Before a moving target defense can be implemented, a set
of configurations must be created that the moving target de-
fense can use to change the system it is protecting. The set
of configurations being used must all be secure and main-
tain normal system functionality once implemented. These
configurations can be found by implementing a genetic algo-
rithm. The creation of configurations will be discussed more
in section 3.

To ensure that configurations are safe they are tested first.
Testing a configuration can be done in different ways, but
the most common way is to emulate the configuration on a
virtual machine and run tests to determine its security.

The next step is to switch the configuration of the produc-
tion system without interrupting its services. The frequency
at which this change happens is different depending on the
MTD, but the goal is to make the change between when an
attacker has done their reconnaissance and when they try to
start an attack.

2.1.4 Challenges

There are three main challenges in the creation and im-
plementation of an MTD. The challenges are accomplishing
unpredictability, coverage, and timeliness[6].

For a system to achieve unpredictability an attacker must
not be able to predict future movements, or changes, to
the system. If the attacker is able to obtain information
about potential configurations that will exist on the system
in the future, then they would be able to plan on attack-
ing that particular configuration. If the dynamic system is
predictable, it is essentially static to a competent attacker.

The coverage of an MTD refers to its ability to impact all
of what is called the attack surface. The attack surface is
the area of a system that an attacker may use to negatively
impact the system. An MTD with perfect coverage would
make 100% of the attack surface dynamic. If parts of an
attack surface are left static then it is possible for the system
to be exploitable no matter how dynamic the rest of the
attack surface is. To find what level of coverage is needed
a threat model must be defined for the system. A threat
model is a description of threats that exist for a particular
system, and must be created in the context of that system
[6].

Timeliness is the most difficult property to achieve in an
MTD. The timeliness of a system is in reference to the fre-
quency in which changes are made to the attack surface. The
goal of an MTD is to make changes to the system between

an attacker’s reconnaissance and their attack. Changes to
the system must be frequent enough so that attackers do
not have a lot of time to learn about the system, but it
should not be so fast that it impacts the performance of the
system’s normal functionality. It is also important for the
frequency to not be predictable [6].

2.2 Genetic Algorithms

2.2.1 Evolutionary Concepts

Evolutionary computation is a field of artificial intelligence
that attempts to replicate the process of biological evolution
to find solutions to complex problems by evolving the solu-
tions [4].

Evolutionary computation is useful when applied to prob-
lems that cannot be computed efficiently in polynomial time.
Problems that can only be solved by checking every possible
answer are computationally difficult to solve. Evolutionary
computation does not focus on solving problems algorith-
mically or mathematically, but finding solutions by starting
with a group of candidate solutions and evolving them to be
better. Candidate solutions are generally created by choos-
ing random answers the the question that is trying to be
solved. A common process of evolution looks like this: take
a random solution in a set of possible solutions to a prob-
lem, create a generation of solutions that are modifications
of the original, and use the best of the new generation to
create the next.

2.2.2  Genetic Concepts

Genetic algorithms are a form of evolutionary program-
ming that is used to find solutions to search problems [5].
Genetic algorithms start by initializing a generation of can-
didate solutions, often called chromosomes, that have sets of
modifiable properties. The algorithm takes that generation
and performs three steps: selection, crossover, and muta-
tion.

The selection process looks through the current genera-
tion of chromosomes, or candidate solutions, and determines
which will be used to create the next generation. Chro-
mosomes are selected in different ways depending on what
selection function is used, but the choice is always depen-
dent on chromosome’s fitness score. A chromosome’s fitness
is a measurement of how close the individual is to solving
the problem. The fitness score is different depending on the
problem, and must be determined before a genetic algorithm
can be created.

The crossover function is used after two or more chromo-
somes have been selected from the generation. Two chromo-
somes are taken, and some of their properties are randomly
swapped. This process is meant to emulate the crossing over
of genes between parents to create children. After the prop-
erties are swapped these two new chromosomes are used to
create the next generation.

The mutation process takes the two or more chromosomes
that the crossover function was applied to and creates new
chromosomes by editing some of their properties at random.
This process is repeated to generate chromosomes for a new
generation. The process of selection, crossover, and muta-
tion is repeated until chromosomes that are suitable answers
are generated.
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Figure 1: Process of evolving the configurations for an MTD

3. LEVERAGING GENETIC ALGORITHMS
IN MTD

As mentioned in section 2, genetic algorithms are most
useful in a host-level infrastructure MTD. Table 2 is an ex-
ample of what properties would exist in a configuration tar-
geting the host-level infrastructure an Apache web server
system [1]. There are a variety of values that these prop-
erties can have, and these values determine how the system
functions. System properties like those in table 2 are what
attackers look at when performing reconnaissance on a sys-
tem; thus, these are the properties that will be changed by
an MTD.

In an Apache web server the keepAlive parameter tells the
system if it should accept multiple requests from a single
connection. This knowledge is something an attacker could
take into account when trying to find vulnerabilities in a
system.

An MTD needs a large number of secure configurations
that maintain functionality to operate effectively. The num-
ber of configurations that could exist is dependent on the size
of parameters in the system’s configuration. As the number
increases, it becomes difficult to search for good configura-
tions [1]. Genetic Algorithms can search through the space
effectively, and discover secure solutions.

Figure 1 shows how an MTD operates when using a ge-
netic algorithm to create configurations. Configurations, or
chromosomes, go through the genetic operations and are
then run on a virtual machine. Once on the virtual machine,
their feasibility is determined. A feasible configuration will
have attained a certain level of fitness. The measurement of
fitness will be defined in section 3.1.2. If a feasible configu-
ration is found, it is added to a pool of configurations that
will be used on the real system at some point in the future.

Parameter Value Type
.htpasswd Binary
ServerTokens Value from a list
KeepAlive Binary
KeepAliveTimeout Positive integer
FollowSymLinks Binary
IncludesNoExec Binary

Indexes Binary
LimitRequestBody Positive integer

Figure 2: Example of parameters in an Apache sys-
tem [1]

3.1 Evolving Configurations

Genetic algorithms are used to evolve better solutions to
a variety of challenging problems. This section will discuss
specific methods used to create a genetic algorithm (GA)
that will be effective for evolving MTD configurations.

3.1.1 Scoring: Measuring Fitness

In this problem space, the fitness of a single configuration
represents the security of that configuration. This security is
determined by assessing the affects a configuration has on a
systems confidentiality, integrity, and assurance. The confi-
dentiality of a system refers to the protection of information
from those who should not have access to it. Integrity is
defined as the ability of a system to contain consistent and
correct information. Assurance is the availability of infor-
mation and system functionality. Each parameter of the
configuration is scored on how it impacts these aspects of
the system, and the combination of these scores creates the
configurations fitness score [1]. In some MTD systems, the
fitness score is generated by putting the configuration on a
virtual machine and running a set of tests on it. This step is
shown in figure 1 as activating the chromosome on the VM.
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Figure 3: Results of implementing a GA on 14 Apache web server parameters [1]

3.1.2 Selection, Crossover, and Mutation

Selection

Tournament Selection is a selection function that randomly
selects a small number of configurations and compares them
to one another. The best of that tournament is used as a
parent to create the next generation. Multiple tournaments
are performed until the desired number of parents are se-
lected. This number is normally a small subset of the origi-
nal generation, and the goal is to find the best configurations
while maintaining some amount of diversity in the parents.
Diversity is an important aspect in genetic algorithms, and
particularly import in reference to the creation of an MTD.
Diversity in a set of configurations can be defined as how
the variation between configurations. Having good diversity
in the set of parents helps ensure that the algorithm as a
whole is exploring enough of the space. Exploring the space
of the problem is important to a point; however, if too much
exploration is done the algorithm can become useless as it
just finds random solutions at every level of the evolution-
ary process instead of actually evolving the solutions it has
found.

Crossover

After selecting the parents, a crossover function is used on
two parents to create two new children. An example of a
crossover function that could be implemented is called uni-
form crossover. Uniform crossover takes a number of random
properties of each configuration and swaps them. Doing this
would prove useful because property values that have re-
sulted in good configurations have the chance of being com-
bined with other good properties from other configurations.
This will result in making configurations that are filled with
combinations of different secure properties, which is what
an MTD needs to thrive.

Mutation

After children are created from the crossover function they
are mutated. There are not any specific mutation functions
that are useful in an MTD, but the process of randomly
changing a small number of properties is important for the
diversity of the generations created in the future [5].

Repeating the process of selection, crossover, and muta-
tion will eventually result in a generation that contains con-
figurations that are sufficiently fit and secure. Once config-
urations are found and rated for fitness, a small selection of
the best will be tested by the system. If they are fit enough
to be used by the production system they will be put into a
pool of potential configurations that the MTD can use, and
the evolution process will continue. The pool of configura-
tions has a specific number of configurations it can contain,
determined by whoever is implementing the system, and if
configurations with higher fitness are discovered then the
worst of the pool will be removed to make room. At some
undisclosed time the MTD will replace the current configu-
ration on the host with a configuration from the pool. This
whole process is shown in figure 1 [1].

3.2 Results of implementing a GA

Figure 3 shows the average population fitness and aver-
age sampled diversity of a genetic algorithm implemented
by Lucas et al [2], which evolved configurations that con-
sisted of 14 Apache web server parameters. The blue line
shows the results of the algorithm, and the red line shows
the results of creating random configurations for each gen-
eration. Part A shows that the genetic algorithm succeeded
in creating more fit, more secure, configurations than was
possible with making random configurations. The configu-
rations created by Lucas et al [2] succeeded in the creation
of usable configurations for an MTD.

3.3 Addressing MTD Challenges

Using genetic algorithms in the way described above effec-
tively reduces the predictability of a moving target system.
A genetic algorithm results in a set of configurations that
have been mutated from a child that was created by ran-
domly crossing two parents from the previous generation.
The configurations that exist in the final generation are not
predictable. Genetic algorithms tend to find solutions that
are strange in some way due to the randomness the sys-
tem creates. The solutions that are found will be secure
and maintain system functionality, but will not be what an
attacker expects a normal configuration to look like.

Another benefit of using a moving target defense that
leverages genetic algorithms is that the evolutionary process
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Figure 4: Results of implementing a fitness decay algorithm [3]

does not need to stop once the system being protected is live.
This means that configurations do not need to be reused or
stored for long periods of time as new configurations are al-
ways being created. Attackers of this kind of system will
not know what to expect, nor will they be able to find the
configurations before they are implemented. Consequently,
genetic algorithms help remedy the problem of predictability
in MTD, and increase security through obscurity.

Using common genetic algorithms helps combat the chal-
lenge of predictability, but the genetic algorithm must be
implemented in a way that ensures diversity to stay unpre-
dictable as well as address other challenges [6]. In Figure
3 part b the average sample diversity is shown. Again, the
red line represents random creation of configurations and
the blue line represents the genetic algorithm. Diversity
was calculated with what is referred to as the hamming dis-
tance. Hamming distance is calculated by comparing two
sets of values that are the same length. Each differing value
increases the hamming distance by one; therefore, the ham-
ming distance of configurations shows how many parameters
in the configuration are different from the configuration it
is being compared against. The diversity of the configura-
tions decreases significantly throughout the generations of
the evolutionary process, which could negatively impact the
usefulness of the MTD, specifically in regards to its coverage.

4. INCREASING DIVERSITY

As shown in the above section, it is possible for gener-
ations to converge on a small subset of configurations. If
the generations lose their diversity less unique configurations
are made, and it becomes easier for an attacker to predict
what configurations may be used in the future. Another
weakness of less diverse generation is that the coverage of
the MTD can be reduced. If configurations are too similar,
fewer properties are actually being made dynamic when the
configuration of the host is changed. One way to remedy
this problem is to increase diversity by implementing what

is called a fitness decay algorithm [3].

4.1 Fitness Decay Algorithm

In order to increase diversity Crouse et al [3] implemented
a fitness decay algorithm that systematically reduces the fit-
ness of chromosomes, or configurations, in the pool of con-
figurations being used by the MTD. The reduction in fitness
over iterations of the MTD cycle allows for configurations
that are unique to be added to the pool. This will stop the
pool of potential configurations from stagnating.
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Figure 5: Average vulnerability score of the pool
over time [3]

4.1.1 Results of implementing the fitness decay algo-
rithm

Figure 4 shows what happens to the diversity of the sys-
tem when a fitness decay algorithm is included in the genetic
algorithm. The graph on the left describes the temporal di-



versity with three different decay strategies while the right
shows average spatial diversity. This particular study was
performed on a distributed system containing 60 different
computers of the same type. Temporal diversity is measured
by the hamming distance of the new configuration compared
against the last configuration that was running on the ma-
chine. The spatial diversity is measured by the average ham-
ming distance between all 60 configurations that are running
on the machines during one cycle of the MTD [6]. The best
of both graphs is achieved when configurations have their
fitness decayed every ten iterations. This shows that the
diversity, or hamming distance, is the highest when configu-
ration’s fitness is decayed every 10 generations. Decreasing
the fitness of configurations in the pool will allow for new
configurations that have not been used by the system before
to enter the pool and be used by the host.

Figure 5 shows the average vulnerability score of the con-
figurations in the same pool shown in figure 4 after imple-
menting the fitness decay algorithm. The vulnerability score
in this particular study is the inverse of the fitness score de-
scribed in section 3. The smaller the vulnerability score a
configuration has the more secure it is. This graph shows
that even though we decay the fitness of configurations in the
pool the average vulnerability score does not differ from not
decaying the fitness. This shows that using the fitness de-
cay algorithm properly increases the diversity of the system
while also maintaining system security and functionality.

4.2 Addressing MTD Challenges

Since the fitness decay algorithm ensures diversity within
generations, the final generation should include configura-
tions that are secure and explore the space sufficiently enough
that the system’s attack surface is covered. The average
hamming distance represents the average number of dif-
ferences in parameters between chromosomes in the pool.
This implies that if the hamming distance is larger, then
a larger number of parameters will be changed when the
MTD changes what configuration is on the host. A larger
number of changes between each change will ensure that the
attack surface the parameters impact will be properly cov-
ered. With the attack surface covered by the possible con-
figurations it will be challenging for attackers to find static
components they can exploit.

Unpredictability can be addressed using normal genetic
algorithms, and coverage can be addressed by using a fitness
decay algorithm. Timeliness is a hard problem to address,
and has yet to be solved by researchers in the moving target
field. Knowing when to change a systems configuration is
dependent not only on the system, but also on the type of
attack and the skill of the attacker. Timeliness may not be
solved currently by the use of genetic algorithms, but future
research may find interesting ways to make an MTD even
better.

5. CONCLUSION

Moving target defense creates security in a system by mak-
ing it change itself throughout time. Attackers of a system
that implements an MTD will not know what they are at-
tacking, and the time they spend trying to research and
understand their target will be wasted. Genetic algorithms
can create configurations that address the challenges of un-
predictability and coverage, and the challenge of timeliness
is an area of future work for researchers in the field. The

genetic algorithm described in this paper, created by Lucas
et al [2], is a simple genetic algorithm, but it is effective in
the creation of secure configurations that can be used by an
MTD. The fitness decay algorithm implemented by Crouse
et al [3] succeeded in increasing the diversity of configura-
tions created by genetic algorithms in a way that increases
the average coverage of the system. Moving target defenses
protect systems not by decreasing their vulnerabilities, but
by making those vulnerabilities harder to find and exploit.
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