
Using Map-Reduce Methods to Process Large Data

Tyler J. Lemke
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

lemke164@morris.umn.edu

ABSTRACT
One of the main concerns that arise when performing data
analysis is performance. One method to decrease analysis
time is Map-Reduce. Map-Reduce combines two common
procedures map and reduce to parse through large amounts
of data at minimal cost. By using different types of Map-
Reduce methods, we can maintain optimal performance.
In this paper, I will talk about different ways to imple-
ment Map- Reduce to improve data transfer and analysis.
Some examples of methods discussed in this paper about
include Invisible Loading/Hadoop jobs and Parallel DBMS
with RVFs.

Keywords
Data Management Systems, Information Systems, Apache
Hadoop, Parallel and Distributed DBMSs, User Defined Func-
tions, Relation Valued Function

1. INTRODUCTION
Since the introduction of computers, it has been increas-

ingly important to be able to store their information safely
and be able to access, transfer and analyze their stored data.
Over the years, methods developed to improve on those ele-
ments have increased analysis time by nearly ten fold which
is shown in section 4.2. One method that is currently being
used to help this situation is Map-Reduce. Map-Reduce is a
method that works with key-value pairs within a database.
It does this with a map function which parses over the data
and finds each individual identifying key and value known as
the key-value pair. It then rearranges these key-value pairs
so that identical keys are grouped together. Then a reduce
function is called to condense the grouped pairs into a single
pair that calculates the number of instances of a specific key.
This process is efficient when it comes to transferring and
processing data because it can process large amount of data
concurrently. Using Map-Reduce allows the user to parse
and process massive amounts of data while being able to

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2016 Morris, MN.

achieve that in less time. Map-Reduce can take on many
different forms to allow for different adaptations.

There are different ways to utilize Map-Reduce within
a database system. One way discussed in section 2.4 is
Google’s Apache Hadoop Distributed File System or Hadoop
for short. Hadoop’s framework uses Map-Reduce at its core
and speeds processing of data in a database system at low
cost. Hadoop is a very versatile system that can be used
for many different needs. Section 3.1 discusses a specific
framework built around Hadoop called Invisible Loading.
Invisible Loading maintains fast processing speed while also
exhibiting high scalability and usability.

Another way to utilize the Map-Reduce framework is with
parallel databases. Discussed in section 2.3 and section 3.2
are the background of parallel DBMS and the combination
of Map-Reduce and parallel DBMSs respectively. These sec-
tions talk about how the parallel databases work differently
than normal database structures and what it takes to ma-
nipulate the databases in order to apply the benefits of both
Map-Reduce and parallel databases into a single process.

2. BACKGROUND

2.1 DBMS Concepts
DBMS ’s or Database Management Systems are software

applications that work directly with a user and a database
to process and analyze data. These allow for easier manip-
ulation and processing of a database’s data. Some popular
DBMSs include MySQL, Oracle, and NoSQL. These appli-
cation are designed with the intent to be able to define,
create, query, update and administrate a certain database
model. [9] For example, MySQL is designed to work with
the relational database model SQL. By having a DBMS,
users are able to control and manage databases with higher
efficiency and accuracy. Users are able to control and work
with a set of data through the use of schema. A schema
is a structure that represents the organization of the data
and how the database is constructed. Without a schema,
the DBMS would not know how to access the data in the
database and would likely be unable to process any data.
[10] Data in a database is often entered via key-value pairs.
Key-value pairs are constructed of an identifying key and
the value behind it. The way that the database stores the
data is through a tuple. Data in a database is stored in a
table, also known as a relation. Each row of the table is a
tuple and each column of the table represents a value, other-
wise known as an attribute. When multiple tuples are being
analyzed at the same time, that means that multiple rows



of a table are being pulled and looked at.

Algorithm 1 Basic Map Reduce

1: procedure Map(String key, String value)
2: //key: document name
3: //value: document contents
4: for each word w in value: do
5: EmitIntermediate(w, ”1”);
6: end for
7: end procedure
8: procedure Reduce(String key, Iterator values)
9: //key: a wordsimultaneously

10: //values: a list of counts
11: int result = 0;
12: for each v in values: do
13: result += ParseInt(v);
14: end for
15: Emit(AsString(result));
16: end procedure

2.2 SQL Queries
The way that DBMSs can work with a database is through

relational queries. The most used relational database lan-
guage and the one that is used by some research referenced
in this paper is SQL. The way that a user interacts with
with SQL is through the use of a command-line like ar-
gument called a query. The most common query used is
the SELECT query. The select statement retrieves data
rows from one or more database tables and views. Its syn-
tax is either SELECT column name, column name, ...
FROM table name; where it is retrieving specific identify-
ing columns from a database table, or SELECT * FROM
table name; where * refers to all data from the specified ta-
ble. Another common query used is JOIN. Join combines
tuples from two or more tables and can either create a new
table of the joined data or use the data set in another query
as is.

A schema is used to specify the structure of data that is
stored in an SQL model. The schema in an SQL database
is required to be specified in advanced, whereas in a NoSQL
structured database the schema is derived dynamically.

2.3 Parallel DBMS
When a DBMS utilizes methods that perform on multiple

cores at the same time, it is considered a Parallel DBMS
or PDBMS. In parallel DBMS, tables are partitioned over
multiple nodes in a cluster. The system then uses optimiz-
ers that translate SQL commands into a query plan ran over
multiple nodes. There are different kinds of parallel DBMSs
that can be divided into two different architecture groups.
The architecture I will be talking about is multiprocessor
architecture.[8] There are several main types of multiproces-
sor PDBMSs that include: shared memory that has multiple
processors sharing the same memory space, shared disk that
has multiple nodes that have their own memory, but share
a mass storage network. The last type is shared nothing,
where there are many nodes and each node has its own mass
storage network along with its own main memory.Figure 2
shows how each node communicates with the central net-
work and how each node in the different formats cooperates
with memory and mass storage areas.

Interconnection Network

Shared Memory Shared Disk

Shared Nothing

NodeNode NodeNode

Node Node Node Node
Memory

Memory Memory Memory

Node

Node

Node

Node

Memory

Memory

Memory

Memory

Interconnection Network

Memory

Interconnection Network

Figure 1: Different types of multiprocessor
PDBMSs

2.4 Map-Reduce and Hadoop
On the top level, Map-Reduce is a programming model

and an associated implementation of user defined functions
(UDF) for processing and generating large data sets that are
amenable to a variety of nodes. Nodes are either a physi-
cal machine or a virtual machine that are connected to a
server of other nodes. UDF are functions that are provided
by the user of an environment. It is built with the context
that assumes the functions are built into the environment.
[11] Map-Reduce utilizes the two functions: map which per-
forms filtering based on keys, and reduce which performs a
summary operation.

[5] Figure 1 shows a basic Map-Reduce procedure using
the pseudo-code shown in Algorithm 1 on a set of lists of
text. It shows how the program can take potentially large
amount of data in and only process them at a fraction of
the size, resulting in incredibly quick analysis due to simul-
taneously processing small clusters. This sequence of com-
putations allow the parallel processing of clusters with large
data running in parallel tasks that manage all the communi-
cations and data transfers between the system without the
need for user specification. The collection of all these bene-
fits provide the redundancy and fault tolerance that is highly
sought after. These benefits are desirable because they al-
lows the system to not be bogged down by failed jobs or
disappearing nodes. The system either restarts the failed
jobs or assigns the lost jobs to another node in the system.
Typically, when implementations of Map-Reduce are used,
they are multi-threaded. Having a multi-threaded imple-
mentation of Map-Reduce allows the system to process and
analyze massive amount of repetitive data in a fraction of
the time it would have taken as opposed to using traditional
analytic methods.

One implementation of Map Reduce is an open-source
project called Apache Hadoop.[5] Apache Hadoop, or Hadoop
for short, consists of a storage part known as Hadoop Dis-
tributed File System (HDFS) and a module for using Map
Reduce methods. Hadoop processes data very efficiently by



Figure 2: Map-Reduce process on simple text data

splitting files into large blocks of data and distributes those
across multiple nodes that allows multiple Map-Reduce jobs
to be ran simultaneously. When using HDFS, the job can
be broken down into two components, the map and reduce
phases. For Hadoop jobs, the Map task is executed and a
map function similar to the one shown in Algorithm 1 is
performed on an individual split of the data set. If the user
then specifies a reduce function, then each Map task is sorted
on its key across multiple Reduce tasks. The user can also
specify optional configure and close procedures. If there is a
specified configure procedure, it would get processed by the
Map task before the map function. After the map function
is executed on the entire data split, the close procedure is
called. [1, 2, 3]

3. METHODS

3.1 Invisible Loading

3.1.1 Background
When loading large amounts of data into a database, re-

searchers at Yale University noticed that there were unjus-
tifiably high ”time-to-first-analysis”.[2] This means that be-
fore data entering the database system can be processed, it
must first be modeled/schematized, then it has to be trans-
ferred to the storage layer. Lastly, it gets clustered and in-
dexed. [2] Abouzied et. al. believed that they could develop
a procedure that could perform at standard levels, while at
the same time reducing the amount of time taken to process
data. They called their new method Invisible Loading.

When they were in the process of developing invisible load-
ing, they knew they wanted to piggyback on an established
distributed file system due to the large size of data sets. The
system that the team preferred was Google’s distributed file
system, Hadoop. They wanted to implement a Hadoop-style
schema is because Hadoop has great scalability accompa-
nied with a low time-to-first analysis. This allows for data
to be ready for analysis as it is produced, compared to other
DBMS that need data to be loaded before any queries can
be executed on it. [2, 6, 7] When preparing database sys-
tems for data analysis, there is a non-trivial human cost
which includes data modeling and schematizing. This cost

is different from computational costs of copying, clustering
and indexing. One main problem with having the user de-
veloping a schema is that they have to have an in-depth
understanding of the data and its fields, otherwise generat-
ing the schema can be quite difficult. It is often the case that
the user does not have an intimate familiarity with the data
set. For example, a PhD student passing on a simulation
program to a new member, or a scientist needing to analyze
output data from a machine whose manufacturer documen-
tation is unavailable. [2] So it can be important to work in
a schema-free environment where they can write scripts for
the data that they fully understand. That is where Abouzied
et. al. wanted to create a system that allows for minimum
input from the user while maintaining fast analysis times.
The main goals that the team wanted to accomplish were:

(i)The user should not be forced to specify a com-
plete schema, nor be forced to include explicit
database loading operations in Map-Reduce jobs.
(ii) The user should not notice the additional per-
formance overhead of loading work that is piggy-
backed on top of the regular analysis. [2]

3.1.2 Implementation
The main system the team knew that they wanted to build

was incremental loading and then incremental reorganiza-
tion. The incremental loading would load the data bit by
bit, checking along the way is it was partially loaded, when
only part of the data needed has been loaded. Then incre-
mental reorganization would rearrange the now fully loaded
data so that all the tuple identifiers (OIDs) are next to each
other.

The team started by creating the core of the Invisible
Loading system, InvisibleLoadJobBase (IL). IL is an ab-
stract, polymorphic Hadoop job that hides the data loading
processes from the user. By being be abstract, IL requires
the user to implement the processing functions of the map
function, and then configure it like a regular Hadoop job.
Also, by being polymorphic, the IL can dynamically self-
configure to modify its behavior when data migrates from a
file system to the database system. [2]

After they developed the core for the system, their next
objective was to leverage the parsing code within the map
function used for database loading. This meant that they
wanted to be able to inject load statements in between pars-
ing and processing phases. The database is a column-store
system which generates hidden address columns to maintain
mapping from the loaded data and HDFS file-splits. [2]

Another function of an IL job is named the configure func-
tion. Configure first checks to see if there exists an entry for
a particular parser-data set combination. If there is not
one, a SQL CREATE TABLE command is given. If there is
an entry, IL then determines which of its file splits and at-
tributes were loaded in the database. There are two loading
implementations, direct and delayed loading.[2]

Direct loading immediately loads the parsed attributes of
all the tuples as soon as it is parsed whereas delayed loading
only loads the parsed attributes into a temporary memory
buffer where a close command will isanalyticssue an SQL
’COPY’ command to append the data into the database.
For some database systems, delayed loading was found to
be more efficient.

The next part the team wanted to tackle was implement-
ing incrementally loaded attributes with incremental reorga-



nization. They started by developing an incremental merge
sort. The next part is to implement the incremental reorga-
nization. This is done with the aid of two basic tools, address
columns and OIDs. They are used to manage the querying
of columns at different stages and to track the movement of
tuples from their original position due to sorting. All of the
system is managed by following three different rules.

1. If a set of columns are loaded and sorted in the same
order, then they are all positionally aligned with each
other. A simple linear merge suffices when reconstruct-
ing tuples.

2. Columns that are partially loaded have their OIDs in
insertion order. To reconstruct tuples, a join is per-
formed between the address column and the OIDs of
the partially loaded columns.

3. If a column needs to have a different sorting order, then
a copy is created. An address column is generated
to track the movement of tuples from their original
insertion positions to their new sorted positions.[2]

3.1.3 Cases
To best illustrate Invisible Loading with incremental reor-

ganization, the team developed different cases examples of
different queries from two different users: X and Y. Consider
a data set with 3 attributes a, b, c. User X is interested in the
attributes ā, b where ā is the SELECT predicate on a. User
Y is interested in ā, c.[2] They assumed that the file only has
four splits per node, meaning that each machine will only
split its data into four sections to run Invisible Loading on.
Case 0: XXXX-YYYY. Each of the X queries loads the
relevant attributes and sorts on a. After the four X queries,
the a and b attributes are completely loaded. The address
column track the position of the tuples. After the load, a
and b are positionally aligned and therefore their OIDs are
not materialized. Then, the Y query starts to load c. The
first Y query only loads a single partition of c. The OIDs for
column c fall in the same address range as the first loaded
c. After the four Y queries, column c is completely loaded.

Case 1: XX-YYYY-XX. The first two X queries be-
have the same as in Case 0. The next two Y queries will
load only c from the first two splits. Now the c column’s
OID values are materialized and is not positionally aligned
with column a. At the third Y query, a new partition of
a, c is loaded. The newly added split is then sorted and
the first two a’s are merge-split. The rest of the queries are
loaded the same as in Case 0 and all columns are positionally
aligned.

3.2 Parallel DBMS and Map-Reduce

3.2.1 Problems
While Parallel DBMSs are a great tool for the efficient pro-

cessing of large data, and in some areas even out-performs
Map-Reduce methods, some methods for processing large
data have Map-Reduce procedures running inside a Parallel
DBMS model. Parallel DBMS engines get their strengths
through integrated schema management, rich optimization
and adaptive workload management. All of those benefits
are missing from Map-Reduce models. By combining both
of these models, the system benefits by enhancing the miss-
ing parts of Map-Reduce to give it schema management and

optimization as well as utilizing both to give an increase in
data management and general analytic computation. [4]

However, there are some issues that must be dealt with
before the integration of Map-Reduce methods in a PDBMS
model can work properly. One of the issues is that database
systems like SQL offer scalar, aggregate and table functions.
Where scalar and aggregate functions do not return a set,
the table function does but its input is limited to a single-
tuple argument. Since the types of UDF that are being used
are not relational, they lack the generality the is required
to process the analytics applied to a set of tuples rather
than just a single tuple. This issue causes per-tuple pro-
cessing performance penalty.[4] Another problem is hiding
the DBMS’s internal details from the analytic application
developers. [4]

3.2.2 Solutions
Even with the problems that come from combining Map-

Reduce and PDBMS, there are some solutions that can effi-
ciently support it. The first solution is to support Relation-
Valued Functions (RVF) at the SQL level. RVFs are UDFs
that have relation inputs and outputs and can be used for
modeling complex applications defined on entire relations.
This would allow functions like map and reduce to receive
tuple-set arguments and also be able to return tuple-sets, to
allow for more complex computations. [4] Another solution
is to have RVF patterns. The RVF pattern provides a spe-
cific style for applying the RVF to its input relations, which
allows it to be applied to single tuple or an entire relation.
Having multiple RVF patterns is required for interactions
with applications and query processing to be handled prop-
erly.[4] The last solution is to provide an RVF shell API.
This solution divides the RV into two parts: the RVF shell
and the user-function. The RVF shell focuses on the in-
teractions with query processing in parameter passing, as
well as data conversion, data preparation and memory man-
agement. The user-function deals with just the application
logic. In order to shield the DBMS’s internal information
from the RVF developers, a set of RVF shell APIs are im-
plemented. This solutions block the application developers
from the DBMS’s internal details and allow the UDF tech-
nology to be available to them.[4]

3.2.3 Implementation
Implementation of these solutions was done by a team

of researchers at HP Labs and they used both a commercial
and a proprietary parallel database engine to test a k-means
clustering algorithm to intelligently use the RVF based Map-
Reduce computations. The k-means clustering was written
in SQL with UDFs. Although, this implementation revealed
the conventional scalar UDFs cause a performance problem
and will show the need to include RVFs.

The k-means algorithm clusters n objects into k partitions
where k < n. Its objective is to minimize the total intra-
cluster variance.

V =

k∑
i=1

∑
PjεCi

(Pj − µi)
2

where there are k clusters Ci, i = 1, 2, ..., k, and µi is the
center or mean point of all the points PjεCi

We have to consider the SQL expression of k-means for
two-dimension geographic points. For a single iteration, the
initial phase is for each point in the relation Points[x,y,...]



Figure 3: Response time of repeatedly executing se-
lection queries over the attributes a0, a1

to determine the distances to all the centers in the rela-
tion Centers[cid,x,y,...] where it can assign its membership
to the closest center. This results in the relation Nearest-
centers[x,y,cid] where cid is the centerID or its key.

The second phase is to re-compute the set of new centers
based on the average location of member points. [4]In SQL,
these two phases can be expressed as

Query 0: Using conventional scalar UDF

SELECT Cid, avg(X) AS cx, avg(Y) AS cy FROM

(SELECT P.x AS X, P.y AS Y, (SELECT cid FROM Centers

C WHERE dist(P.x,P.y,C.x,C.y) = (SELECT MIN(dist(P2.x,

P2.y,C2.x,C2.y)) FROM Centers C2, Points P2 WHERE

P2.x=P.x AND P2.y=P.y)) AS Cid FROM Points P)

GROUP BY Cid:

When the above query is ran on a parallel database, it
starts with a set of cluster centers and executes them in
Map-Reduce style:

Map: Takes every point in the set and identifies the center
it is closest to and assigns the point to that cluster.

Reduce: For every cluster, determines the geographic mean
of all points in the cluster and makes that point the new cen-
ter.

Since the limitations of the current UDFs does not allow
the UDF to receive the entire Centers relation as an input
argument, this means that the Centers relation is not cached
on every point but instead has to be retrieved for every point.
This causes a relation fetch overhead that requires the need
for RVFs.

With the inclusion of RVFs, we can now have queries

Figure 4: RVF out-performing Scalar UDF

that are made up of other relational operators or even sub-
queries. Queries can be shown as

SELECT * FROM RV F1(RV F2(Q1, Q2), Q3);
where Q1, Q2, Q3 are queries. Now, we can update the

SQL query to fit the fixed model.
Query 1: RVF with invocation pattern

SELECT Cid, avg(X) AS cx, avg(Y) AS cy FROM

(SELECT p.x AS X,p.y AS Y, nearest_center_rvf2 (

p.x,p.y,"SELECT cid,x,y FROM Centers") AS

Cid FROM Points p)

GROUP BY cid;

4. RESULTS

4.1 Testing with Invisible Loading
Abouzeid et. al. loaded and sorted a data set into a

database system using the methods that are described in
Table 1. Their testing environment was a data set consisting
of five integer attributes with around 100 million data tuples.

The first experiment is modeling the scenario where a user
is processing two attributes (a0, a1) from a Hadoop file sys-
tem. The user filters the tuple by a selection on a0. Figure
3 shows the response time as a sequence of range-selection
jobs are executed. [2]. By looking at Figure 3, it can be seen
that both methods of Invisible Loading achieved their lowest
response times in significantly fewer job sequences compared
to the standard Map-Reduce and the SQL pre-loads.

4.2 Testing with Parallel DBMSs
After developing their RVF supported parallel DBMS,

Chen et. al. wanted to test their build against the conven-
tional scalar UDF as well as a Hadoop Map-Reduce plat-
form. The test environment is a parallel database cluster
with 8 server node and 16 disks. The test query was

INSERT INTO centers (SELECT(SELECT max(iter)+1 FROM



Table 1: Loading Methods[2]
Method Description
SQL Pre-Load Pre-load the entire data set into the database using SQL’s ’COPY INTO’ command.

Data is sorted after loading using ’ORDER BY’.
Incremental Reorganize (all) Load the entire data set into the database system upon its first access, but unlike

Pre-load above, do not immediately sort the data. Instead, data is incrementally
reorganized as more queries access the data

Incremental Reorganize (sub-
set)

Same as Incremental Reorganize (all), except that only those attributes that are
accessed by the current Map Reduce job are loaded

Invisible Loading (all) The invisible loading algorithm described in section 3.1, except that all attributes
loaded into the database(instead of the subset accessed by a particular Map Reduce
job)

Invisible Loading (subset) The complete invisible loading algorithm described in section 3.1
Map Reduce Process the data entirely in Hadoop without database loading or reorganization. This

is the performance the user can expect to achieve if data is never loaded into a database
system.

centers) iter, cid, cx, cy FROM SELECT cid, avg(x)

AS cx, avg(y) AS cy FROM (SELECT x, y,

nearest_center_rvf2(p.x, p.y, LatestCenters) AS

cid FROM Points p)

GROUP BY cid;

LatestCenters is defined by “SELECT * FROM Centers
WHERE itr=MAX(itr)”. They compared that to the
scalar UDF by replacing the nearest center rvf2 with the
dist(p.x,p.y,c.x,c.y) function from query 0. They ran the
two queries with different data loads that ranged from 1
to 200 million data points and had 2 dimensions and 100
centers.

By looking at Figure 4, it is clear that using RVF out-
performs the conventional scalar UDF by a factor of 20x
when the data set was 200 million points. The test also
shows that the solution scales linearly from 1 million to 200
million, which is not achievable with the conventional client
programming. [4]

5. CONCLUSIONS
After reviewing and discussing the different ways to im-

plement Map-Reduce programs into database systems and
looking at the experiments and tests that were done com-
paring different methods, I have shown that the benefits of
using Map-Reduce jobs to enhance data transfer and analy-
sis show great potential. When looking at the Comparisons
between the Invisible Loading tests and the PDBMS tests
using RVF, nearly all results show a clear benefit from uti-
lizing Map-Reduce

Acknowledgments
I would like to thank my Advisers Peter Dolan and Elena
Machkasova for their feedback and guidance throughout the
research as well as Brian Goslinga for additional feedback.
I would also like to thank my friends and family for their
support.

6. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. Hadoopdb: An
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB
Endow., 2(1):922–933, Aug. 2009.

[2] A. Abouzied, D. J. Abadi, and A. Silberschatz.
Invisible loading: Access-driven data transfer from
raw files into database systems. In Proceedings of the
16th International Conference on Extending Database
Technology, EDBT ’13, pages 1–10, New York, NY,
USA, 2013. ACM.

[3] F. Chen and M. Hsu. A performance comparison of
parallel dbmss and mapreduce on large-scale text
analytics. In Proceedings of the 16th International
Conference on Extending Database Technology, EDBT
’13, pages 613–624, New York, NY, USA, 2013. ACM.

[4] Q. Chen, A. Therber, M. Hsu, H. Zeller, B. Zhang,
and R. Wu. Efficiently support mapreduce-like
computation models inside parallel dbms. In
Proceedings of the 2009 International Database
Engineering &#38; Applications Symposium, IDEAS
’09, 2009.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[6] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The
performance of mapreduce: An in-depth study. Proc.
VLDB Endow., 3(1-2):472–483, Sept. 2010.

[7] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’09, pages 165–178, New York, NY, USA,
2009. ACM.

[8] Wikipedia. Parallel database — wikipedia, the free
encyclopedia, 2015. [Online; accessed 22-March-2016].

[9] Wikipedia. Database — wikipedia, the free
encyclopedia, 2016. [Online; accessed 20-March-2016].

[10] Wikipedia. Database schema — wikipedia, the free
encyclopedia, 2016. [Online; accessed 4-April-2016].

[11] Wikipedia. Mapreduce — wikipedia, the free
encyclopedia, 2016. [Online; accessed
29-February-2016].


