
Parallel BVH Construction for Real-Time Ray Tracing

Aaron Lemmon
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

lemmo031@morris.umn.edu

ABSTRACT
The rise in popularity of interactive graphical applications,
such as video games, has motivated innovations in render-
ing 3D scenes in real time. The ray tracing technique is
well-suited for generating realistic images of scenes that fea-
ture shadows, reflections, and refractions. Historically, ray
tracing has been too slow for real-time applications since it
is computationally intensive. However, ray tracing perfor-
mance can be greatly improved by using the bounding vol-
ume hierarchy (BVH) acceleration data structure to store
scene information for each frame. Researchers have strived
to minimize the combined time of both constructing and us-
ing BVHs for ray tracing. This paper provides an overview
of ray tracing with BVHs and presents a recently developed
method for constructing them in parallel on a GPU.

Keywords
computer graphics, ray tracing, parallel computing, bound-
ing volume hierarchies, Morton codes

1. BACKGROUND
In 3D computer graphics, objects are made up of a collec-

tion of primitives, which are usually simple geometric shapes
like triangles. A 3D scene consists of all the primitives that
construct it. Figure 1 depicts a scene with a dolphin that
clearly shows the component triangles. In order to depict a
scene on a display, the pixels of the display must be colored
to create an image. A technique called ray tracing can be
used to color the pixels in a way that can accurately por-
tray shadows, reflections, and refractions in a scene [4]. Ray
tracing achieves this by determining how light travels in a
scene from the light sources, reflecting or refracting off ob-
jects, and meeting the viewer [6]. Figure 2 shows the high
degree of photorealism that ray tracing can achieve.

Since many rays from a light source may not ultimately
reach the viewer, it is more practical to start from the viewer
and trace paths of light backward. Figure 3 shows that for
every pixel on a display, a ray is traced from the viewpoint

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2016 Morris, MN.

Figure 1: A simple scene containing a dolphin con-
structed from triangle primitives [7].

through the pixel and into the 3D scene. When a ray in-
tersects with the first primitive in its path it recursively
generates more rays in directions that will contribute to an
appearance of reflections, refrations, or shadows [6]. While
ray tracing can create highly realistic images, the process of
tracing a large number of rays for a 3D scene with many
primitives on a high resolution display can take a long time.

Ray tracing a single frame of a 3D scene can involve test-
ing for intersections of billions of rays against millions of
primitives [2, 5]. To speed up this process, acceleration data
structures can be used to organize the primitives by their
location so that only the primitives near a given ray need
to be checked for intersection with that ray. Acceleration
data structures usually take the form of a tree: the top
node represents the entire 3D volume of the scene and the
children of every node divide up the volume of their par-
ent node into subsections. Although these acceleration data
structures speed up ray intersection testing, the time it takes
to build these trees can negatively impact performance [1].
This is especially apparent in scenes with moving objects
since the acceleration data structures need to be rebuilt or
updated to accurately reflect the new locations of objects [5].

The research discussed here addresses methods for build-
ing and maintaining acceleration data structures in a way
that minimizes the combined time spent constructing the
data structure and using it to test for ray intersections.
In particular, parallel computing on the graphics processing
unit (GPU) can decrease the time spent building an acceler-
ation data structure. Efficient acceleration data structures
allow for ray tracing scenes with motion in real time.



Figure 2: A ray traced scene featuring shadows
on the wall and beneath the glasses, reflections on
the glossy surfaces of the glasses, and refractions
through the glass stems and ice cube [9].

Light Source

Scene Object

Shadow Ray
View Ray

Image
Camera

Figure 3: For each pixel of the image plane, a ray is
cast through and tested for intersection with objects
in the scene. When intersections occur, the angle
of reflection is calculated and a new ray is sent out.
Eventually, if a ray intersects with a light source, the
color information propagates back to the pixel [2, 9].

2. ACCELERATION DATA STRUCTURES
If primitives of a scene are stored in a data structure that

identifies their location in the scene, then a ray only needs
to check for intersections with objects located in the parts of
the scene the ray is passing through. This can drastically im-
prove the performance of intersection testing for each ray [9].

A way to make intersection tests easier to calculate is to
surround primitives with bounding boxes. A bounding box
is a box that completely contains its contents as tightly as
possible. A common approach is to use axis-aligned bounding
boxes (AABBs), which are aligned with the axes of the scene
as a whole. It is much simpler to test for ray intersections
with AABBs than with the items they contain. If a ray
does not intersect with an object’s AABB, then it cannot
intersect with the object itself. However, if it does intersect
with the AABB, then a more costly check must be made
to test for intersection with the contained object. Overall,
using AABBs can reduce the cost of testing for intersections
since a ray misses many more objects than it hits.

AAAA
BBBB CCCC

AAAA

BBBB CCCC

AAAA
BBBB CCCC

AAAA

BBBB CCCC

Figure 4: Top: A 2D scene with rectangles as bound-
ing boxes. Bottom: One possible BVH configuration
for the 2D scene. Note that each internal node has
exactly two children and that objects that are close
in the scene are also close in the BVH tree [8].

Bounding volume hierarchies (BVHs) extend the idea of
AABBs to a binary tree data structure as shown in Fig-
ure 4. The root node of a BVH is an AABB that surrounds
all the primitives in the scene. Every parent node has two
child nodes, each of which is an AABB that surrounds its
share of the primitives surrounded by the parent node. By
continually separating volumes into smaller volumes, it be-
comes possible to group close primitives together [5]. The
lower nodes on the tree give more precise location infor-
mation than the higher nodes. The leaves of the tree are
AABBs that surround a single primitive [8]. As opposed to
other types of acceleration data structures, BVHs define the
volumes by the objects they contain rather than splitting
volumes and then determining which objects should go in
each node [5].

Searching for a ray intersection with objects in a BVH
occurs in a top-down manner. First, the ray is tested against
the root of the tree to check if it intersects with the scene.
If it does, then both of the root’s children are checked for
intersection. If the ray misses a child node, then the entire
subtree rooted at that node can be eliminated from the rest
of the search, since the objects contained within the node
will also not intersect. However, in the case that the ray
intersects both children, the search must continue down both
subtrees [2]. In the best-case scenario, where that does not
happen, the number of checks will be approximately the
log of the number of total primitives. Ray tracing with a
BVH structure can therefore greatly reduce the number of
intersection checks performed per ray [8].



3. BVH CONSTRUCTION
In order to speed up the construction of BVHs for real-

time ray tracing, Tero Karras [3] has developed a method
based upon earlier work by Garanzha et al. [1] for construct-
ing an entire BVH tree in parallel on a GPU. The method
follows a series of four main steps. The method first as-
signs a value called a Morton code to each primitive based
upon its location in the scene. The Morton codes are then
sorted. Next, a binary radix tree (defined in Section 3.2.1) is
constructed in parallel, which arranges close primitives near
each other in the tree. The last step fits an AABB around
the contents of each node in the binary radix tree in parallel
to form the final BVH [3]. The next sections will cover each
of these steps in more detail.

3.1 Morton Codes
The location of each primitive in the scene can be rep-

resented by the x, y, and z coordinates of the center of its
AABB [4, 5]. The Morton code of a primitive combines
the coordinates into a single value by interleaving the bi-
nary representations of the x, y, and z coordinates [1]. A
Morton code has the form X0Y0Z0X1Y1Z1 . . . where the x
coordinate is represented as the binary digits X0X1X2 . . .,
and similarly for the y and z coordinates [3].

Figure 5 shows a two dimensional scene area with the
Morton codes of each coordinate location. The lowest valued
Morton code appears in the upper-left corner of the scene
where both coordinates are zero. The zigzag pattern on the
image shows the sequence of increasing Morton codes, which
ultimately ends with the highest value in the lower-right
corner. Every primitive in the scene is assigned a Morton
code based on its location, and each code (paired with a
reference to its primitive) is added to an array. Primitives
that share a common location will be assigned the same
Morton code specifying that location, while Morton codes
for empty areas of the scene will be unused [3, 4].

Note that in Figure 5 all codes that start with a 0 bit
are located in the upper half of the scene, and within that
section all codes that have a 0 as the second bit are located
on the left half of that section [1]. This property of Mor-
ton codes allows primitives that are near each other to have
long common prefixes between their Morton codes, which is
important for the binary radix tree construction. The array
of Morton codes is sorted in order to group the codes by
common prefixes [4]. Note that the actual primitives in the
scene are not moved.

3.2 Binary Radix Tree Construction

3.2.1 Binary Radix Tree Fundamentals
The array of sorted Morton codes can be thought of as

a set of n bit string keys k0, . . . , kn−1 where n represents
the number of primitives in the scene. A binary radix tree
organizes the keys under a tree structure where the leaves
are the keys and the internal nodes represent common bi-
nary prefixes of the keys. Figure 6 shows an example of the
binary radix tree for a set of eight binary keys, which are
the Morton codes of primitives in a scene. Each key is a leaf
node, and each internal node represents the longest common
prefix shared by all the keys under it. These prefixes are al-
ways shorter than the full Morton codes, and longer prefixes
represent a narrower set of locations in the scene. Every
internal node always has exactly two children: the left child
has the common prefix of the its parent followed by a 0 bit,

y:y:y:y: 0000
000000000000

1111
001001001001

2222
010010010010

3333
011011011011

4444
100100100100

5555
101101101101

6666
110110110110

7777
111111111111

000000000000000000000000 000000000000000000001111

000000000000000011110000 000000000000000011111111

000000000000111100000000 000000000000111100001111

000000000000111111110000 000000000000111111111111

000000001111000000000000 000000001111000000001111

000000001111000011110000 000000001111000011111111

000000001111111100000000 000000001111111100001111

000000001111111111110000 000000001111111111111111

000011110000000000000000 000011110000000000001111

000011110000000011110000 000011110000000011111111

000011110000111100000000 000011110000111100001111

000011110000111111110000 000011110000111111111111

000011111111000000000000 000011111111000000001111

000011111111000011110000 000011111111000011111111

000011111111111100000000 000011111111111100001111

000011111111111111110000 000011111111111111111111

111100000000000000000000 111100000000000000001111

111100000000000011110000 111100000000000011111111

111100000000111100000000 111100000000111100001111

111100000000111111110000 111100000000111111111111

111100001111000000000000 111100001111000000001111

111100001111000011110000 111100001111000011111111

111100001111111100000000 111100001111111100001111

111100001111111111110000 111100001111111111111111

111111110000000000000000 111111110000000000001111

111111110000000011110000 111111110000000011111111

111111110000111100000000 111111110000111100001111

111111110000111111110000 111111110000111111111111

111111111111000000000000 111111111111000000001111

111111111111000011110000 111111111111000011111111

111111111111111100000000 111111111111111100001111

111111111111111111110000

x:x:x:x: 0000 1111 2222 3333 4444 5555 6666 7777
000000000000 001001001001 010010010010 011011011011 100100100100 101101101101 110110110110 111111111111

111111111111111111111111

Figure 5: Morton codes for each location in a 2D
scene. Notice that each Morton code is made by
interleaving the bits of the x (blue) and y (red) co-
ordinates for its location [10].

and the right child has the same common prefix but followed
by a 1 bit [3]. As an example, the left child of the root in
Figure 6 has the prefix “00”, thus every key under its left
child begins with “000” and every key under its right child
begins with “001”. Since every internal node has exactly two
children, a binary radix tree with n leaf nodes will always
have exactly n− 1 internal nodes [5].

Every key in a binary radix tree must be unique, but du-
plicate Morton codes could exist if the primitives are ex-
tremely close. To ensure uniqueness, the binary represen-
tation of each key’s index in the array can be concatenated
onto the end of the key. These concatenations do not need to
be stored, but can be performed as needed when comparing
identical keys [3]. For example, if two keys both have the
Morton code “010” and they are stored at indices (in binary)
000 and 001, then the index concatenation will result in the
unique values “010000” and “010001”.

3.2.2 Binary Radix Tree Properties
In order to create every internal node of the binary radix

tree construction in parallel, it must be possible to deter-
mine three properties about a node. These properties in-
clude the range of keys that a node covers, the length of the
longest common prefix of those keys, and what the node’s
children are. Additionally, these must be determined with-
out depending on the work done in any other internal nodes
since all the nodes will be working in parallel. This section
will cover the three important properties of an internal node
and Sections 3.2.3 and 3.2.4 will discuss the binary radix tree
construction.

The keys covered by an internal node can be represented
as a linear range [i, j]. Using Figure 6 as an example, the
root node covers keys 0 through 7, so it can be represented
as the range [0, 7]. Its left child can be represented as [0, 3]
and its right child as [4, 7].



Karras / Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees

Figure 1: Performance of BVH hierarchy generation for
Stanford Dragon (871K triangles). The y-axis corresponds
to millions of primitives per second and the x-axis to the
number of parallel cores relative to GTX 480. The solid red
line indicates the fastest existing method by Garanzha et
al. [GPM11], which is dominated by the top levels of the
tree where the amount of parallelism is very limited. Our
method, indicated by the dotted green line, parallelizes over
the entire tree and scales linearly with the number of cores.

where the x coordinate of the point is represented as
0.X0X1X2 . . ., and similarly for y and z coordinates. The Mor-
ton code of an arbitrary 3D primitive can be defined in terms
of the centroid of its axis-aligned bounding box (AABB). In
practice, the Morton codes can be limited to 30 or 63 bits in
order to store them as 32-bit or 64-bit integers, respectively.

The algorithm for generating BVH node hierarchy was
subsequently improved by Pantaleoni and Luebke [PL10]
and Garanzha et al. [GPM11]. Garanzha et al. generate one
level of nodes at a time, starting from the root. They process
the nodes on a given level in parallel, and use binary search
to partition the primitives contained within each node. They
then enumerate the resulting child nodes using an atomic
counter, and subsequently process them on the next round.

Since these methods are targeted for real-time ray tracing,
they are each accompanied with a high-quality construction
algorithm to allow different quality vs. speed tradeoffs. The
idea is to use the high-quality algorithm for a relatively small
number of nodes near the root, and the fast algorithm for the
rest of the tree. While we do not explicitly consider such
hybrid methods in this paper, we believe that our approach
is general enough to be combined with any appropriate high-
quality algorithm in the same fashion.

Zhou et al. [ZGHG11] also applied the idea of using Mor-
ton codes to construct octrees in the context of surface recon-
struction. Instead of generating the hierarchy in a top-down
fashion, they start with the leaf nodes and perform a series of
parallel compaction operations to determine their ancestors,
one level at a time.

Binary radix trees. Given a set of n keys k0, . . . ,kn�1
represented as bit strings, a binary radix tree (also called a
Patricia tree) is a hierarchical representation of their com-
mon prefixes. The keys are represented by the leaf nodes,
and each internal node corresponds to the longest common
prefix shared by the keys in its respective subtree (Figure 2).

Figure 2: Ordered binary radix tree. Leaf nodes, numbered
0–7, store a set of 5-bit keys in lexicographical order, and
the internal nodes represent their common prefixes. Each in-
ternal node covers a linear range of keys, which it partitions
into two subranges according to their first differing bit.

In contrast to a prefix tree, which contains one internal node
for every common prefix, a radix tree is compact in the sense
that it omits nodes with only one child. Therefore, every bi-
nary radix tree with n leaf nodes contains exactly n� 1 in-
ternal nodes. Duplicate keys require special attention—this
is discussed in Section 4.

We will only consider ordered trees, where the children
of each node—and consequently the leaf nodes—are in lexi-
cographical order. This is equivalent to requiring that the se-
quence of keys is sorted, which enables representing the keys
covered by each node as a linear range [i, j]. Using d(i, j)
to denote the length of the longest common prefix between
keys ki and k j, the ordering implies that d(i0, j0) � d(i, j)
for any i0, j0 2 [i, j]. We can thus determine the prefix cor-
responding to a given node by comparing its first and last
key—the other keys are guaranteed to share the same prefix.

In effect, each internal node partitions its keys according
to their first differing bit, i.e. the one following d(i, j). This
bit will be zero for a certain number of keys starting from ki,
and one for the remaining ones until k j. We call the index of
the last key where the bit is zero a split position, denoted by
g 2 [i, j�1]. Since the bit is zero for kg and one for kg+1, the
split position must satisfy d(g,g+1) = d(i, j). The resulting
subranges are given by [i,g] and [g + 1, j], and are further
partitioned by the left and right child node, respectively.

In the figure, the root corresponds to the full range of keys,
[0,7]. Since k3 and k4 differ at their first bit, the range is split
at g = 3, resulting in subranges [0,3] and [4,7]. The left child
further splits [0,3] at g = 1 based on the third bit, and the
right child splits [4,7] at g = 4 based on the second bit.

3. Parallel Construction of Binary Radix Trees

A naïve algorithm for constructing a binary radix tree would
start from the root, find the first differing bit, create the child
nodes, and process each child recursively. This approach is
inherently sequential—even though we know there are go-
ing to be n�1 internal nodes in the end, we have no knowl-

c� The Eurographics Association 2012.

34

Figure 6: An ordered binary radix tree. There are
eight leaf nodes containing 5-bit keys which appear
in lexicographical order. Each internal node covers
a linear range of keys with a common prefix dis-
played directly beneath the node. The range of keys
covered by an internal node is partitioned into two
subranges according to their first differing bit; these
two subranges are represented by the two children
of the internal node [3].

The length of the longest common prefix between two
keys, ki and kj , is denoted by δ(i, j). For example, the
longest common prefix between key 0 and key 3 in Figure 6
is “00”, which has a length of two digits. So δ(0, 3) is 2.

The prefix for each internal node can be determined by
solely inspecting the first key and last key in the node’s key
range. This is because all keys between the first key and
last key will also share the same prefix since all keys are in
lexicographical order [3]. As an example, the left child of the
root in Figure 6 covers keys 0 through 3. By only looking
at keys 0 and 3, it can be determined that they share the
prefix “00”. All keys between 0 and 3 will also start with
“00”, otherwise they would not fall in that range.

An internal node partitions its range of keys into two sub-
ranges for its children according to the first differing bit
among the keys. For example, the left child of the root in
Figure 6 covers keys 0 through 3 with a common prefix of
“00”. This node will divide its keys among its children based
on the value of the third bit of the keys, since the third bit
comes directly after the common prefix. All keys in the
range with 0 as the third bit will belong under the left child
and the keys with 1 as the third bit will belong under the
right child. The index of the last key where the differing bit
is 0 is called the split position for the node, and is denoted
by γ. If the range of keys covered by a node is [i, j], then
the split position can be anything from i to j − 1. The split
position cannot occur at j, since the differing bit must be a
1 for key j. The split position for the left child of the root in
Figure 6 is 1 because key 1 is the last key in the range [0, 3]
that starts with “000”. The next key must start with “001”.
The subrange [i, γ] represents the range of keys covered by
the left child and the subrange [γ+1, j] represents the range
covered by the right child [3].

For an internal node with range [i, j], the equality δ(γ, γ+
1) = δ(i, j) always holds true and is important for finding
the the split position. In fact, kγ and kγ+1 is the only pair
of adjacent keys in the range where the prefix length of the
two keys is equal to the prefix length of the entire range.
Pairs of adjacent keys to the left of the split position will

Karras / Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees

Figure 3: Our node layout for the tree of Figure 2. Each in-
ternal node has been assigned an index between 0–6, and
aligned horizontally with a leaf node of the same index. The
range of keys covered by each node is indicated by a hori-
zontal bar, and the split position, corresponding to the first
bit that differs between the keys, is indicated by a red circle.

edge of which keys they cover before having processed their
ancestors. Our key insight in enabling parallel construction
is to establish a connection between node indices and keys
through a specific tree layout. The idea is to assign indices
for the internal nodes in a way that enables finding their chil-
dren without depending on earlier results.

Let us assume that the leaf nodes and internal nodes are
stored in two separate arrays, L and I, respectively. We define
our node layout so that the root is located at I0, and the in-
dices of its children—as well as the children of any internal
node—are assigned according to its respective split position.
The left child is located at Ig if it covers more than one key,
or at Lg if it is a leaf. Similarly, the right child is located at
Ig+1 or Lg+1. The layout is illustrated in Figure 3.

An important property of this particular layout is that the
index of every internal node coincides with either its first or
its last key. This follows by construction—the root is located
at the beginning of its range [0,n� 1], the left child of any
internal node is located at the end of its range [i,g], and the
right child is located at the beginning of its range [g+1, j].

Algorithm. In order to construct a binary radix tree, we
need to determine the range of keys covered by each inter-
nal node, as well as its children. The above property readily
gives us one end of the range, and we will show how the
other end can be found efficiently by looking at the nearby
keys. The children can then be identified by finding the split
position, by virtue of our node layout.

Pseudocode for the algorithm is given in Figure 4. We pro-
cess each internal node Ii in parallel, and first determine the
“direction” of its range by looking at the neighboring keys
ki�1, ki, ki+1. We denote the direction by d, so that d = +1
indicates a range beginning at i and d = �1 a range ending
at i. Since every internal node covers at least two keys, we
know that ki and ki+d must belong to Ii. We also know that
ki�d belongs to a sibling node Ii�d , since siblings are always
located next to each other in our layout.

1: for each internal node with index i 2 [0,n�2] in parallel
2: // Determine direction of the range (+1 or -1)
3: d sign(d(i, i + 1)�d(i, i�1))

4: // Compute upper bound for the length of the range
5: dmin d(i, i�d)

6: lmax 2
7: while d(i, i + lmax · d) > dmin do
8: lmax lmax · 2
9: // Find the other end using binary search

10: l 0
11: for t {lmax/2, lmax/4, . . . ,1} do
12: if d(i, i +(l + t) · d) > dmin then
13: l l + t
14: j i + l · d
15: // Find the split position using binary search
16: dnode d(i, j)
17: s 0
18: for t {dl/2e,dl/4e, . . . ,1} do
19: if d(i, i +(s + t) · d) > dnode then
20: s s + t
21: g i + s · d + min(d,0)

22: // Output child pointers
23: if min(i, j) = g then left Lg else left Ig
24: if max(i, j) = g + 1 then right Lg+1 else right Ig+1
25: Ii (left, right)
26: end for

Figure 4: Pseudocode for constructing a binary radix tree.
For simplicity, we define that d(i, j) =�1 when j 62 [0,n�1].

Now, the keys belonging to Ii share a common prefix that
must be different from the one in the sibling by definition.
This implies that a lower bound for the length of the prefix
is given by dmin = d(i, i�d), so that d(i, j) > dmin for any k j
belonging to Ii. We can satisfy this condition by comparing
d(i, i� 1) with d(i, i + 1), and choosing d so that d(i, i + d)
corresponds to the larger one (line 3).

We use the same reasoning to find the other end of the
range by searching for the largest l that satisfies d(i, i+ ld) >
dmin. We first determine a power-of-two upper bound lmax >
l by starting from 2 and increasing the value exponentially
until it no longer satisfies the inequality (lines 6–8). Once
we have the upper bound, we find l using binary search in
the range [0, lmax �1]. The idea is to consider each bit of l in
turn, starting from the highest one, and set it to one unless the
new value would fail to satisfy the inequality (lines 10–13).
The other end of the range is then given by j = i+ ld.

d(i, j) tells us the length of the prefix corresponding to Ii,
which we shall denote by dnode. We can, in turn, use this to
find the split position g by performing a similar binary search
for largest s 2 [0, l � 1] satisfying d(i, i + sd) > dnode (lines
17–20). If d = +1, g is then given by i + sd, as this is the
highest index belonging to the left child. If d = �1, we have
to decrement the value to account for the inverted indexing.

Given i, j, and g, the children of Ii cover the ranges
[min(i, j),g] and [g + 1,max(i, j)]. For each child, we com-
pare the beginning and end of its range to see whether it is a

c� The Eurographics Association 2012.

35

Figure 7: This figure shows the storage locations of
nodes for the binary radix tree displayed in Figure 6.
The internal nodes have been assigned indices from
0 to 6 and are lined up with leaf nodes with the
same indices. The range of keys covered by each
internal node is shown as a horizontal bar, and a tiny
red circle lies immediately after each node’s split
position [3].

have a longer common prefix than the range since they all
have 0 in the differing bit position. Adjacent keys to the
right of the split position are analogous, but with all having
a 1 in the differing bit position.

3.2.3 Setup for Binary Radix Tree Construction
It is possible to construct a binary radix tree by starting

with the root node, finding the first differing bit in the keys,
creating the child nodes, then handling each child recur-
sively. However, this is not parallel because a node cannot
be created until all of its ancestors have been created. Par-
allel construction can be achieved by creating a connection
between internal node indices and keys through a particu-
lar tree setup. This is done by assigning indices to internal
nodes in a way that enables finding their children without
depending on that node’s ancestors being finished [3].

Figure 7 shows how the nodes of the binary radix tree from
Figure 6 will be stored. The leaf nodes and internal nodes
are stored in two separate arrays, L and I, respectively. The
root will always be located at position I0. The children
of internal nodes are placed at an index according to their
parent’s split position. The left child is located at Lγ if it is
a leaf, or at Iγ if it covers more than one key. Similarly, the
right child is located at Lγ+1 or Iγ+1 [3]. For example, the
split position of the root in Figure 7 is at index 3, so its left
child is stored in I3 and its right child is stored in I4.

It is important to note that the index of every internal
node is equal to the index of either its first or last key. The
index of an internal node will be equal to the index of its
first key if the node is a right child of its parent. Figure 7
shows that internal node 4 is a right child, that its index co-
incides with it first key (key 4), and that its range extends
rightward. Conversely, internal node 3 is a left child, its in-
dex coincides with its last key (key 3), and its range extends
leftward. More generally, if a node covers the range [i, j],
then its left child will be located at γ, which is the end of its
range [i, γ]. The right child will be located at γ + 1, which
is the beginning of its range [γ + 1, j] [3].



Karras / Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees

Figure 3: Our node layout for the tree of Figure 2. Each in-
ternal node has been assigned an index between 0–6, and
aligned horizontally with a leaf node of the same index. The
range of keys covered by each node is indicated by a hori-
zontal bar, and the split position, corresponding to the first
bit that differs between the keys, is indicated by a red circle.

edge of which keys they cover before having processed their
ancestors. Our key insight in enabling parallel construction
is to establish a connection between node indices and keys
through a specific tree layout. The idea is to assign indices
for the internal nodes in a way that enables finding their chil-
dren without depending on earlier results.

Let us assume that the leaf nodes and internal nodes are
stored in two separate arrays, L and I, respectively. We define
our node layout so that the root is located at I0, and the in-
dices of its children—as well as the children of any internal
node—are assigned according to its respective split position.
The left child is located at Ig if it covers more than one key,
or at Lg if it is a leaf. Similarly, the right child is located at
Ig+1 or Lg+1. The layout is illustrated in Figure 3.

An important property of this particular layout is that the
index of every internal node coincides with either its first or
its last key. This follows by construction—the root is located
at the beginning of its range [0,n� 1], the left child of any
internal node is located at the end of its range [i,g], and the
right child is located at the beginning of its range [g+1, j].

Algorithm. In order to construct a binary radix tree, we
need to determine the range of keys covered by each inter-
nal node, as well as its children. The above property readily
gives us one end of the range, and we will show how the
other end can be found efficiently by looking at the nearby
keys. The children can then be identified by finding the split
position, by virtue of our node layout.

Pseudocode for the algorithm is given in Figure 4. We pro-
cess each internal node Ii in parallel, and first determine the
“direction” of its range by looking at the neighboring keys
ki�1, ki, ki+1. We denote the direction by d, so that d = +1
indicates a range beginning at i and d = �1 a range ending
at i. Since every internal node covers at least two keys, we
know that ki and ki+d must belong to Ii. We also know that
ki�d belongs to a sibling node Ii�d , since siblings are always
located next to each other in our layout.

1: for each internal node with index i 2 [0,n�2] in parallel
2: // Determine direction of the range (+1 or -1)
3: d sign(d(i, i + 1)�d(i, i�1))
4: // Compute upper bound for the length of the range
5: dmin d(i, i�d)
6: lmax 2
7: while d(i, i + lmax · d) > dmin do
8: lmax lmax · 2
9: // Find the other end using binary search

10: l 0
11: for t {lmax/2, lmax/4, . . . ,1} do
12: if d(i, i +(l + t) · d) > dmin then
13: l l + t
14: j i + l · d
15: // Find the split position using binary search
16: dnode d(i, j)
17: s 0
18: for t {dl/2e,dl/4e, . . . ,1} do
19: if d(i, i +(s + t) · d) > dnode then
20: s s + t
21: g i + s · d + min(d,0)
22: // Output child pointers
23: if min(i, j) = g then left Lg else left Ig
24: if max(i, j) = g + 1 then right Lg+1 else right Ig+1
25: Ii (left, right)
26: end for

Figure 4: Pseudocode for constructing a binary radix tree.
For simplicity, we define that d(i, j) =�1 when j 62 [0,n�1].

Now, the keys belonging to Ii share a common prefix that
must be different from the one in the sibling by definition.
This implies that a lower bound for the length of the prefix
is given by dmin = d(i, i�d), so that d(i, j) > dmin for any k j
belonging to Ii. We can satisfy this condition by comparing
d(i, i� 1) with d(i, i + 1), and choosing d so that d(i, i + d)
corresponds to the larger one (line 3).

We use the same reasoning to find the other end of the
range by searching for the largest l that satisfies d(i, i+ ld) >
dmin. We first determine a power-of-two upper bound lmax >
l by starting from 2 and increasing the value exponentially
until it no longer satisfies the inequality (lines 6–8). Once
we have the upper bound, we find l using binary search in
the range [0, lmax �1]. The idea is to consider each bit of l in
turn, starting from the highest one, and set it to one unless the
new value would fail to satisfy the inequality (lines 10–13).
The other end of the range is then given by j = i+ ld.

d(i, j) tells us the length of the prefix corresponding to Ii,
which we shall denote by dnode. We can, in turn, use this to
find the split position g by performing a similar binary search
for largest s 2 [0, l � 1] satisfying d(i, i + sd) > dnode (lines
17–20). If d = +1, g is then given by i + sd, as this is the
highest index belonging to the left child. If d = �1, we have
to decrement the value to account for the inverted indexing.

Given i, j, and g, the children of Ii cover the ranges
[min(i, j),g] and [g + 1,max(i, j)]. For each child, we com-
pare the beginning and end of its range to see whether it is a

c� The Eurographics Association 2012.

35

Figure 8: Pseudocode for binary radix tree con-
struction. Note that if an out-of-bounds argument
is passed to δ(), it is defined to return -1 [3].

3.2.4 Binary Radix Tree Construction Algorithm
The goal of the binary radix tree construction algorithm

is to determine the range [i, j] of keys covered by each in-
ternal node, as well as the indices of its children. One end
of the range is given by the internal node’s index, and the
other end of the range can be found by examining the sur-
rounding keys. The indices of the children can be found by
locating the split position. The previous setup allows each
internal node to be processed independently and in parallel
with the other internal nodes [3]. This section will explain
the construction process using the pseudocode in Figure 8
as a reference.

Consider processing an internal node Ii, which is in the ith
position of the array I. First, the direction the range extends
(rightward or leftward) is calculated in line 3 of Figure 8. If d
becomes +1 then the range extends rightward; if it becomes
−1 then the range extends leftward [3]. For example consider
I2, which covers keys 2 and 3 as shown in Figure 7. In
this example, δ(2, 3) = 4 while δ(2, 1) = 2, so the range of
internal node 2 extends to the right since it shared a longer
common prefix with its right neighbor.

The next task is to determine j (handled in lines 5-14 in
the pseudocode), which represents the index of the other end
of the range [i, j]. For I2, j is 3 since the range of the internal
node at index 2 covers keys 2 and 3. Every internal node
covers at least two keys, therefore the two keys ki and ki+d
must belong to Ii. The other neighboring key ki−d must
belong to Ii−d. The two keys ki and ki+d share a common
prefix that is different and longer than the prefix between ki
and ki−d. Let δmin represent the value of δ(i, i− d). For I2,
δmin equals 2, with the common prefix being “00”. The value
of δmin is equivalent to the length of the prefix represented

by the parent of the node currently under consideration.
This fact is used to determine the index of j. For any km
belonging to Ii, the inequality δ(i,m) > δmin always holds
true. Therefore, δmin gives a lower bound for the length of
the prefix for the section of keys covered by Ii. Thus, the
index j marking the other end of the range can be found by
searching for the largest integer l that satisfies δ(i, i+ l ·d) >
δmin. Then j will be the index i+ l · d [3].

Finding j is achieved by first finding an exclusive power-
of-two upper bound for l, denoted as lmax (done in lines 6-8
of the pseudocode). As shown in Figure 8, lmax begins at 2
and is doubled until it becomes the upper bound for l. For
example, for I5, lmax is doubled until it reaches 4. We can
see from Figure 7 that l is 2 for node 5 since it covers the
keys [5, 5 + 2]. Therefore, lmax = 4 is the correct exclusive
power-of-two upper bound for node 5 [3].

Once the upper bound lmax is determined, l can be found
by using binary search in the range [0, lmax − 1] (performed
in lines 10-13). For example, for node 5, with δmin = 1
and lmax = 4, the loop goes through the range {2, 1}. l
starts at 0 and is incremented by 2 in the first iteration, but
not incremented by 1 in the second iteration because the
condition to increment does not hold. This gives a final l
value of 2. Now j can be determined by the formula j =
i + l · d, which is 7 for node 5. This is correct since node 5
covers the range [5, 7].

Now that the range of keys for the node has been de-
termined, the length of the common prefix of those keys,
denoted by δnode, is calculated as δ(i, j) on line 16 of Fig-
ure 8. The next step of the algorithm is to determine where
the range of keys should split for the left and right chil-
dren. Recall from the last paragraph of Section 3.2.2 that
δ(γ, γ+1) = δ(i, j), which is the value of δnode. This equality
occurs since the first differing bit in the range of keys toggles
from 0 to 1 exactly between γ and γ + 1. To find this split
location, the next goal is to determine the largest integer s
in the range [0, l− 1] that satisfies δ(i, i+ s · d) > δnode. The
index i+ s · d will be the furthest index from i in the node’s
key range where the first differing bit is the same as that of
key i. If the range extends rightward from i then i + s · d
will be γ. Conversely, if the range extends to the left from i
then i+s ·d will be γ+1. The value of s can be found using
the binary search shown on lines 17-20 of the pseudocode,
which works similarly to the previous binary search [3].

Now that s is known, γ is determined by i+s·d+min(d, 0),
which appears on line 21 of the pseudocode. The addition
by min(d, 0) serves to place γ to the left of the split if the
range was extending to the left. In that case, i+ s · d yields
γ + 1 instead of γ, since the search was scanning from right
to left [3]. Consider the full formula for I3, where s = 1 and
d = −1, indicating that the range extends left. The formula
gives γ = 3 + (1 · −1) + (−1) = 1, which matches the index
of the left child for I3 in Figure 7.

Lastly, the node stores the indices of its children as shown
on lines 23-25 of Figure 8. These assignment statements en-
sure that children covering only one key are represented as
leaf nodes, while children covering multiple keys are repre-
sented as internal nodes.

Overall, when running this algorithm in parallel on the
GPU, each thread is responsible for only one internal node.
The balance of the tree depends solely on the locations of
primitives in the scene. Scenes with an even distribution of
primitives throughout the space will generate well-balanced
trees.



Karras / Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees

Figure 1: Performance of BVH hierarchy generation for
Stanford Dragon (871K triangles). The y-axis corresponds
to millions of primitives per second and the x-axis to the
number of parallel cores relative to GTX 480. The solid red
line indicates the fastest existing method by Garanzha et
al. [GPM11], which is dominated by the top levels of the
tree where the amount of parallelism is very limited. Our
method, indicated by the dotted green line, parallelizes over
the entire tree and scales linearly with the number of cores.

where the x coordinate of the point is represented as
0.X0X1X2 . . ., and similarly for y and z coordinates. The Mor-
ton code of an arbitrary 3D primitive can be defined in terms
of the centroid of its axis-aligned bounding box (AABB). In
practice, the Morton codes can be limited to 30 or 63 bits in
order to store them as 32-bit or 64-bit integers, respectively.

The algorithm for generating BVH node hierarchy was
subsequently improved by Pantaleoni and Luebke [PL10]
and Garanzha et al. [GPM11]. Garanzha et al. generate one
level of nodes at a time, starting from the root. They process
the nodes on a given level in parallel, and use binary search
to partition the primitives contained within each node. They
then enumerate the resulting child nodes using an atomic
counter, and subsequently process them on the next round.

Since these methods are targeted for real-time ray tracing,
they are each accompanied with a high-quality construction
algorithm to allow different quality vs. speed tradeoffs. The
idea is to use the high-quality algorithm for a relatively small
number of nodes near the root, and the fast algorithm for the
rest of the tree. While we do not explicitly consider such
hybrid methods in this paper, we believe that our approach
is general enough to be combined with any appropriate high-
quality algorithm in the same fashion.

Zhou et al. [ZGHG11] also applied the idea of using Mor-
ton codes to construct octrees in the context of surface recon-
struction. Instead of generating the hierarchy in a top-down
fashion, they start with the leaf nodes and perform a series of
parallel compaction operations to determine their ancestors,
one level at a time.

Binary radix trees. Given a set of n keys k0, . . . ,kn�1
represented as bit strings, a binary radix tree (also called a
Patricia tree) is a hierarchical representation of their com-
mon prefixes. The keys are represented by the leaf nodes,
and each internal node corresponds to the longest common
prefix shared by the keys in its respective subtree (Figure 2).

Figure 2: Ordered binary radix tree. Leaf nodes, numbered
0–7, store a set of 5-bit keys in lexicographical order, and
the internal nodes represent their common prefixes. Each in-
ternal node covers a linear range of keys, which it partitions
into two subranges according to their first differing bit.

In contrast to a prefix tree, which contains one internal node
for every common prefix, a radix tree is compact in the sense
that it omits nodes with only one child. Therefore, every bi-
nary radix tree with n leaf nodes contains exactly n� 1 in-
ternal nodes. Duplicate keys require special attention—this
is discussed in Section 4.

We will only consider ordered trees, where the children
of each node—and consequently the leaf nodes—are in lexi-
cographical order. This is equivalent to requiring that the se-
quence of keys is sorted, which enables representing the keys
covered by each node as a linear range [i, j]. Using d(i, j)
to denote the length of the longest common prefix between
keys ki and k j, the ordering implies that d(i0, j0) � d(i, j)
for any i0, j0 2 [i, j]. We can thus determine the prefix cor-
responding to a given node by comparing its first and last
key—the other keys are guaranteed to share the same prefix.

In effect, each internal node partitions its keys according
to their first differing bit, i.e. the one following d(i, j). This
bit will be zero for a certain number of keys starting from ki,
and one for the remaining ones until k j. We call the index of
the last key where the bit is zero a split position, denoted by
g 2 [i, j�1]. Since the bit is zero for kg and one for kg+1, the
split position must satisfy d(g,g+1) = d(i, j). The resulting
subranges are given by [i,g] and [g + 1, j], and are further
partitioned by the left and right child node, respectively.

In the figure, the root corresponds to the full range of keys,
[0,7]. Since k3 and k4 differ at their first bit, the range is split
at g = 3, resulting in subranges [0,3] and [4,7]. The left child
further splits [0,3] at g = 1 based on the third bit, and the
right child splits [4,7] at g = 4 based on the second bit.

3. Parallel Construction of Binary Radix Trees

A naïve algorithm for constructing a binary radix tree would
start from the root, find the first differing bit, create the child
nodes, and process each child recursively. This approach is
inherently sequential—even though we know there are go-
ing to be n�1 internal nodes in the end, we have no knowl-

c� The Eurographics Association 2012.

34

New method

Garanzha et al.

Figure 9: A comparison of two algorithms. The y
axis represents millions of primitives per second and
the x axis is the number of parallel cores. [3].

3.2.5 Time Complexity
For an internal node that covers q keys, each of the three

loops above executes at most dlog2 qe iterations. Since q ≤ n
for all n− 1 internal nodes, the worst-case time complexity
for constructing the entire tree is O(n log n). The worst case
occurs when the height of the tree grows proportional to n,
but this is unlikely since the height of the tree is limited to
the length of the keys [3].

3.3 Fitting AABBs
To turn the binary radix tree into a BVH, the contents

of each node are surrounded with an AABB. The leaves are
already done since each primitive has its own AABB as dis-
cussed in Section 2. Each internal node can construct an
AABB by surrounding its two children’s AABBs in a box
in a manner similar to Figure 4. Since the dimensions of
each internal node’s AABB depends on the dimensions of
each child’s AABB, it must be done in a bottom-up fash-
ion. To do this in parallel, each thread should start from
a leaf node and travel up the tree. However, each internal
node has two children and it should not be processed twice.
Therefore, each internal node keeps an atomic count of how
many threads have visited it. The first thread that reaches
an internal node terminates immediately, while the second
thread gets to process the node [3].

3.4 Results
As shown in Figure 9, the performance of the algorithm

scales incredibly well as the number of cores increases. The
execution time is inversely proportional to the number of
cores. This is an excellent quality because the performance
can be roughly doubled by doubling the number of cores
assigned to the task [3]. Figure 9 also shows a comparison
between this algorithm and the best previously known algo-
rithm by Garanzha et al. As the number of cores increases,
the new algorithm greatly surpasses the performance of the
comparison method, even though the comparison method
has elements of parallelism [1].

4. CONCLUSION
The ray tracing technique is exceptional at producing high

quality images of 3D scenes. The simulation of actual light
propagation results in the shadows, reflections, and refrac-
tions which make images appear photorealistic. By using
both the parallel BVH construction algorithm presented in
this paper and hardware with multiple cores, real-time ray
tracing becomes significantly faster. As the number of cores

on modern hardware continues to increase, this algorithm
will become even more impactful.

While this algorithm is a significant improvement over
previous work, it is not without flaws. Scenes with poorly
distributed primitives will generate BVHs that are not well-
balanced. This is because the algorithm uses absolute lo-
cations of the primitives in the scene, rather than their po-
sitions relative to each other. An additional drawback to
this algorithm is that it creates a new BVH for each frame
without using any information from the previous frame. In
sequences of frames where primitives move very little, it
would be beneficial to simply adjust the previous frame’s
BVH, rather than constructing an entirely new one. Fur-
ther research is needed to overcome these drawbacks. Over-
all, this research presents remarkable progress in the field of
ray tracing.

Acknowledgments
Thanks to Nic McPhee, Elena Machkasova, K.K. Lamberty,
Max Magnuson, and Emma Sax for their time, feedback,
and constructive comments.

5. REFERENCES
[1] K. Garanzha, J. Pantaleoni, and D. McAllister.

Simpler and faster HLBVH with work queues. In
Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, HPG ’11, pages 59–64,
New York, NY, USA, 2011. ACM.

[2] C. Gribble, J. Fisher, D. Eby, E. Quigley, and
G. Ludwig. Ray tracing visualization toolkit. In
Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’12, pages
71–78, New York, NY, USA, 2012. ACM.

[3] T. Karras. Maximizing parallelism in the construction
of BVHs, octrees, and k-d trees. In Proceedings of the
Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics, EGGH-HPG’12,
pages 33–37, Aire-la-Ville, Switzerland, Switzerland,
2012. Eurographics Association.

[4] T. Viitanen, M. Koskela, P. Jääskeläinen, H. Kultala,
and J. Takala. Mergetree: A HLBVH constructor for
mobile systems. In SIGGRAPH Asia 2015 Technical
Briefs, SA ’15, pages 12:1–12:4, New York, NY, USA,
2015. ACM.

[5] I. Wald. On fast construction of SAH-based bounding
volume hierarchies. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, RT ’07, pages
33–40, Washington, DC, USA, 2007. IEEE Computer
Society.

[6] T. Whitted. An improved illumination model for
shaded display. Commun. ACM, 23(6):343–349, June
1980.

[7] Wikipedia. Triangle mesh — Wikipedia, The Free
Encyclopedia, 2015. [Online; accessed 10-April-2016].

[8] Wikipedia. Bounding volume hierarchy — Wikipedia,
The Free Encyclopedia, 2016. [Online; accessed
10-April-2016].

[9] Wikipedia. Ray tracing (graphics) — Wikipedia, The
Free Encyclopedia, 2016. [Online; accessed
10-April-2016].

[10] Wikipedia. Z-order curve — Wikipedia, The Free
Encyclopedia, 2016. [Online; accessed 10-April-2016].


