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ABSTRACT
Autonomous vehicle driving systems use many tools to drive
safely and efficiently. Many of these tools use neural net-
works. In this paper, we describe the inner-workings of basic
neural networks. We describe some advanced neural network
concepts including: deep neural networks, the sigmoid func-
tion, reccurent neural networks, and convolutional neural
networks. We present how these neural networks are imple-
mented in computer vision tools and how they are used to
avoid obstacles. Finally, we discuss how all these tools are
integrated to drive vehicles effectively.

1. INTRODUCTION
Over the last few decades, there have been an increasing

number of vehicles on the road. This has led to an increased
number of accidents and deaths. There were 32,675 automo-
bile deaths in the US in 2014 [2]. Most of these deaths can
be contributed to human driving errors. To address this,
there has been much research in the area of autonomous ve-
hicle driving or computer driving. Currently, there are vehi-
cles available with semi-autonomous driving features, such
as lane keeping and automatic braking. In the next few
years we expect to see fully autonomous driving vehicles be-
coming available to the public. Neural networks are a core
technology used in vehicles to navigate safely.

We will present details on neural networks and how they
are implemented in vehicles. Section 2 will present what
neural networks are and how they work. Section 3 will ex-
plain some more advanced and complex ideas and types of
neural networks that are commonly used in vehicle navi-
gation. Section 4 will present many applications of neural
networks that are being used in the world today. Section
5 will present details on a variety of computer vision sen-
sors that are used with autonomous vehicle driving systems.
Section 6 will present approaches to vehicle navigation us-
ing computer vision sensors and neural networks and will
provide details on self-driving cars.
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2. SIMPLE NEURAL NETWORKS
In this section, we present background on machine learn-

ing. Then we describe what an artificial neural network
is and why it gets its name from biology. Then we present
background on artificial neural networks and information on
training artificial neural networks.

2.1 Machine Learning
Machine learning is an area of computer science that de-

signs models that can learn from data to be able to make
predictions on other data. This allows computers to learn
patterns in data without being explicitly programmed by a
human. Machine learning requires lots of data, usually thou-
sands of data points, and often millions or billions. Many
types of machine learning require the data to be labeled,
which means the data must have input data and expected
output data, where the expected output data is a known
answer to what the model should predict. For example, we
might train a model to predict if an email is spam. The
input data would represent information about thousands of
emails, and the expected output data would determine if the
email is spam. To train a model that would recognize what
letter a handwritten character is, the input data would rep-
resent an image of the character, and the output data would
determine which letter it is. The data gets passed through
the model, which makes a prediction about the data. Then
the model updates or modifies itself, depending on how accu-
rate the prediction was. As more data is passed through the
model, the model learns; this is called training the model.
Once the model is trained, it can take unknown data and
make an accurate prediction about it. For example, a well-
trained model can receive a new email and accurately predict
whether it is spam. There are many complex approaches to
machine learning. We will focus on approaches that use
neural networks.

2.2 Biological Neural Network
Artificial neural networks (ANN) are complex models

used for predicting data; they are inspired by biological neu-
ral networks inside of human brains. The human brain has
100 billion nerve cells called neurons. Inside the brain a
group of many neurons connect to each other to form a bi-
ological neural network. Neurons send electrical signals to,
and receive electrical signals from, other neurons. The con-
nections between neurons have varied strengths. As a hu-
man brain learns, it forms new connections between neurons
and drops old connections; the connections also strengthen
and weaken. As a human performs an action repeatedly,



electrical signals are repeatedly sent from neuron to neuron.
This causes connections to strengthen, making them more
efficient. This is how the brain learns.

2.3 Artificial Neurons
An artificial neural network consists of many intercon-

nected nodes called artificial neurons. Each neuron contains
an algorithm that receives several inputs and returns a single
output. Each of the inputs to a neuron is assigned a certain
adjustable multiplier called a weight. In Figure 1 each x
represents an input and each w represents the weight asso-
ciated with it. The first artificial neurons used algorithms

Figure 1: A Visual Representation of an artificial
neuron

called perceptrons, inspired by neurons in the brain. This
algorithm totals the product of the binary inputs, i, multi-
plied by their weights, and then returns a 0 or 1 depending
on whether the total has reached a certain threshold value.

Output =

{
0 if

∑
i xiwi <= thresholdV alue

1 if
∑

i xiwi > thresholdV alue

This threshold value is sometimes called a bias and must
also be adjustable. In section 2.5 we explain how ANNs are
trained. As an ANN is being trained, or learns, the thresh-
old values and weights are increased and decreased, similar
to the brain learning by strengthening and weakening con-
nections between neurons. Although ANNs are inspired by
biological neural networks, the technical details and mathe-
matics are quite different.

2.4 Sigmoid Function
In the previous section, we explained the perceptron al-

gorithm that uses a single binary bit for the inputs and the
output. In modern neurons, the inputs and outputs are con-
tinuous values, ranging from -1 to 1 or 0 to 1. Furthermore,
neurons will use a wide variety of functions and algorithms
to determine the output. One common algorithm is to total
the product of the inputs multiplied by their weights, then
add the bias value that is unique and adjustable for each
neuron, then pass that number into a sigmoid function that
returns a value between 0 and 1.

Total =

(
inputs∑
i=0

wixi

)
+ biasV alue (1)

Output = SigmoidFunction(Total) =
1

1 + e−Total
(2)

The output of a sigmoid function is s-shaped, so the result
is usually very close to 0 or 1 and there is only a small range
where the output fluctuates. The bias value modifies the
point of where that fluctuation occurs, as shown in Figure 2.
This is how the bias relates to the threshold value in the

perceptron algorithm. Common variations to this include
using different types of sigmoid functions and functions with
different shapes.
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Figure 2: Left: Sigmoid with a bias of 0. Right:
Sigmoid with a bias of 10.

2.5 Artificial Neural Networks Overview and
Training

An ANN consists of input, output, and hidden neurons.
All of the input neurons are called the input layer and all
of the output neurons the output layer. The hidden neurons
are in 1 or more hidden layers, as shown in Figure 3. A
trained ANN makes predictions on data by passing the data
into the input neurons. Then the algorithms at the neuron
pass new data to the neurons in the hidden layers, which
pass data to the output layer, which outputs a prediction
about the data. This is called forward propagation.

Figure 3: Neurons of a simple artificial neural net-
work. Each connection has an adjustable weight
value assigned to it.

The input and output data in an ANN can represent many
things. We will present some examples. An ANN that pre-
dicts tomorrow’s weather could have inputs that represent
today’s temperature, humidity, and wind speed. Other in-
puts could represent information about today’s weather in
surrounding areas. The output of this ANN could have a
single output neuron that outputs a value that represents
tomorrow’s temperature, or there could be multiple out-
put neurons that output different values representing to-
morrow’s high temperature, low temperature, humidity, and
wind speed. An ANN that determines whether a picture is
of a dog, cat, or bear could have 3 output neurons each rep-
resenting one of those animals. The network classifies the
image based on whichever output value is greatest.

In order to get an ANN to predict information accurately,
the ANN must be trained. ANNs are usually trained by an
algorithm called backpropagation. Backpropagation requires
an ANN with starting values for the weights and biases; they



can be arbitrarily assigned. It also requires a large amount of
labeled training data with inputs and expected outputs, of-
ten billions or more data points. Forward propagation passes
known data through the network, and then backpropagation
compares the generated data with the expected data. The
difference between the generated and expected data is called
the error or cost. Then the backpropagation algorithm up-
dates the weights and biases in the network using a function
of the error. There are many different methods and formu-
las used to determine the amount to change each weight and
bias. A common method is to increment or decrement each
weight by the value equal to the partial derivative of the
error with respect to that specific weight, multiplied by a
constant learning rate.

4Weighti =
∂error

∂weighti
∗ learningRate

As training data is passed through the network, the network
continues adjusting its weights and biases so the error gets
smaller for the entire training set. This process is repeated
until the errors are reduced to minimal values.

3. COMPLEX NEURAL NETWORKS
In the previous section, we presented the very basics of

ANNs. However, neural networks function in a variety of
ways. Many networks have their own specific modifications
that the creators implemented to make them work best for
their specific applications. Now we present the basics on
some more complex neural networks including: deep neural
networks, recurrent neural networks, and deep convolutional
networks. These networks are some of the core technologies
used in vehicle navigation.

3.1 Deep Neural Networks
For many years, most neural networks consisted of only a

few hidden layers, commonly 1-3 layers. ANNs with many
layers of hidden neurons are called deep neural networks
(DNNs), whereas, ANNs with 1 or few layers are com-
monly called shallow neural networks. DNNs are theoret-
ically and practically more accurate and powerful at solving
complex problems than shallow neural networks [3]. How-
ever, the backpropagation training algorithm exponentially
decreases in effectiveness with each additional hidden layer.
The specifics on why backpropagation becomes ineffective
are complicated and not relevant to this paper. Training
DNNs used to be so ineffective that it would take years to
train some DNNs with many layers. Therefore, DNNs were
impractical and not very commonly used. Fortunately, in
2006, breakthroughs were made by Geoff Hinton that made
major advancements to training DNNs [6]. Due to these ad-
vancements and powerful modern graphics processing units,
DNNs became much more popular in recent years. The pro-
cess of training a DNN is known as deep learning.

3.2 Recurrent Neural Networks
DNNs are often used to process data that is changing over

time. This means that the input data is being periodically
changed or updated. To handle this, a special kind of DNN
is used called a recurrent neural network (RNN). A RNN
can receive a sequence of values as inputs, and it can output
a sequence of values. Each time the input data is updated,
the new input data is sent into a new instance or copy of

the network. Each instance of the network is called a se-
quence. During forward propagation, data is also passed
from neurons in the previous sequence into neurons of the
current sequence. This enables a RNN to process informa-
tion across time. Each sequence in the RNN outputs unique
values. This means the network will continuously output
new data at the same rate that it receives new data. RNNs
are commonly used in speech recognition applications.

3.3 Deep Convolutional Neural Networks
A deep convolutional neural network (DCNN) is a special-

ized kind of DNN designed for image processing. DCNNs are
inspired by the visual cortex in the human brain. To process
an image with a neural network, each pixel in the image is
connected to an input neuron. Regular DNN architecture
does not work as well for images because they treat two pix-
els that are adjacent the exact same way as they treat two
pixels that are far apart. DCNNs use a special architecture
that is specifically well-adapted to classify images.

Figure 4: Typical DCNN architecture

The hidden layers in a DCNN alternate between convolu-
tional layers and pooling layers, as shown in Figure 4. The
convolutional layers detect specific features in the image.
The early convolutional layers detect primitive shapes like
edges and blobs; the later layers detect complex features
like car tires, tree trunks, or the limbs of a pedestrian. Each
convolutional layer is divided into groups of neurons called
feature maps, where each feature map detects a specific fea-
ture. Each neuron in the feature map only connects to a
small subset of neurons in the previous layer so that the
neuron detects a certain feature in a small region or window
of the image.

The pooling layers condense the information from the pre-
vious convolutional layer and send the condensed informa-
tion to the next convolutional layer. This process is called
pooling. The purpose of pooling is to reduce the amount of
neurons and connections in the network, which allows the
the network to be trained more quickly. The architecture of
a DCNN and an RNN can be combined to form a reccurent
convolutional neural network (RCNN).

4. CURRENT APPLICATIONS
In addition to vehicle navigating, neural networks are

doing many other innovative things in the various indus-
tries. Microsoft, Google, and other companies use RNNs for
speech recognition applications, such as voice-to-text, voice
search, and real-time translation [1]. DCNNs are being used
by many companies including Facebook and Google to ex-
tract information from photos. Some of these DCNNs have
proven to be more accurate than humans [13]. DNNs have
also been used to beat humans in complex board games and



video games. The Korean world champion Go player was de-
feated by AlphaGo, a DNN made by DeepMind. DNNs are
also being used to make video game characters behave more
like humans by watching them play. This enables a more
realistic and life-like video game. Another major industry
that uses neural networks is healthcare. Neural networks
have been demonstrated to be a useful tool for predicting
and diagnosing diseases like diabetes and cancer. They are
also used for electronic signal analysis, medical image anal-
ysis, radiology, and cardiology.

5. COMPUTER VISION TECHNOLOGIES
Autonomous vehicle driving systems must be situationally

aware at all times. To be situationally aware, the system
must be able to detect and classify objects around it. Im-
portant objects that must be detected include: cars, trucks,
road signs, pedestrians, roads, and road lanes. Systems use
many different tools and sensors to do this including: in-
frared, RADAR, SONAR, LIDAR, GPS, and digital video.
Systems have many sensors for redundancy and to increase
performance and safety. In this section we will explain de-
tecting objects with both digital video and LIDAR.

5.1 Digital Video
Regular cameras are a primary sensing tool used by au-

tonomous driving vehicles. Cameras are mounted around
the vehicle in pairs with overlapping fields of view. This
provides stereo vision which is similar to eyes on a human.

The main objective for detecting objects in digital video is
to place accurate bounding boxes around the objects in the
video frames. A bounding box is the smallest possible rect-
angle that encloses the object, as shown in Figure 5. When

Figure 5: An example of bounding boxes

a system has two different viewpoints and has determined
accurate bounding boxes, the system can accurately deter-
mine the size and location of this object in 3D space. There
are many algorithms and tools that can detect objects in
an image. However, trained DCNNs have been shown many
times to be the most accurate and efficient [10] [7]. It is
important for the system to find an accurate bounding box
because if the box is too large or too small the system will
think the object is larger or smaller than it is in 3D space.

If the bounding box is displaced, then the system will think
the object is in an incorrect location in space. It is also
important for the system to be continuously aware of the
location of objects. To achieve this, a system will find new
bounding boxes several times every second [11]. This means
that the process of finding the bounding boxes must be very
efficient, and it also means systems must be equipped with
powerful hardware to handle the computations.

Once the system has detected objects in the video frames,
it must classify the objects. For example, it needs to deter-
mine whether each object is a car, pedestrian, traffic cone,
or other object. Different objects have different behaviors; a
pedestrian has different behavior than a traffic cone, which
has different behavior from a semi-truck.

The process of detecting and classifying objects and plac-
ing bounding boxes around them involves many steps. The
raw data coming from the cameras is often fuzzy or noisy.
Therefore, the raw video frames are commonly first prepro-
cessed to reduce noise, which increases the performance and
accuracy of the later steps. Then a common approach is to
send the processed data through a well-trained RCNN that
will detect objects and place bounding boxes around them.
There are various approaches to find the bounding boxes but
most approaches break it down into smaller steps using a se-
ries of RCNNs at each step. One approach is to first use a
special version of a DCNN that outputs a set of rectangular
object proposals, called a region proposal network (RPN)
[9]. Then, each region in the RPN is passed to a RCNN.
This RCNN must be trained to classify important objects
like cars, pedestrians, road signs, etc. Finally, once the ob-
ject has been classified, it will be sent through a final RCNN
to refine the dimensions of the bounding box. This process
is known as bounding box regression. During this process,
if an object is classified as a road sign, it will be sent to
a separate algorithm or neural network to understand the
information on the sign.

5.2 LIDAR
The performance and accuracy of object detection with

digital video decreases in adverse weather conditions and
when it is dark out. Another sensor used in autonomous
vehicle driving systems is light detection and ranging (LI-
DAR), which performs well in all conditions, even when in
complete darkness. LIDAR sensors are commonly placed
on the top and center of vehicles. LIDAR scans an area by
emitting laser pulses, and then measuring the time it takes
for a return signal to be received. These laser pulses use
a wavelength and intensity that makes them invisible and
harmless to people and animals. The time measured from
the return signal is used calculate distance from objects up
to 200ft away [11]. This generates a precise 3D map of the
vehicle’s surroundings, as shown in Figure 6. The informa-
tion from the 3D map is passed into the RCNNs discussed in
section 5.1 as additional input data which forms additional
feature maps.

LIDAR is also very good at detecting the edges of a road
and road markings. If the edge of the road has a curb,
then LIDAR detects there is a change in height. In addi-
tion to recording the time of a return pulse, LIDAR systems
also record the intensity, or the magnitude, of the return
pulse. Surfaces with high reflectivity return a higher inten-
sity pulse. So the pavement on the road will return a dif-
ferent intensity value than dirt or grass that may be on the



edge of the road. Furthermore, road lanes and other road
markings that are marked with paint are also easily read
by LIDAR because the painted road will return a different
intensity value [8].

Figure 6: 3D map created by LIDAR

6. VEHICLE NAVIGATION
In the previous section we explained how autonomous ve-

hicle driving systems use a variety of sensors to collect and
process data from the outside world. Systems integrate all
the data collected from the sensors to build a virtual world,
or an internal 3D map, of the vehicle’s surroundings. This
is called high definition mapping. This virtual world is very
similar to a virtual or digital world in a video game. Teach-
ing a vehicle to navigate using this virtual world is very sim-
ilar to teaching a video game character to navigate a video
game world.

Vehicles use the data from this internal 3D map to nav-
igate to their destination while avoiding obstacles. There
have been several of approaches implemented to navigate ve-
hicles using various tools, algorithms, and neural networks.
We will present approaches that use neural networks. The
approaches we present all have one thing in common: the
vehicle driving system is not programmed to navigate by
teaching it various rules. The system learns how to drive in
the same way that a human learns how to drive. The sys-
tem watches humans drive and learns from their patterns,
and then it drives on its own, practices, and improves its
performance.

6.1 Obstacle Avoidance
Here, we present a common approach used for navigating

many kinds of robots and vehicles over the last decade. In
this approach, there is a set destination the vehicle is trying
to reach, and usually many static obstacles in the way. The
destination is one of the inputs to the network, commonly
in the form of coordinates or vector with the angle and dis-
tance. The rest of the inputs to the network form some kind
of representation of all the obstacles. These obstacles could
be defined in terms of their dimensions and location of the
objects, or it could be the angle and distance of objects in
the vehicle’s view. Finally, the network outputs a direction
or angle for the vehicle to steer and the amount the vehicle
should accelerate or decelerate, as shown in Figure 7.

We know that in real world driving situations there are
many obstacles that are not static. There are many obsta-
cles that are moving and changing. This approach can be

Figure 7: An example of a vehicle controller

modified so that the inputs to the network are not only the
location of obstacles, but also the direction and speed of the
obstacles in the form of a velocity vector [4].

6.2 Path Planning
In the approaches we have presented so far the neural

network would only output a single steering instruction.
In more complex approaches, the network will output a
collision-free path or trajectory to the destination or to a
intermediate destination. Once the path has been generated
the vehicle can follow the path by continuously pointing the
front wheels of the vehicle to be parallel with the path. As
the vehicle drives, a new updated path will be generated
every few seconds or milliseconds depending on the system.
This approach alone does not react to obstacles moving onto
the path. Many systems will use this mid-range path plan-
ning approach along side a short-range obstacle avoidance
approach [12].

Many systems will generate multiple collision-free paths to
the destination, choose one path as the optimal one, and save
the other paths as backup paths. In case the optimal path
becomes obstructed, back up paths are already prepared.

6.3 Modern Self-Driving Cars
Many semi-autonomous driving cars are available and on

roads today. Many more will be available in the near fu-
ture as well as fully autonomous driving cars or self-driving
cars. In this section, we discuss details on how these cars
will function. In all the vehicle navigation approaches we
have presented so far used a feed-forward network. How-
ever, modern systems today use RNNs. A vehicle driving
system loops several times every second depending on the
system. In each loop, the system perceives the current state
of the world using all of its sensors, processes the informa-
tion, builds a 3D map of its surroundings, and sends that
information into the the input layer of one sequence of the
RNN, then uses the output from that sequence of the RNN
to control the vehicle, as shown in Figure 8.

The specifications of the networks used in modern self-
driving cars is not available, but it is reasonable to believe
that the inputs to their RNNs will include the location of
cars, pedestrians, and other obstacles and their velocities.
The edges of the road and road lanes will also be inputs



Figure 8: A flow chart of 1 loop in a driving system

that can be interpreted as obstacles. Other inputs would be
information from road signs and traffic lights. It is likely that
self-driving car systems will keep an updated list of collision-
free paths as they are driving. They must also be equipped
with a powerful computer on-board the car to process the
data from the sensors and to do the forward propagation
calculations on all the neural networks.

Like the other systems we presented, self-driving cars are
trained by watching humans drive and learning from their
behavior. This process will train the system to perform sim-
ilar to the way the human driver performed. However, car
manufacturers want their cars to have super-human perfor-
mance. Google has created a simulator to test and train
self-driving cars. In a few hours they can test thousands
and thousands of complex and dangerous driving scenarios,
which would otherwise take decades to test in the real-world
[5]. In real world driving, when humans encounter a compli-
cated dangerous situation, say a reckless driver, or a vehicle’s
tire pops, it is unlikely that they have ever encountered a
similar situation, and if they had it is unlikely they would
remember how to react. On the other hand, an autonomous
driving system would have been trained how to react based
on hundreds of similar situations.

Furthermore, once self-driving cars are on the market, the
training does not end. As self-driving cars are purchased and
driven on public roads, they will continue to collect new data
and train the neural networks even more. The new data
collected will be uploaded to that self-driving car’s manu-
facture’s server. The network on the server is then trained
with that new data. The server will periodically push out
updates to the self-driving cars. This implies that when
a self-driving car encounters a new unique and potentially
dangerous situation, every other self-driving car that uses
that network will learn and improve from that situation.

7. CONCLUSION
To conclude, we have presented some advanced neural net-

works which are key technologies used in autonomous vehicle
driving. Self-driving cars use DCNNs to process sensory in-
formation from video cameras and LIDAR to quickly and
accurately to detect surrounding objects. RNNs are used to
navigate self-driving cars safely and smoothly. Google has
been testing fully autonomous driving cars on public roads
for 5 years now. Several major automotive companies have
announced they plan on selling vehicles with autonomous
driving features in the near future. The US Department of
Transportation plans on working closely with these compa-
nies to help them get past legal barriers. These changes in
transportation infrastructure will lead to dramatically re-
duced motor-vehicle deaths in the future.
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