Vehicle Navigation with Neural Networks

Matthew (Snuffy) Linder

April 30, 2016

Introduction

- Many thousand deaths every year
- Self-Driving Cars
- Neural Networks
- Model used to make predictions on data
- Learn from training data

Applications Today

Image processing and classification

Speech Recognition

Medical Field

Microsoft

Outline

- 1. Introduction
- 2. <u>Neural Networks</u>
- 3. Deep Neural Networks
- 4. Computer Vision
- 5. Navigation
- 6. <u>Conclusion</u>

Inspiration

- 100 Billion Neurons
- Trillions of connections
- Always changing/learning

Basic Neural Network Structure

Artificial Neurons

Biological Neuron

Artificial Neuron $(x_1w_1) + (x_2w_2) + (x_3w_3) = Total Input$ Output = 0 if Total Input \leq Threshold ValueOutput = 1 if Total Input > Threshold Value

Training

$$\Delta weight_i = \frac{\partial Error}{\partial weight_i} * learning rate$$

Deep Neural Networks

First Hidden Layer Hidden Neurons

Input Layer Input Neurons

First Hidden Layer Hidden Neurons

Input Layer Input Neurons

First Hidden Layer

Hidden Neurons

Input Layer Input Neurons

First Hidden Layer

Hidden Neurons

Pooling

Pooling

Pooling Layer

0000000000000

Computer Vision

- Aware of surroundings
- Detect Objects Continuously
- RADAR
- SONAR
- MU
- Infrared
- GPS
- LIDAR
- Video

Car Cameras

- Placed in pairs
- Detect Objects
- Read road signs and traffic lights

Object Detection

Bounding Boxes

Bounding Boxes

LIDAR

Obstacle Avoidance

- Neural networks are effective at navigating and avoiding obstacles
- Inputs to the network include the vehicle destination and obstacles to avoid
- The network outputs an angle to steer and a speed
- The network learns by observation

Obstacle Avoidance

Self-Driving Car Loop

Sense: Collect and process data from all available sensors

Act: Uses the output from current instance of the recurrent neural network to control the vehicle

Map: Build a 3D map representing the surrounding area

Plan: Sends information from 3D map into a new instance of a recurrent neural network

Self-Driving Cars

- Generate multiple paths
- Equipped with powerful computers on-board
- Google has created a simulator for training
- Thousands of scenarios in hours rather than decades
- Can react safely in dangerous situations
- Always learning

Conclusion

- Convolutional neural networks detect locations of surrounding objects
- Recurrent neural networks process the world and give instructions to control vehicles

Questions?