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ABSTRACT
There exists several problems in which a group of robots
would be needed to generate a solution within a reasonable
time. As the number of robots in a system grows, so does
the complexity of coordination. A centralized control sys-
tem is quickly overwhelmed by the growth in complexity.
One reason is that if the central system goes down it af-
fects the rest of system. An additional problem that is that
any planning algorithm will have difficulty dealing with the
sheer number of robots it needs to account for. However,
researchers have found three ways to avoid such issues: the
swarm method, the auction method, and the approxima-
tion method. The swarm method has roots in studies of
social insects such as ants or bees. In these systems, robots’
individual behavior is defined, and the collective behavior
follows. The auction method is based on decentralized auc-
tions, in which the robots “bid” for tasks based on the costs
of getting to the spot and how easily the robot will be able to
do the task. The approximation method is the previous two
methods combined: each robot looks at the tasks around it
as well as the robots around it and decides which tasks it
should proceed with based on what it estimates the other
robots are doing. Each method has its merits and draw-
backs, and the correct method to use changes from problem
to problem.
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1. INTRODUCTION
Robots are a useful way to automate physical tasks with-

out the input of people. However there are real world prob-
lems in which multiple tasks accomplished at the same time,
that are distributed, and/or have many parts that need to
be coordinated. Such systems are very complex and, as the
number of tasks and number of robots increases, become
untenable to handle with a centralized control system [2].
There have been several ideas and methods on how to make
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these systems more robust and scaleable. In this paper we
will explore three of these methods, and will compare and
contrast them.

Each of the following subsections contain background needed
to understand the method followed by a description of the
method itself. Hereinafter we discuss the advantages and
disadvantages to each method and what methods would suc-
ceed in certain problems. We finish with concluding what
method is most versatile and solves the problem of scaleabil-
ity the best.

2. BACKGROUND
Several of the methods that will be discussed require some

background knowledge in order for them to be fully un-
derstood. The following subsections are an explanation of
Markov decision process as well as evolutionary computa-
tion. These tools are used for decision making and evolving
behaviors for the robots respectively. This section will also
include several examples of robotics problems these methods
will be solving.

2.1 Types of Robotics Problems
Multi-robot systems have many applications. Some of

these include: sensing tasks in machines or the human body
with the use of nanobots, disaster rescue missions, mining,
foraging, and even interactive art [6]. In this paper we dis-
cuss the office cleaning problem in which the robots are in
charge of cleaning a cubical type location. Each spot to
clean will be seen as a task. The office cleaning problem will
be discussed more thoroughly by each method, and will be
used to judge the performance of the three methods.

A few categories of problems discussed later on are spatial
organization, exploration, and collective decision. Some ex-
amples of spatial organization problems are pattern forma-
tion, aggregation, and chain formation. Exploration prob-
lems include collective exploration, coordinated motion, and
collective transport. Collective decision problems are prob-
lems such as consensus achievement and task allocation [1].

2.2 Markov Decision Process
Markov decision process (MDP) is a method in solving a

decision based problem with some element of randomness
[5]. The process can be defined by a tuple of four elements:
a set of states, a set of actions, a probability function, and an
immediate reward function. The states are what the “world”
looks like at that point in time. Actions lead to a new state
or possibly the same state. The probability function gives
the probability of actions from one state to another. As



Figure 1: a simple Markov decision process problem
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illustrated in figure 1, if you start in state S1 and take action
A1, there is a 90% chance of going to state S2 and a 10%
chance of going to state S4. The immediate reward function
gives a positive or negative value to states. For example, in
figure 1 the state S3 gives an reward of 5 points, and state
S4 has a value of 2 points. The point of the problem is to
find the path with the maximum rewards.

To calculate the optimal solution or policy you first need
to calculate the utility of the state. You can find the utility
by adding the reward of the state that you are in with the
utility of the following state multiplied by the opportunity
cost of that action. The opportunity cost is probablilty of
reaching the next state. After you calculate all the utili-
ties, your policy will be the path with the maximum utility.
Looking at state S2, it starts with 0 points. Normally we
would take the action with the most points related to it but
in our example we only have action A3. We then add the
outcome of taking action A3 multiplied by their opportunity
cost. Since states S3 and S4 don’t have any actions leading
to other states, their utilities are just their rewards of 5 and
2 respectively. The utility of S2 would then be 3.5. Situa-
tions like with S1 in which there are two actions that you can
be taking, the utility will be the action that calculates the
maximum utility. With the example S1 would have a utility
of 3.5 because the utility calcuated from taking action A2
would only produce a utility of 2.

2.3 Evolutionary Computation
To help explain this term we will use the well-known prob-

lem, the knapsack problem. The knapsack problem involves
taking items and filling a backpack. However, the backpack
can only hold a limited weight. Each item has a weight and
a value associated with it. A solution to the problem would
be a subset of these items with the weights and values of
each item added up. From a programming standpoint we
will represent the subset of items as an array. If the item is
in the solution, the array will have a one in that position,
and if it does not have it the array will have a zero. The
sum of the values of all items with a 1 is the total value
of the solution. Some solutions are not viable because they
go over the weight limit; these solutions are considered to
have either a value of zero or a negative number depending

on your implementation. The ultimate goal is to find the
highest value that you can get into the bag.

Evolutionary computation is much like regular evolution
and follows the same principle. It begins with a population
of randomly generated solutions which in our example would
be subsets of items. The next step is to take a couple of the
solutions and “breed” them together, taking a bit of two
solutions to form a new one. The individuals are picked by
a tournament selection. This involves grabbing a subset of
you solutions that will be breeding. This type of selection
will give higher chances of grabbing a better solution then a
worse one. This will allow the solutions that do not have as
good of a value have a chance to breed sometimes. This is
important because these solutions may have an item in them
that is in the overall best solution but is not in the current
best. The better solutions have a higher chance however
because the overall goal is finding the best solution.

There are a few ways that breeding happens. One com-
mon way is uniform crossover. In uniform crossover each
solution has a bit of it taken and put into the child solution.
With the example problem we would have each item in the
items arrays have a 50% chance of taking from parent one
and a 50% chance of taking from parent 2. You would also
add a tweak, a random change known as mutation, into the
newly made solution to prevent them from all converging to
the same solution.

3. METHODS
This section describes three different methods which we

can use to coordinate multi-robot systems. These methods
are: Swarm (a method inspired by social-insects), Auction
(a method based on decentralized auctions), and Approxi-
mation (a method that uses decision models). The exam-
ple problem will be the aforementioned cleaning problem in
which the robots will be cleaning an office building. Each
dirty spot that need to be cleaned and other such chores will
be a task that the robots have to accomplish. The robots
will have to move around the environment to each spot and
clean it, whilst the environment is getting dirty and hence
adding new tasks to be done.

3.1 Swarm
Swarm robotics were inspired by observing the interac-

tions of social insects, such as ants. Currently, there is no
one way to design individual behavior of a robot to pro-
duce the desired collective behavior across problems: each
problem calls for a different design, and it is left up to the
designer to find the exact design needed for the problem [1].
Most implementations of swarm robotics do not deal with
planning ahead and are very reactive to what is happening
in the current input of the sensors. There are two different
ways, in general, of going about swarm robotics: behavior-
based design and automatic design.

Behavior-based systems involve designing each robot to
follow a certain behavior. Inside of behavior-based systems
there are a few paradigms, such as probabilistic finite state
machine design. In this paradigm each robot changes its
state (moving, doing a task, etc.) based on its sensory in-
put. Another paradigm is the virtual physics-based design
in which each robot is seen as a particle that exerts forces on
the robots around it. This approach is good for tasks such
as coordinating movement and forming patterns.

Automatic systems involve using evolutionary computa-
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Figure 2: This is a diamond world used by the approximation method. The figure on the left is the original
view for robot A0. The middle figure is A0s view of what robot A1 sees. The figure on the right is the final
view of robot A0. [2]

tion to evolve good behaviors for the robots. This means
that they will start with a population of behaviors and iter-
atively ”breed” them together to make better behaviors that
fit the overall desired behavior. However, this approach is
only realistic for situations in which you can simulate the
robots because of the overhead involved with evolutionary
robotics including uploading code, setting up the robot and
environment etc. [4].

While using the swarm method each robot does not plan
on how or where it is going to go next. To solve the of-
fice cleaning problem we will not be able to come up with
an optimal answer to maximize efficiency. However this also
means we don’t have to compute complex equations to clean
an office building. We rely on the group of robots to ade-
quately clean the entire place. Each individual robot would
only know about what its sensors could tell it about the
world. They would not know where tasks were except if it
was in its sensory range. Most likely the robots will be ran-
domly running around looking for tasks: there would have
some robots that tend to turn left at forks, some robots that
prefer turning rights, so on and so forth. The more robots in
the system the spread can be better across the office build-
ing.

3.2 Auction
Under the auction control system, each robot is seen as a

buyer and each task is seen as an item. An implementation
of this method formed by Lozenguez et. al. uses a protocol
known as Simultaneous auctions for coordination (SSAC).
The robots communicate what tasks will be accomplished
by what robot. Auctions start when a robot has noticed
a change in the set of tasks; that robot then becomes the
auctioneer and contacts all other robots in communication
distance. The contacted robots stop what they are doing and
send a message back to the auctioneer that they are ready.
After the auction has begun, it is closed and no robot can
leave or enter the interaction. The next step is to determine
the current state of the world, in which the robots come up
with an initial starting point for the problem. Each robot
then, using an MDP problem, calculates the optimal tasks
and path. The auctioneer at this point will swap the tasks
around to the robots with the higher rewards. These steps
will repeat until there is nothing to swap. The robots then
go and complete the tasks they have been assigned until the

Figure 3: This is an example map used by the auc-
tion method. Each blue line is a possible path for
the robot to take, each red box is an obstacle, and
each lettered dot is a point of interest or a task [3].

next auction happens [3].
For this implementation the researchers had predefined

paths that the robot can take. These are represented by a
line connecting circle junctions shown in figure 3. Each map
also had obstacles as shown by the shaded polygons. The
problem that Lonzenguez et al. were trying to solve started
with a map taken from a UAV. Some parts of the image
were not as good and needed to be checked out and fixed by
the ground robots. These spots are indicated on the figure
by the lettered circles.

Although these researchers were solving a different prob-
lem, there are some parallels to the office cleaning problem.
Each obstacle can be seen as a desk and each spot that
needs to be checked can be seen as a place that needs clean-
ing. The way that auction works in the situation begins with
all robots in communication with each other. One of them
becomes the auctioneer and all robots compute its policy or
task sequence. The auctioneer will swap policies around un-
til no better solution can be found. The robots then begin
on their assigned tasks. When one robot finishes its task
it will send a message to all the robots that are within the



Figure 4: (a) Picture of the office world used in Claes et al. approximation method [2] (b) the labyrinth
world used by Lozenguez et al. for the auction method [3]

communication distance determined by the hardware. That
robot will then become the auctioneer and the process re-
peats itself until all tasks have been accomplished.

3.3 Approximation
The third method that we are going to discuss is known

as effective approximation. This approach uses a variation
on Markov decision processes known as multiagent Markov
decision process (MMDP) along with some approximation
methods for task delegation and planning. MMDP is de-
fined by a five part tuple: a set of agents (robots in our
example), a set of states of the environment, a set of joint
actions, a transition probability function, and an immediate
reward function [2]. By adding locations of other robots and
task status to the states of the environment, each agent can
now calculate which tasks are already being dealt with or
probably going to be dealt with, and factor that into the
transition and immediate reward functions. The robots will
plan their routes by choosing the route with the highest re-
ward.

This approach has to deal with the problem of complexity
caused by the number of robots and the large state space
caused by the large set of potential tasks. These problems
cause the planning to be computationally hard, and a robot
with limited capacities cannot handle it. The first assump-
tion that we have to make is that each robot only looks
at what is in its individual limited scope. This will reduce
the state space and lower the complexity because there are
fewer tasks and robots that have to plan for. The tasks
that it eliminates will have a lower reward because of the
distance it has to travel, meaning good states are not being
removed. Then subjective and phase approximation meth-
ods are applied to improve on this even more. Subjective
approximations are going to make the robot take into ac-
count only what it can see personally; while phase approx-
imations are going to make them only focus on the tasks
that are currently available. Each agent will only model its
own scope and only considers the changes it can make to the
state space. This will reduce the state space as well as sim-
plifying the transition and reward functions because there is
less the robot has to compute. Along with this each agent
only needs to know what other tasks are going to be done

by other robots. The individual will take in the other robots
locations and make the tasks that the others are probably
not going for have higher rewards. Furthermore instead of
thinking of each spot as a potential task location, each robot
can consider only the current task locations. If even this is
not enough to reduce the state space, the individual robot
can consider only the closest k tasks. These approximation
methods in tandem will make the problem at hand feasible
for robots.

In this method each robot knows about every task and
robot around it and will plan its moves for up to 20 tasks
that it will complete. This plan can change seeing that an-
other robot gets to a task first. In figure 2 we can see three
diagrams in a diamond shape. These are the steps that the
robot will take in the planning phase. In the first diagram
there are two robots: one in square 1(A0) and one in square
11(A1). There are also two tasks: one in square 5 and one in
square 8. Each square is of a different shade of color which
corresponds to the value of going to that square, lighter be-
ing highly valued, dark being low valued. The actual number
value of the square is in the top left corner. This is robot
A0 initial view of the world to see where it wants to go. The
next diagram is robot A0 view of what robot A1 is seeing.
From this view we can then discount the original diagrams
spaces to yield the last diagram’s spaces. Robot A0 will then
proceed to the task in square 5 because it has the highest
reward associated with it.

There is future work to be done in expanding the Ap-
proximation method. It currently cannot handle tasks that
require execution in a specific order, nor can it organize the
execution of tasks requiring cooperation of robots.

4. RESULTS
The implementations of swarm robotics are limited to

three different areas: spatial organization problems, explo-
ration problems, and collective decision problems. The col-
lective decision making problems are still limited by the non-
planning paradigm of swarm robotics. The advantages that
this method has over the others are that they do have to
compute less and work very well for foraging and spatial or-
ganization problems. Unfortunately, Brambilla and the rest
of the research team did not give any quantified results to



Table 1: These are the auction method results.[3].

Tasks Score Worst Score %100%
2-3 99.5 78.7 86.8
4-5 99.7 88.8 63.0
6-7 99.2 75.8 42.0
8-9 99.0 75.0 34.0
10-11 98.8 82.8 34.0
12-13 98.8 86.8 23.0

compare with the other two methods. The auction and ap-
proximation methods, however, will outperform swarm be-
cause they do find an optimal, or close to optimal, path for
the robots to take.

The auction method had very good results for a similar
problem to the office cleaning. The robots were tasked to
investigate spots of interest in a few different map types:
labyrinth and a few obstacles. They had both of these map
types with a range of how many tasks they had to accom-
plish, from 2 to 13 total tasks. Tasks are assumed to take one
time step each. Table 1 shows the scores for the number of
tasks that the robots had to do for the auction method. The
scores are based on the percentage of the upper bounds. The
worst score is the farthest away that it got from the upper
bound. The last section labeled % 100 % is the percentage
of times the method got exactly the upper bound Scores are
computed to a percent by taking the rewards of each robot
added together over the maximum rewards that it could have
achieved. In the few obstacles map the robots were able to
receive a score of 99.5% for 2 to 3 tasks and sinking down to
a 98.4% for 12-13 tasks. In the labyrinth map, as shown in
4b, they ranged from 99.7% for 2 to 3 tasks to 98.8 for 12 to
13 tasks as seen in table 1. These as shown later outscore
approximations method but there are other factors that we
need to take into account while comparing these numbers.
This method will outshine the swarm robotics method be-
cause it can find the optimal solution to the problem where
swarm would be a bit more variant; Swarm scores would av-
erage to be lower because swarm will not plan ahead to find
the optimal, or close to optimal solution.

The approximations method delivered impressive results
after several tests and changing variables to find the best
results. The variables they changed are: how many tasks to
consider in the MMDP, and how many steps to look ahead.
The number of clean squares as shown in figure 4A at ev-
ery time step is added to the teams of robots score. Table
2 shows the results when the robots were solving the office
cleaning problem. The type of world is the type of environ-
ment the robots were in. % of the upper bound is how close
the robots got to the maximum score they could of gotten
had they picked most optimal task. In small worlds, such
as a 3x3 square, this method got as high as 97.24% close
to optimal solution. However, as the worlds get bigger and
more complex this number drops to a reasonable 70.4% for
an office environment as seen in table 2. Although these
numbers are lower than the auction method, there are a few
things that this method does that the other one does not.
The office environment as shown in figure 4a had 66 squares
in it meaning that there are 66 possible tasks compared to
the 12 to 13 in auction. This method also adds in tasks

Table 2: These are the results of the approximation
method. [2].

Type of world % of Upper Bound
Line 79.2%
Diamond 85.7%
Corridors 79.6%
2x2 98.4%
3x3 97.2%
4x4 87.8%
6x6 76.8%
Office 70.4%

while the experiment was running. Each square has a .05
probability to turn to a task during each time step. Again
tasks are assumed to take one time step each.

The approximation method has some clear advantages
over both swarm and auction. Swarm does not plan, and
therefore cannot ensure as efficient of a system. Swarm also
does not adapt as well to new or different tasks that ap-
pear in the world as approximations does [2]. Auctions have
to stop the robots to reallocate tasks, where approximations
can dynamically change at every time step and does not need
to stop all robots, just the one that is changing. Auctions
also do not consider sub-tasks, where a task has more than
one action to complete, or tasks that need to be done in cer-
tain order where approximations can handle them without
much change.

5. CONCLUSION
In multi-robot systems as the number of robots and the

number of coordinated tasks that need to be completed
grow, the quicker that system will outgrow a centralized
control system. There have been three solutions to manag-
ing these kinds of systems: swarm, auction, and approxima-
tions. Each has advantages and disadvantages. Swarm is a
very good solution to foraging and pattern-making types of
problems, but is lacking in the ability to plan for upcoming
tasks for efficiency. Auction is promising because it can plan
and come up with optimal solutions for everything swarm
robots can do and more, but is limited by the inability to dy-
namically change at any time and can only change the plan
during the brief moments in which the robots are commu-
nicating. Approximation can plan solutions that are close
to optimal and can change if new tasks appear or if another
robot gets to the other tasks before it can. However, the
solutions can get as low as 70.4% for some problems which
is still reasonable. Each method has a type of situation that
they best fit, and it up to the designer of a system to make
the appropriate choice.
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