Evolution of FLUSH + RELOAD

Preston James Miller
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
mill6528@morris.umn.edu

ABSTRACT

Side channel attacks have been developing and growing more
powerful to work around the fixes for them. The FLUSH
+ RELOAD attack is an excellent example of how attacks
evolve over time to become more powerful. Originally devel-
oped in 2011 by Gullasch et al, the FLUSH + RELOAD is
still getting variations to this day. The original attack was
designed to gain the secret key of AES encryption, however
it was very slow. A faster version of the attack targeting
Square-and-Multiply algorithms was made by Yarom et al.
This attack was much faster and less error prone than the
original. Another attack came to light building upon Yarom
et al’s attack that attacked the OpenSSL implementation
of ECDSA. This attack used lattice techniques to discover
the secret key. The last attack that is discussed is an adap-
tation that targets Platform-as-a-service cloud systems to
obtain user data.

Keywords
Side channel attack, timing attack, FLUSH + RELOAD

1. INTRODUCTION

Data encryption is a practice that all companies do if they
need to store sensitive information. Typically if there is not
a way to bypass the encryption algorithm itself, an attacker
will resort to brute force attacks to try to guess the key. The
other way to go about breaking encryption is through side
channel attacks. Side channel attacks are powerful attacks
that target the physical implementation of a system rather
than the code; this makes side channel attacks difficult to
prevent. The FLUSH 4+ RELOAD attack is an attack that
was made to find the secret key of a cryptographic system
using the CPU cache. With the secret key, any encrypted
data can be easily decrypted, meaning it is easier for the
attacker to retrieve sensitive data from a machine. Mak-
ing sensitive data easier to access is obviously a big issue
with how much sensitive data people have out on the web
currently. Knowing how these side channel attacks work

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

UMM CSci Senior Seminar Conference, April 2016 Morris, MN.

can help bring stronger security in the future. The original
FLUSH + RELOAD attack was developed in 2011 by Gul-
lasch et al. Yarom et al extended this attack so that it did
not have to run on the same processor. Benger et al extended
the attack by Yarom et al by adding lattice techniques to
obtain the private key from the OpenSSL implementation of
ECDSA. The last attack talked about in this paper will be
the adaptation by Zhang et al. The attack by Zhang et al
can gain user information from Platform-as-a-service cloud
systems. These attacks will be discussed in the order they
were introduced.

2. BACKGROUND

2.1 Cache

The cache is a part of the CPU that stores data for faster
access later. When an operation is preformed, most of the
time it gets stored in a cache so it does not have to be recom-
puted. When a computer is processing data, it will check
in the cache to see if it has accessed the given data before.
If the operation has been preformed before and was found
in the cache, it is called a cache hit otherwise, it is called a
miss [5]. When a cache miss occurs, the data is added into
the cache for future access. Caches are in several places on a
computer, but for the remainder of this paper the cache will
refer to the cache on the CPU. Some CPUs have multi-level
caches. In most multi-level cache architecture, the last level
cache is shared between all levels. This means that once
an item is removed from the last level, it will be flushed
from all of the levels above it. A command that is used for
flushing the cache is the clflush command. clflush is an
unprivileged instruction, meaning that it does not require
administrative privileges to execute, that tells the CPU to
remove items from its cache.

2.2 Cryptography

Cryptography is the practice of encrypting data for secure
storage and transport. Encrypting involves a secret key to
transform the data into something that is essentially random
until you use the correct key, which could be different from
the one that did the original encryption, to decrypt it. A
block cipher is an algorithm used for encryption. A block
cipher encrypts a short fixed-length block of data. To use
the cipher on a larger data set, it is used repeatedly on small
blocks of the larger data set.

2.3 AES

The advanced encryption standard, commonly known as

AES, is a block cipher that was developed in 1998. AES
can have three different key sizes given to it. It can have
a 128 bit key, a 192 bit key, or a 256 bit key. The size of
the key determines the number of times the input will be
transformed by the algorithm. With a 128 bit key, the data
goes through 10 iterations, while the 192 bit key gets 12 it-
erations and the 256 bit key gets 14 iterations [4]. Before
AES starts iterating, it breaks the input into 16 byte seg-
ments and treats them as a 4 x 4 matrix, this matrix will
be referred to as A. AES then preforms the AddRoundKey
step. The AddRoundKey step takes a subkey of the secret
key, which is defined by a scheduler, and converts it into a
4 x 4 matrix of its bytes, this matrix will be referred to as
K. AddRoundKey then takes A and K and adds each cor-
responding entry together using XOR, which is equivalent
to saying it adds them and then takes the result modulo
2 [4]. AES then begins its cycles. Each cycle starts with
the SubBytes step. The SubBytes step has a fixed lookup
table that it will use to modify the entries in A. Once all of
the entries are replaced, the ShiftRows step begins. The
ShiftRows step cyclically shifts each row by a given off-
set. After the matrices are cycled, the MizColumns step is
applied. The MixColumns step multiplies each column by
the value of a function c¢(z). After that the AddRoundKey
step is preformed again. These steps are repeated until the
last iteration of the cycle where the MizColumns step is
dropped [4]. AES is the only publicly accessible cipher that
is approved by the National Security Agency, it is used in

many commonly used encryption libraries such as OpenSSL [4].

2.4 Square-and-multiply

The square-and-multiply exponentiation algorithm is a com-

monly used component in encryption algorithms. It is used
in many commonly used encryption packages such as GnuPG
in versions before 4.1.14 [7]. This algorithm is a fast way to
compute £ mod m where e, m,x are integers. The square-
and-multiply algorithm starts with some value of x. The
algorithm is passed in an exponent e in its binary form. It
then loops over the length of e. In the loop it starts out
by squaring = to replace the previous value of z. After z is
squared, x gets replaced by the modulus of x and m, where
m is a value passed into the algorithm. If the bit that is
being looped over is 1, them x is multiplied by the origi-
nal value of x. Finally x becomes the modulus of x and
m and the loop continues [7]. This method is able to find
large powers of numbers fairly quickly. Table 1 shows the
steps the algorithm takes. The first column is the result to
be used in the next operation, and the operation is what is
being done at the current step. The exponent column is the
bit representation of the exponent and the least significant
bit determines what operation is done. Every row adds one
bit onto the key or changes the least significant bit to a one.
The end result of gives 58, which is also the solution to 55
mod 101.

2.5 Side Channel Attacks

Side channel attacks are attacks that target the physical
implementation of a system to get information out of it.
There are many different kinds of side channel attacks that
use different information to get the information the attacker
desires [6]. Some examples of things can can be used in
a side channel attack are power consumption, checking the
electromagnetic radiation coming out of the machine, and

x Operation | Exponent
5 mod 101 None 1

52 mod 101 Square 10

252 mod 101 Square 100
10+ 5 mod 101 | Multiply | 101

95% mod 101 Square 1010
367 mod 101 Square 10100
847 mod 101 Square 101000
87 % 5 mod 101 | Multiply 101001
317 mod 101 Square 1010010
52 %5 mod 101 | Multiply 1010011

Table 1: Square-and-Multiply with z =5, =83,m =
101,e = 1010011,

even the sounds that a machine makes can be used for a
side channel attack.

2.6 Timing Attacks

A type of side channel attack are timing attacks. Tim-
ing attacks monitor how long different operations take on a
machine and use that information to guess the secret key.
Since every operation by the machine takes a certain amount
of time, the attackers can work backwards to recreate each
step until they get the desired input [3]. White noise is
commonly used to make it harder for timing attacks to be
implemented. White noise puts random operations inside
the algorithm to increase the number of steps and throw off
systems that might be trying to look in onto the process.

3. FLUSH + RELOAD

The FLUSH + RELOAD attack was developed by Gul-
lasch et al in 2011. The attack is a variation on a timing
attack and also uses the CPU cache to gain access to in-
formation. The attack uses four stages, one to spy on the
client to get sections of the secret key, another to cut out the
white noise from the machine, the next to find candidates
for parts of they key, and the last one to generate the secret
key.

3.1 Setup

The setup for this attack in practice would most likely
be a focused malware attack. It is also assumed that the
attacker would have a machine with the same configuration
as the victim machine so they could set up the attack and
make sure it works correctly. Since the attack does not re-
quire administrative privileges, the malware can affect any
user [2]. This setup for the attack also assumes that the
victim is encrypting with the AES block cipher. This attack
requires that it runs on the same core as the AES process,
this can be done by exploiting a bug with processors that use
the completely fair scheduler. It needs to run on the same
core because it accesses the first levels of the cache that are
not shared between cores.

3.2 Spy Process

The spy process is the first stage of FLUSH + RELOAD.
The purpose of it is to make it so the CPU can only run
small sections of code so that parts of they key can be dis-
covered. The spy process is the only process where an end
user experiences any delay. Once the spy process is acti-
vated, it releases many threads in order to clog the system

adI' —— = smnu wm m

e
-':'- N _:
— -
adr| = = T
1 L] l. f . . L] . -

Figure 1: The top picture is all of the noise the CPU
produced during the spy process, the bottom is the
most likely candidates to be from part of the en-
cryption process, with darker squares having higher
probability (taken from [2])

and make processes run one step at a time. FEach thread
monitors the time and all of the data access that happened
before it. Every so often, these threads will execute a sec-
tion of code that will load the the values of the table for the
AddRoundKey step of AES. If one of these values create a
cache hit, then it stores when these hits and misses occur for
later use [2]. After this process is completed, the informa-
tion gets passed onto another process to analyze the data.
When testing this method Gullasch et al discovered a jump
from 10ms for 100 encryptions to 2.8 seconds on average,
due to the threads clogging up the system, which they say
most people would just assume their operating system was
doing something else and slowing down their computer [2].

3.3 Cutting Out White Noise

The next process uses the data found in the spy process
and figures out which discovered cache hits were produced by
the encryption process and what data is from other processes
running on the machine. This step and the steps after it can
be run on a different machine if the data is exported to the
different machine. However, they can also be run on the
victim machine. This process is done using neural networks,
which give weights to different values to learn what data is
useful and what data is not. The neural network is trained
to figure out with high probability when references to the
table where actually used. Figure 1 shows just how effective
neural networks are at finding when the hits were used in
the encryption process. Once most of the cache hits are
discovered, the data is sent to the next part of the attack.
Neural networks can lead to some false positives or they
could miss some data accesses, however, since there is no
real definitive way to prove a cache hit was from AES and
not another process.

3.4 Searching For Key Parts

Searching for key parts requires finding the start of each
SubBytes step. This is done by assuming every entry is the
start of the SubBytes step. It then calculates how often
the value lies in a predetermined set. From the discovered
frequencies, the probability of the element being part of the
key can be discovered [2]. These probabilities are sent over
to the last step in the process.

3.5 Assembling The Key

This is the part that actually assembles the secret key.
Each partial key fragment is given a score based on how
many times it came up in section 3.4. The attack then tries
to generate a key with the highest possible score. It starts
out by fixing one part of the key with a high probability,
then adding more on until the score gets better. To figure
out if it has a better score, the process takes the standard
AES key scheduler and compares the part of the key to each
of the different sections. Once the unused element with the
highest score has a lower score than the entire generated key,
the process quits because it found the best candidate for the
key.

3.6 Countermeasures

The best and most obvious countermeasure to this attack
would be to disable the CPU cache since that is how the
data is obtained; however this would fail in practice because
getting memory from RAM instead of the cache is 10 to 100
times slower [2]. A less obvious countermeasure would be
taking away high resolution timers on the CPU [2]. This
would make the attack very noticeable because it would not
be able to stop certain threads from executing if nothing
has happened since the last spy thread was executed. This
would mean that every thread would time loading the AES
table from cache then flush out the table, even when only spy
threads have been executed since the last spy thread. This
would slow down the attack to the point where it would
be easily noticed because a simple encryption could take
minutes to complete. The downside to this would be that
no other processes could get this information, so it could
break some existing programs relying on this information.

4. YAROMET AL FLUSH + RELOAD

Yarom et al developed their own adaptation to the FLUSH
+ RELOAD attack in 2014. This attack uses the last level
cache, which is the cache level that is shared between all the
cores of a CPU. This attack extends the original by being
able to attack systems running on separate virtual machines
as well.

41 RSA

This attack is implemented to steal the private key from
the RSA encryption system. RSA is a public key encryption
system, meaning it has one key to encrypt data, which is
public and another private key that will decrypt the data
that is returned. RSA is used in GnuPG, meaning it uses
the square-and-multiply algorithm discussed in section 2.4.

4.2 Spy Process

The spy process is much faster than in the original attack.
The spy process no longer has to start up threads to spy on
the victim. Instead it shares memory with the victim. It
then flushes the data from the cache and waits. It tries to

400

Probe Tine (oycles)
M

T, 800000 s Bbenat . 1 00 808 00000 ,0,. F08,0,0

(tORGeP09 0004, 4378950 oale®

Sa:lare
Muliiply @

Meodulo
Miszed slots

ByyPatae - 000,

Time: Skot Murnier

Figure 2: Time measurements taken form the spy process, visualizing how it decides what the victim process

used. (taken from [7])

read the data that it recently flushed from the cache and
times it to see how long it takes. If the read was fast, then
it knows that the victim used that block of memory because
it had to have been put back in the cache, while if it was slow
it knows that that portion was not used [7]. Figure 2 shows
the time difference in CPU cycles between values that were
found in the cache and values that were not. If an operation
was below the threshold line, then it is assumed to have been
used since it was last flushed from the cache.

4.3 Finding The Key

With the data gathered from the spy process, the attack
can figure out the bits of they key. Since the spy process
can detect when the victim does certain operations finding
the bits of the exponent are relatively easy. If the discovered
processes does not multiply, then the bit is a 0, otherwise it
is a 1. An example of finding the bits would be in Tablel,
without looking at the exponent column, you can figure out
when a 1 came up based on when the multiplication step is
used. The problem comes when there are missing bits that
the spy was unable to catch. These sections can be found
by observing another process most of the time. Since it is
very unlikely that the same bit will be missing on multiple
executions, having the spy observe multiple cycles will help
the find all of the missing bits. Inspecting the data manu-
ally also helps find missing bits. The program is not smart
enough to decide what happened when there is a bit miss-
ing, but if a person observes the data, they can reduce the
missing bits by 25% to 50% [7].

4.4 Comparisons

The version of FLUSH + RELOAD Yarom et al created
is much more powerful than the original. With this attack
it is possible to find the key within one encryption without
it being apparent to a user on the victim machine. This is
because it uses the last level cache, so it can and will run
on a different core than the victim process. Being on a dif-
ferent core means that the attack is much more flexible as
well because it doesn’t rely on luck or bugs in the processors
scheduler in order to execute [7]. This attack also cuts out
the use of neural networks, which was a very slow and com-
plicated part of the original attack. Neural networks caused
a few false positives as well.

4.5 Countermeasures

This attack actually had a countermeasure implemented
in GnuPG version 1.4.14 [7]. The implemented countermea-
sure was the square-and-multiply-always algorithm. This al-
gorithm is almost identical to the square-and-multiply The
difference is it always multiplies, however the value is only
assigned to z if the current bit of e is 1 [7]. Similarly to
the original attack, restricting the use of the clflush com-
mand would also make the attack harder to impossible to
use. Even restricting it to an administrative command only
would make the attack harder to use. This is because the
victim account would have to have administrative privileges,
and even then the victim could have to give explicit permis-
sion through a popup or other means in order for the code to
run. This attack also does not work on certain cores where
when data gets flushed from the last level cache it does not
get flushed from the other higher level caches [7]. This is
because there is no way to know how and when the victim
called a function with great certainty, so the data would be
very sporadic and inaccurate.

S. FLUSH + RELOAD WITH LATTICE

This attack is built on the attack described in section 4.
This attack is used to attack the OpenSSL implementation
of the ECDSA algorithm [1]. This attack was also developed
in 2014 with help from one of the developers of Yarom et
al’s FLUSH 4+ RELOAD attack.

5.1 ECDSA

Elliptic Curve Digital Signature Algorithm, or ECDSA for
short, is an algorithm that is somewhat similar to square-
and-multiply. Instead of encryption, ECDSA is used to sign
messages and verify signatures, meaning that it can verify
identity for something like bit coin to make sure the coins
go into your wallet and not into anther person’s wallet. One
difference between ECDSA and square-and-multiply is that
ECDSA works using elliptic curves. The specifics of this
algorithm are outside the scope of this paper. The impor-
tant part of this attack in the scope of this paper is that the
OpenSSL implementation of ECDSA uses wNEF to calcu-
late a given point, (z,y) on the elliptic curve, which is where
this version of FLUSH + RELOAD will be attacking.

5.2 wNEF

wNEF is the algorithm used by OpenSSL to calculate the
(z,y) pair, which is a point on the curve that ECDSA uses.
The wNEF uses small amounts of preprocessed information
and the fact that addition and subtraction have the same
cost on the curve to improve performance over the binary
method of point multiplication [1]. This method can be
spied on to see when the least significant bits of the variable
d is 0. Using this information the attack can get at least
one bit of d, which can be expanded to more bits, with i
probability [1]. These are found when a group double or
a group add happens. A group double happens when the
observed bit of d is zero, this doubles the value of the point
Q. A group add happens when the observed bit of d is
non zero. When this happens @ gets doubled and added to
some computed value. Since these operations take different
amounts of time, a program can find when a double or an
add is completed by timing these operations.

5.3 Spy Process

The spy process is almost the same as the spy process used
in the attack by Yarom et al. The spy only differs in what it
is looking for; instead of looking for the square-and-multiply
algorithm, it is looking for the group adds and doubles from
the wNEF algorithm. Once the spy process gets the bits of
d, the information is passed onto the lattice attack to process
the information.

5.4 Lattice Attack

Since wNEF only leaks two bits per run on average, the
lattice attack figures out the key algebraically [1]. To set up
the attack, they set a fixed public key. Using the information
from the spy process they get that k; = ¢;—n(mod 2“’) where
k; is the private key [; is the number of known bits, and ¢;
is some constant. They know that k; + n is the length of the
known run of zeros in the least significant bits, which will
be denoted as z; [1]. Since k; + n is divisible by 27 for some
Z, they pick values so that z; > Z. From the information
discovered by the spy attack, the lattice attack is able to
find out when a group double or a group add happens with
only a .55% — .65% error rate where the value is unknown.
They can then put this information into a vector and solve
it using the closest vector problem to get the secret key [1].

5.5 Countermeasures

One simple countermeasure to this attack is to use a new
key every transaction, which is currently the recommended
approach [1]. This would work because then the attack could
not get enough information of the constantly changing key,
but since not everybody follows these guidelines, it leaves
them vulnerable to the attack. Another way would be to
not use some precomputed data in wNEF and instead use
another algorithm that would be able to compute the values
so that the static values would not always be in cache.

6. FLUSH + RELOAD IN THE CLOUD

The FLUSH + RELOAD attack was extended by Zhang et
al in 2014 to work on a Platform-as-a-service (PaaS) cloud.
A PaaS cloud is a cloud that allows tenants to execute inter-
preted source code, such as PHP, Ruby, Java, or any other
language [8]. This attack does not target any particular en-
cryption algorithm, however, it does target data from users

GenerateResetPasswordToken

gettimeofda

Figure 3: Common function calls in generating pass-
word resets links in PHP (Taken from [8])

using other services on the cloud. Using this attack Zhang
et al were able to discover how many items were in a vic-
tim’s shopping cart, gain password reset links to hijack a
user’s account, and to break XML encryption schemes [8].
Only obtaining password reset links will be discussed in this
paper in depth.

6.1 PaaS Cloud

PaaS cloud services usually have more than one applica-
tion running on them at a time, usually from different cus-
tomers. To isolate each instance, the PaaS provider provides
one of the following services. Runtime based isolation is an
isolation technique that allows services to share the same
runtime environment, but have different programs running.
For example if two different Java programs are running on
a machine, they share the same JVM instance, but they do
not share the same values for variables. In this method the
security would mostly be provided by the systems running
the code, such as the JVM [8]. Another from of isolation
is user based isolation. In this method each instance of an
application has a non privileged user account that runs the
applications. This is basically the same as having a public
computer with many different accounts, such as a library.
Files that are owned by another account cannot be run or
even viewed. In this method the operating system takes
care of memory protection. Container based isolation is a
method where each application would get its own container.
A container is an isolated group of processes that are sep-
arated from others on a deep operating system level. They
can be thought of as Tupperware with a name written on
it in on office fridge with polite employees, it will not be
opened or looked into by anybody but the owner. The last
isolation technique is virtual machine based isolation. In this
method each instance operates as if it is a full computer with
everything at its disposal, but it will not be able to access
memory outside what the outside operating system lets it
have [8]. The FLUSH + RELOAD attack was tested using
container based isolation, however, it could be modified to
run on other isolation types.

6.2 Spy Process

The spy process for this attack is similar to the others.
The spy has a list of instructions that it loads into the cache.
If any of these processes result in a cache hit, then the spy
process can execute a program depending on what triggered
the hit [8]. After it tests for cache hits, it will flush all of the
instructions out of cache using cl flush. After a set interval
the spy will reload all of the data and test it again.

6.3 PRNG

PRNGSs are pseudorandom number generators that are
used by many applications for authenticating password re-
set requests [8]. For the purpose of explanation, the pa-
per will assume that it is using the PHP implementation of
PRNG. PRNG usually relies on a system call to get a seed
for the generator, which is usually the time of day [8]. In
PHP there are many function calls that happen in order to
generate a password reset link, shown in figure 3. However
the only sources of randomness are gettimeofday(), time(),
and getpid() [8]. This means that if a process can discover
when one of these functions is called, it can reproduce the
link once it finds the value of getpid(). A spy process can
view when the gettimeofday() is called and call it on its
own and store the value. Since both systems are running
on the same machine, it should be extremely close to, if not
the same as the victim’s call. The same can be said about
the time() function. The getpid() call returns a number less
than or equal to 2°°.

6.4 Attacking The PRNG

Currently, these password reset links are used in many off
the shelf eCommerce applications as well as in WordPress,
which makes up 21.9% of the top 10 million websites [8]. In
order to do this, two password reset requests are sent out,
one to an account owned by the attacker and another to the
one owned by the victim. The program stores information
form the gettimeofday() call. Using that information and
the password reset token given by the application, the result
of the getpid() call can be found by a brute force attack that
takes O(2%°),2' for guessing the getpid() value and 2* to
account for differences in the gettimeofday() call [8]. Once
the value for getpid() is found, it only takes four requests to
find the correct link to reset the victim’s password [8].

6.5 Countermeasures

This attack can also be countered by disabling the ¢l flush
instruction. Disabling it would result in the same conse-
quences as before, other processes that rely on it, such as
the operating system could not use it. A way around this
could be to put each application in a sandbox where cl flush
is disabled, but there are ways to get around this by using
different commands [8]. Another way to counter this attack
would be do disallow any resource sharing. In order to dis-
allow resource sharing, each application would have to be
given their own binary files. This would have a huge impact
on memory, meaning that less applications would be able to
be stored on each machine due to the memory overhead of
each instance [8]. Because of that fact, disallowing resource
sharing most likely will not be implemented because it is not
cost efficient.

7. CONCLUSION

Overall side channel attacks are very powerful attacks and
the FLUSH + RELOAD attack is no exception. With how
fast FLUSH 4+ RELOAD is developing and the information
it is able to obtain, it currently poses a massive threat to
security. While FLUSH 4+ RELOAD used to be a slow attack
that was only possible under very specific circumstances.
Now somebody can purchase a section of a PaaS cloud and
spy on the other applications on that box, including getting
the user data. As time goes on, unless a way to stop the

FLUSH + RELOAD attack is discovered, user data will be
at greater risk of being spied on by this attack.

8. ACKNOWLEDGMENTS

I would like to thank Elena Machkasova for the excellent
feedback she gave to the drafts of this paper. I would also
like to thank Kevin Arhelger for the feedback he gave on my
draft.

9. REFERENCES

[1] N. Benger, J. Pol, N. P. Smart, and Y. Yarom.
Cryptographic Hardware and Embedded Systems —
CHES 2014: 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings,
chapter “Ooh Aah... Just a Little Bit” : A Small
Amount of Side Channel Can Go a Long Way, pages
75-92. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[2] D. Gullasch, E. Bangerter, and S. Krenn. Cache games
— bringing access-based cache attacks on aes to
practice. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP ’11, pages 490-505,
Washington, DC, USA, 2011. IEEE Computer Society.

[3] Wikipedia. Timing attack — wikipedia, the free
encyclopedia, 2015. [Online; accessed
28-February-2016].

[4] Wikipedia. Advanced encryption standard —
wikipedia, the free encyclopedia, 2016. [Online;
accessed 5-April-2016].

[5] Wikipedia. Cache (computing) — wikipedia, the free
encyclopedia, 2016. [Online; accessed 19-March-2016].

[6] Wikipedia. Side-channel attack — wikipedia, the free
encyclopedia, 2016. [Online; accessed
28-February-2016].

[7] Y. Yarom and K. Falkner. Flush+reload: A high

resolution, low noise, 13 cache side-channel attack. In

238rd USENIX Security Symposium (USENIX Security

14), pages 719-732, San Diego, CA, Aug. 2014.

USENIX Association.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.

Cross-tenant side-channel attacks in paas clouds. In

Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’14,

pages 990-1003, New York, NY, USA, 2014. ACM.

8

