
Combination of Video Streaming Technologies as
CDN/P2P Hybrid & ABR/P2P Hybrid

Andrew L. Peterson
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

pete9443@morris.umn.edu

ABSTRACT
Peer-to-peer networks, content delivery networks, and adap-
tive bitrate streaming are all approaches to distributing con-
tent over the internet. These technologies can be used to
stream video, but improvements in efficiency or scaling these
separate technologies can be difficult. By combining them,
these technologies can be improved. Peer-to-peer networks
can be combined with content delivery networks to take
some of the load of distributing data off of the content deliv-
ery network to increase its capacity. Peer-to-peer networks
can be combined with adaptive bitrate streaming to provide
a flexible video streaming service.

Keywords
Video Streaming, Peer-to-Peer, Content Delivery Networks,
Adaptive Bitrate Streaming

1. INTRODUCTION
Streaming video is a popular form of data that is dis-

tributed all over the internet. There are multiple approaches
to streaming videos. Content delivery networks and peer-
to-peer networks are infrastructure setups that will allow
clients to receive video at a large scale. Adaptive bitrate
streaming is a method to improve video streaming so clients
may have the best viewing experience regardless of network
congestion. These technologies work well on their own and
are currently implemented in real world video streaming ser-
vices. However, these technologies have room for improve-
ment. Peer-to-peer networks can only share data at a fixed
bit rate and are not adaptive. Content delivery networks
can be expensive to scale for large user bases. Adaptive bi-
trate streaming requires servers to encode videos which can
be expensive if it is to serve large user bases. By combin-
ing these technologies it is possible to create new and better
methods for streaming video. By combining content delivery
networks and peer-to-peer networks as a hybrid it is possible
to improve user satisfaction and lower network costs than if
the technologies were separate. Alternatively by combining

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2016 Morris, MN.

peer-to-peer networks and adaptive bitrate streaming it is
possible to serve multiple bitrates over a peer-to-peer net-
work when that was not possible before. These combined
technologies were stress-tested in simulations and compared
to older methods of video streaming. When compared, it is
easy to see these new combinations can be more efficient.

Section 2 will describe necessary knowledge for under-
standing video streaming and technologies that will be com-
bined and discussed later on in the paper. Section 3 will
discuss a CDN/P2P hybrid, its implementation, what new
responsibilities it adopts, and analysis of simulations. Sec-
tion 4 will cover Joint-Family, an ABR/P2P hybrid. This
section will also talk about its implementation and analyze
a set of simulations this approach went through. Section 5
provides conclusion.

2. VIDEO STREAMING TECHNOLOGIES
Video streaming is the process of playing back video as it

is being downloaded. This could be for either prerecorded
or live video. Video streaming is a popular use of the inter-
net. Many people use popular video streaming services such
as YouTube and Netflix every day. These combinations of
technologies could improve today’s streaming capabilities.
Here are some technologies that can be combined with one
another.

2.1 Centralized Server
A very common way to host data on the internet is through

a single server. In this method a server will process requests
sent by clients. A request may be to calculate a math equa-
tion, and the server will respond with a solution, or a request
might be to send the client a picture, and the server will re-
spond accordingly. Streaming a video from a server acts a
similar way but through multiple requests from the client.
A client will request a streamed video and as it is playing
it will send more and more requests to let the server know
to continue streaming the video to them. The server will
respond with chunks of data that contain part of the video.
When stitched together on the client side, it creates a whole
seamless video. This is a simple approach to streaming a
video but it does not scale well. If a specific video on a sin-
gle server were to become popular, the amount of requests
would increase and could potentially overload the server.
This means that the server cannot process all incoming re-
quests in a reasonable amount of time, and users will begin
to stop receiving service. This makes a centralized server a
poor approach to streaming video. However, using a server
is still an option, only in a different way, such as part of a



Figure 1: After content has been retrieved from the
core server, later requests require a much shorter
trip to collect the data since the data has been
cached on the edge server.

content delivery network.

2.2 Content Delivery Networks
A Content Delivery Network (CDN) is an expansion on

centralized servers. This approach has many geographically
distributed servers connected to each other. Requests are
delegated to different servers depending on the geographic
location of the server and the client making the request.

A CDN will consist of core servers and edge servers. Core
servers, sometimes called origin servers, maintain the CDN
by giving content to the edge servers when necessary. An
edge server will respond to a client request.

Fig. 1 shows an example of how the client, core server, and
edge server interact with each other. If a client requests some
data from an edge server and it does not have that content,
the edge server will get it from a core server. The edge server
will cache that data for later use. If the client returns and
requests the data again, or another client requests the same
data, then the edge server can respond immediately from
the cache.

This is better than a centralized server because it does
not have to take the full trip every time, and just needs to
make a shorter trip to the edge server. It also distributes
the load among multiple edge servers. The distribution of
load can be seen as an improvement on a centralized server.
More edge and core servers can be added to scale its load
capacity even further. This approach is good for hosting
popular content. However, it can be expensive because of
the number of servers needed for it to work.

2.3 Adaptive Bitrate Streaming
Adaptive bitrate streaming (ABR) is a method of stream-

ing content at a changing rate for overall best user experi-
ence. In terms of video streaming, ABR will serve video to
a client at different rates depending on the rate at which
a client can download a video. That download rate may
vary from time to time, and may even change while the
client is streaming. This can be due to network congestion.
Network congestion happens when many people are using a
local network at the same time. Because there is a limit to

the amount of information that can be transmitted over a
network in a finite amount of time, the local network will
bottleneck and experience slower internet connection. When
this happens, it might take longer to download a video than
when the local network is not as congested [5].

A bitrate is the amount of bits that can be transferred in
a specified amount of time. When a server is transferring
video, a higher quality video will take more bits to send
because it contains more data than a lower quality video
would. So in the context of video a bitrate relates to quality.
It can be thought of as how much detail is transferred to the
client in a specified amount of time.

It is important that the client downloads the video faster
than the video is being played back, or else the video will
need to pause and wait for more chunks to arrive. When the
client needs to wait due to insufficient download speed, it is
called lag.

It is up to ABR to serve at different rates to accommodate
the client’s fluctuating download speed. By sending lower
quality video to the client it is thus sending a lower bitrate.
Conversely by sending higher quality video the bitrate is
raised. ABR will change bitrates depending on the clients
download speed capabilities. Then the client will have less
or no lag and an improved viewing experience.

When ABR is implemented it will exist on a server for
clients to interact with. When a client wants to receive video
it will send a request to the server. The server will not
respond with the video but instead send a manifest of all
possible bitrates the server has of that video.

Fig. 2 shows an example of how ABR may work. The
client will receive the manifest and decide on a bitrate. A
bitrate is decided and the client sends another request stat-
ing which bitrate they would like to receive. The server
will begin to serve the video at the specified bitrate and
the client will playback the video at the same time they are
downloading it. This is the streaming part of ABR. This
protocol may vary slightly. YouTube for example may begin
to serve with the same bitrate that was served during a pre-
vious video viewing. Or a server can automatically find the
most optimal bitrate by serving the video at an arbitrary
bitrate and switch bitrates when necessary. Now ABR just
needs to know how to switch bitrates when necessary. This
is done through thresholds.

The client keeps track of a buffer and two thresholds. A
buffer is the amount of video that is downloaded but not
been played back yet. One threshold is how much buffer
remains before the video should be downgraded. If the video
is played back faster than it is downloaded the buffer will
shrink. As it shrinks it could pass this threshold. The client
will automatically send the server a request to change the
bitrate to a lower quality if possible. Conversely if the video
is played back slower than it is downloaded then the buffer
may exceed the second threshold. When this happens it
means the bitrate is too low and the client can have a better
viewing experience and is able to upgrade to a higher quality.
The client automatically sends a request to the server when
this threshold is passed to increase the quality if possible.
This is the adaptive part of ABR. These thresholds are how
ABR knows when to upgrade or downgrade a stream, and
thus prevent the client from lagging while still providing the
highest video quality.

2.4 Peer-to-Peer Networks



Figure 2: A video can be encoded at multiple bi-
trates, stored on a server. A client can choose a
bitrate from the manifest that exists on the server
and have the video served to them.

Clients themselves have the ability to share data with each
other without the help of servers. When clients connect
to each other directly to share data it is called a peer-to-
peer network (P2P). A client in a P2P network is called a
peer. A sub-group within the P2P network is called a swarm.
A swarm of peers shares data with each other and do not
interact with the larger network. There are no servers in
this approach to sharing data and only the computers used
to connect to other peers. This means there is no centralized
server cost when distributing data.

In a P2P network a peer can host some data from their
computer. When a peer does this, they are called a seeder
because they are seeding data. Other peers are allowed to
download this data. These peers are called leechers because
it is like they are leeching the data. Now that other peers
have the data they are allowed to seed it as well. During
their download they can seed the data, and once they are
done downloading and continue seeding they become seed-
ers. Popular content can be downloaded quickly. This is
because there are many peers that have the popular content
that leechers can download from, and thus there are more
points of service for these leechers [6]. All peers and leechers
have an upload rate and download rate. This is how fast a
peer can upload and download date to and from other peers
respectively.

Streaming video over a P2P network is not common but
it is possible. A reason this is not done is because it is
unpredictable and can only be served at a single bitrate.
P2P networks are not made for encoding and sharing data,
and are built for a one time download situation. Not only
that, but it is hard to predict the popularity of video. This
means if one peer wants to watch a video that is not popular,
it will be a slow download and then streaming the video will
be undoable due to lag. P2P networks are a great approach
to cost effective distribution, but it is a challenge to make it
possible to use with streaming video[7].

3. CDN/P2P HYBRID
CDN/P2P hybrid is an intersection between the two tech-

nologies. The CDN network alters some of its responsibil-
ities but for the most part operates the same as it would
usually. The P2P network makes no changes in its protocol.

The benefit from intersecting these two technologies is that
the CDN can delegate server load to the P2P network.

The P2P network needs no major changes. Most peers
in the network will be blind to the CDN portion of this
system. The P2P network will be seeded initial data from
the CDN. From there the P2P network will function the
same as it usually would by sharing data with other peers.
Server capacity will be freed up by having the responsibility
of data sharing on the P2P network, and this extra capacity
can be used to respond to client requests which scales the
CDN.

The CDN still contains all its usual infrastructure such as
core servers and edge servers. In this hybrid an addition is
made to this structure. A proxy server is attached to each
edge server. A proxy server can exist as a physical server
or software existing on the edge server. In either case it
interacts only and directly with the assigned edge server.

When clients request a stream they usually are connected
to the edge server which will complete their request. When
a proxy server is attached the request will be directed to the
proxy server where it will be responsible for three things [4].

• Computing the best bitrate adaptation strategy for
clients if the capacity is full or is being filled

• Running a directory service. This service helps the
CDN map videos that are currently being streamed to
which clients that are requesting it.

• Based on the computed best bitrate adaptation strat-
egy the proxy server will need to decide how much
bitrate will be allocated to the client. It will also de-
cide if the client is to be served the video directly or
through the P2P network it is interacting with.

In the context of video, a CDN will serve data to a client
who requests it from the edge server, whether it was cached
there or collected from a core server first. The video can
be encoded at different bitrates on a core server and be re-
quested at different rates. CDN it is not adaptive, and the
bitrate is constant. The way a change in streaming bitrate
would change on a CDN would be if a client left and no
longer requested chunks for a video and another arrived re-
questing chunks for the same video at a different bitrate [4].

Server capacity is limited in a CDN as it would be on a
centralized server. If a client requests video and they are
not vying for any server capacity they can be served at the
highest bitrate they can request because it can only process a
number of requests at a given time. This is a first come first
serve approach, and it leaves those who request video later
to be served video quality at a lower bitrate than requested.
A different approach is to serve every client lower quality
bitrate than requested to leave room for later coming clients.
This is an attempt at maximizing edge server capacity. In
the hybrid approach both of these methods will be used
depending on the situation.

This is where the best bitrate adaptation comes in. The
best bitrate adaptation strategy, which can be called the
BAS, is how the CDN decides the best bitrate for each client.
This depends on user arrival rates, video viewing duration,
and distribution of requested video bitrates. When a server
has no requests, the capacity is completely free and thus
has no competition. As clients begin to request chunks the
capacity is filled. Once there is no capacity left is when BAS



Figure 3: Video content originates from the core
server and is distributed to the edge servers. Clients
can request the video and later seed the video to
other leechers and take on the responsibility of dis-
tributing the video.

is implemented. As more requests arrive with not enough
capacity to process and serve them, the server can lower
other bitrates to make room for the new request [4].

When a CDN uses the BAS it can be called an Adap-
tive CDN. Since this combination uses P2P in the system
it is called Adaptive CDN/P2P. For simplicity’s sake it will
be referred to as CDN/P2P unless compared against other
systems.

The BAS is a linear optimization problem: Can the ca-
pacity of the server be divided into different bitrates that
can be served to all clients in a way that would minimize
dissatisfaction and accommodate as many users as possible?
Dissatisfaction is measured by the difference in bitrate down-
grading when a client requested a higher bitrate. This can
be represented in a formula. To understand this formula,
know that there exists a list of bitrates 1, 2, ..., R that are
represented as ri.

min

R∑
i=1

R∑
j=i

xij li (ri − rj) (1)

Here (ri − rj), is the amount the client is going to be
dissatisfied where ri is the bitrate requested and rj is the
bitrate that was served. The difference between these two
bitrates is the amount the bitrate was downgraded. If the
difference is small then the dissatisfaction is small. This is
multiplied by li which is the number of leechers for the ith
bitrate. This number is multiplied by xij . xij represents a
fraction of the total number of clients who requested bitrate
i but instead were downgraded to bitrate j. The amount
of dissatisfaction, mutiliplied by the number of clients who
were downgraded summed together for all possible pairs of
bitrates available, represented as the double summation in
formula (1), gives us the overall dissatisfaction in the sys-
tem. The min part of this formula means this dissatisfac-
tion must be as small as possible, or optimized. Minimizing
dissatisfaction is similar to maximizing inter-client fairness.
Inter-client fairness is the weighted average of fairness over
all clients. Fairness of a client is the ratio of the bitrate
that was delivered to the bitrate that was requested. Higher

inter-client fairness means there is a wide spread fairness
throughout the clients and thus less overall dissatisfaction.
It is possible to find the minimal amount of dissatisfaction
given two conditions.

lius ≥

(
lixii +

i−1∑
k=1

nlkxki − si

)
(ri − ul) (2)

R∑
i=1

siri ≤ Cproxy (3)

In these formulas know that variables with subscripts i or
l will mean seeders or leechers respectively. u is a variable
that represents upload rate. Therefore us and ul are the
upload rates of seeders and leechers respectively.

The condition in formula (2) states that the number of
seeders must be sufficient in relation to leechers. That is
to say the seeders upload rate must be higher or equal to
the download rate of the leechers. The term lixii represents
all leechers that got the bitrate they requested. The term∑i−i

k=1 nlkxki represents all leechers who were downgraded.
The number of seeders for a bitrate i is subtracted from
these two terms. All of this is multiplied by the download
rate i for all leechers of bitrate i. This completes the right
side of the condition and represents the download rate of
the leechers. The left side of the condition is the fraction of
seeders for bitrate i multiplied by their upload rate, which
represents the total upload rate for the leechers.

The condition in formula (3) requires the server capacity,
Cproxy, to be more than the capacity the seeders take up.
On the left of the condition there is the sum of all seeders
in a certain bitrate multiplied by that bitrate. This can be
seen as the server capacity. As long as this is less than or
equal to the server capacity then there exists a solution for
formula (1). In other words, as long as there is sufficient
server capacity to serve clients, and there are enough clients
to seed the leechers, then it is possible to achieve minimal
dissatisfaction, or maximum inter-client fairness.

These two inequalities must be true for formula (1) to
have a possible solution. If formula (2) or formula (3) have
an outcome of false then it is not possible to find minimal
dissatisfaction.

Fig. 4 shows the results of simulating this architecture.
This is a simulation run to show the different ways of us-
ing CDN and how they compare with each other. The
x axis plots ρ, which the average number of users in the
system. The y axis plots the inter-client fairness percent-
age. Adaptive CDN/P2P, Adaptive CDN, and Single-rate
CDN/P2P are compared. With lower numbers of average
users in the system Adaptive P2P/CDN is comparable to
Adaptive CDN, with single rate CDN/P2P at the disadvan-
tage. As the number of clients in the system rises Adaptive
CDN begins to fall in inter-client fairness and becomes more
comparable to Single-rate CDN/P2P. Adaptive CDN/P2P
remains the highest in inter-client fairness throughout. In
this simulation there is a 40 percent increase in inter-client
fairness in comparison to the other CDN implementations.

4. ABR/P2P HYBRID
Through changing protocols in a P2P network it is possi-

ble to implement ABR into it as ABR/P2P hybrid, which



Figure 4: Adaptive CDN/P2P has the largest in-
ter client fairness over Adaptive CDN and Single-
rate CDN/P2P even at increased average number
of clients.[4]

is usually called Joint-Family. This approach requires pop-
ularity of a video to work as usual. In highly popular videos
there would be many peers to share chunks of data with
each other. Otherwise, in less popular videos, there would
be fewer peers to share chunks and thus the swarm would
have less upload capacity. This lower upload capacity would
not be able to support additional bitrates that ABR requires
to work [2]. By improving seed staying time the system can
strengthen upload capacity allowing for more than one bi-
trate. Seed staying time is the amount of time a seed is
uploading data to other leechers before leaving the swarm.
The longer the seed staying time the larger the swarm can
get and thus improves upload capacity.

4.1 New Protocols
P2P requires some different protocols to be able to adopt

ABR. In ABR there are multiple bitrates that clients can
switch to when streaming a video. For this to happen in
P2P the network must contain multiple bitrates. To do this
the different bitrates for the same video will be contained in
different swarms. For example if there were 2 bitrates for
one video, there would be 2 swarms each containing a set of
peers seeding and leeching different chunks of the video. The
way a peer decides to increase or decrease the bitrate would
be the same as the ABR technique with upper and lower
thresholds for the buffer to react to. Once the peer decides
to change the bitrate they will begin to request chunks from
the appropriate swarm. Peers are allowed to participate in
more than one swarm. For example if there are two swarms,
swarm one and two, and a peer from swarm one may need
chunks that a peer who is participating in swarm two has.
The peer from swarm two would be able to share chunks
in both swarms. This accommodates for peers who switch
between swarms. If a peer changes swarm participation then
the chunks previously retrieved from the first swarm are no
longer relevant in the newly joined swarm. Multiple swarm
participation remedies this [3].

Chunk selection will be different than usual in this ABR/
P2P approach. Using earliest-first (EF) chunk selection is
good for video. EF looks for the next required chunk and
downloads it. This is different than a usual chunk selec-

Figure 5: c is the number of videos cached, its in-
crease leads to the increase in the normalized down-
load rate.[1]

tion protocol like rarest-first. Rarest-first (RF) looks for
the most uncommon chunk in the swarm and downloads it.
With streaming video RF has the potential to collect chunks
in reverse order and the peer would have to wait until all the
chunks are downloaded to begin playback. This defeats the
purpose of streaming video, so a more sequential chunk se-
lection like EF is used for streaming video. EF will decrease
interruptions and improve video startup time.

Peer selection will have to change as well. Earliest-deadline
(ED) peer selection chooses the peer with the highest need
for the next chunk available [1]. Seeders select leechers to
give chunks to. Tit-for-tat is a more popular peer selection
strategy where peers will give chunks to each other. ED
works better because it responds more to download urgency
which for streaming video can decrease interruptions.

4.2 Caching Videos
The popularity of a video and the download rate for that

video are correlated. Higher popularity of a video means
there are many peers downloading and exchanging chunks
of data with other peers. For a peer new to the swarm they
have many peers to download from. For example, if there is
one peer to serve many leechers it congests their upload rate
and thus slows the download rate for the leechers. Adding
another peer to seed relieves the upload congestion and im-
proves the download rate of other leechers. By adding more
seeders the download rate continues to rise. This is why high
popularity videos have higher download rates. Now there is
excess upload capacity among the seeders. Excess can be
allocated to serve more videos.

Improving seed staying time will also improve download
time. Seed staying time is the amount of time that a peer
will seed a video in a certain swarm in comparison to the
time spent downloading. If the peer spends time download-
ing but not seeding then the peer is not providing excess
upload capacity for the swarm. If the peer were to stay in
the swarm for longer they could help improve other peers
download time. This adds incentive to keep a peer in a
swarm for longer to strengthen the network.

To improve seed staying time the peer can cache the video
to continue and serve it even after the peer has stopped
watching the video. The number of cached videos can be
set to a limit. For example if the limit of cached videos is



5, then when the peer moves to the 6th video it will drop
the 1st video in cache and the newest video is cached in the
now available slot.

Seeders have limited upload capacity. Therefore upload-
ing multiple cached videos at a time will divide the upload
capacity by how many cached videos there are.

Fig. 5 shows visually that caching videos can improve
download rates. In this graph there are a couple of things
that need to be described before they are discussed. Such
as what is plotted on the x and y axis, λ, SIM1, SIM2, and
MOD.

The x-axis plots c, which is the number of videos cached.
The y-axis plots the normalized download rate, where 1 is
no gain or loss on download rates. λ is the arrival rate of
leechers. This is how fast new leechers are joining the swarm
to download the content. λ can be thought of as popularity.
When a video is more popular the λ will be higher because
there will be more leechers looking to download the content.
Less popular content will have a lower leecher arrival rate.

SIM1 and SIM2 in Fig. 5 are simulations. These simu-
lations were tested using the protocols discussed earlier in
this section. The simulations cache videos until it reaches c
videos. When c videos are cached the newer video is cached
and the oldest cached video is removed. The only difference
between SIM1 and SIM2 is that SIM2 does not seed the
cached videos while that peer is watching another video.

MOD in Fig. 5 is a mathematical model that is for con-
structing predictions for the simulation. That is to say if
this model is accurate in plotting the simulation behavior it
could be used to predict how ABR/P2P would act at any
number of seeders, leechers, or even videos cached. The
model inputs the size of a video in bits, the upload capacity
of the peers in a swarm, popularity, average seed staying
time, number of leechers and seeders, the playback rate of a
video, and the number of videos the peers will be caching.
The model for Fig. 5 is then able to output the normalized
download rate for the peers in the swarm.

Fig. 5 shows the model is accurate enough in compari-
son to the simulations. All SIM1, SIM2, and MOD are very
close when plotted and it can be said that MOD would be
suitable for predicting behavior beyond what the simula-
tions are capable of. For the analysis of Fig. 5 however it
is only necessary to observe normalized download rate up to
5 cached videos since there is little improvement past that
number. Adding more videos to the cache improves down-
load rates, but the improvements are limited. A single video
in the cache will see less of the peer’s upload capacity dedi-
cated to seeding it when there are other cached videos that
need to get some portion of the upload capacity as well. If
the number of videos is too high then it will only get a small
fraction of the upload capacity and unable to benefit the
video’s swarm much at all to be of any use. This is why Fig.
5 only accounts for a maximum of 5 cached videos.

There are two groups to notice in Fig. 5, which are the
higher λ and lower λ. This is to compare higher popular-
ity videos and lower popularity videos and how each type
of popularity would benefit from caching videos. The less
popular the video the more it benefits from being cached.
The high popularity videos still benefit from being cached
but not as much as low popularity videos. This is not a con-
cern because highly popular videos will have more seeders
to provide extra upload capacity, but the less popular videos
will need to get the extra upload capacity by being seeded

from the cache.
Between SIM1 and SIM2 there is a small, but consistent

difference. SIM1 has a slightly higher normalized download
rate than SIM2. Because SIM2 is only seeding cached videos
while not watching another video that leaves less time to
seed. SIM1 can be seeding more since there is no restriction
on seeding when viewing videos. This small difference adds
a slight advantage in normalized download rates. Thus the
more time a video is allowed to be seeded the higher the
download rate is allowed to be.

5. CONCLUSION
There are multiple options to increase efficiency in stream-

ing content over the internet. Combining CDN and P2P
allows for higher scaling architecture. P2P adds to the scal-
ability of CDN while also cutting costs by taking most of the
responsibility of data sharing. By combining ABR and P2P
it is possible to build a fully functioning adaptive streaming
network on top of P2P. By caching videos the prerequisite of
needing popularity to stream a video is no longer necessary.
These technology combinations are an improvement on their
individual parts.

6. ACKNOWLEDGMENTS
Thanks to Nic McPhee, Elena Machkasova, and Mike Mau-

rer for their time, and helpful advice.

7. REFERENCES
[1] K.-W. Hwang, V. Gopalakrishnan, R. Jana, S. Lee,

V. Misra, K. Ramakrishnan, and D. Rubenstein.
Joint-family: Enabling adaptive bitrate streaming in
peer-to-peer video-on-demand. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on,
pages 1–10. IEEE, 2013.

[2] O. V. Joldzic, Z. I. Djuric, and D. R. Vukovic.
Experiences and challenges in implementing adaptive
bitrate multimedia streaming for live multimedia
content. In Telecommunications Forum Telfor
(TELFOR), 2014 22nd, pages 909–912. IEEE, 2014.

[3] D. Jurca, J. Chakareski, J.-P. Wagner, and P. Frossard.
Enabling adaptive video streaming in P2P systems
[peer-to-peer multimedia streaming]. Communications
Magazine, IEEE, 45(6):108–114, 2007.

[4] A. Mansy and M. Ammar. Analysis of adaptive
streaming for hybrid CDN/P2P live video systems. In
Network Protocols (ICNP), 2011 19th IEEE
International Conference on, pages 276–285. IEEE,
2011.

[5] T. Stockhammer. Dynamic adaptive streaming over
HTTP: standards and design principles. In Proceedings
of the second annual ACM conference on Multimedia
systems, pages 133–144. ACM, 2011.

[6] C. Wu, B. Li, and S. Zhao. Diagnosing network-wide
P2P live streaming inefficiencies. ACM Transactions on
Multimedia Computing, Communications, and
Applications (TOMM), 8(1S):13, 2012.

[7] Y. Zhou, D. M. Chiu, and J. Lui. A simple model for
analyzing P2P streaming protocols. In Network
Protocols, 2007. ICNP 2007. IEEE International
Conference on, pages 226–235. IEEE, 2007.


