
Automating Algorithm Design through Autoconstruction

Elsa M. Browning
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

brow3924@morris.umn.edu

ABSTRACT
Algorithm design can be difficult and time consuming; be-
cause of this, since at least the 1950s, engineers have been
trying to automate the design of algorithms. One newer ap-
proach to this problem is autoconstruction; this approach is
a type of genetic programming hyper-heuristic that evolves
programs which can evolve programs to solve problems. A
new system called AutoDoG, which uses autoconstruction
to automate part of the algorithm design process, has re-
cently solved a problem that other autoconstructive and ge-
netic programming systems have struggled with: Replace
Space With Newline. This recent success is promising for
AutoDoG, and autoconstruction in general, as an effective
means for automating the design of algorithms.

Keywords
Evolutionary Computation, Genetic Programming, Hyper-
heuristics, Autoconstruction

1. INTRODUCTION
Algorithm design can be difficult and time consuming; be-

cause of this, since at least the 1950s, engineers have been
trying to automate the design of algorithms by reducing the
amount of work people put in to the design process and
increasing the amount of work the computer puts in [3].
This is important work because the results could signifi-
cantly change how we program. For example, if we create
systems that generate reliable algorithms from scratch, we
could spend less time on algorithm design and more time
testing our programs to make sure they are of the highest
quality.

One field that has made progress on automating algorithm
design is Evolutionary Computation (EC). EC is a subfield
of Artificial Intelligence that uses techniques modeled after
biological evolution to solve problems. EC has many ap-
plications in medicine, engineering, and chemistry to name
a few. Part of EC’s success comes from its versatility –
some examples of EC algorithms include genetic algorithms,
which are commonly used to generate high-quality solutions
to search and optimization problems, ant colony optimiza-
tion, which can aid in to finding good paths through graphs,
and artificial immune systems, which are computationally

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2017 Morris, MN.

intelligent, rule based machine learning systems.
In this paper, we focus on a family of algorithms within

EC called genetic programing (GP). Most EC algorithms
produce solutions in the form of a set of answers to a prob-
lem or set of problems. In GP, our solutions are in the form
of programs. These programs then solve a problem (or set
of problems), adding a level of abstraction to the problem
solving process. This automates part of the algorithm de-
sign process by allowing algorithms to evolve rather than
designing and revising them by hand.

Traditionally, the system designer determines how GP so-
lutions evolve, but in a newer technique, called autocon-
struction, the methods for evolution are evolving as well [7].
Autoconstruction is a genetic programming hyper-heuristic –
these are hyper-heuristics that use genetic programming for
program evolution. Autoconstruction evolves programs that
can evolve programs to solve a problem. A new autocon-
structive system, AutoDoG, has recently solved a problem
that other autoncstructive and GP systems have struggled
with: Replace Space With Newline. This recent success is
promising for AutoDoG, and autoconstruction in general, as
an effective means for automating the design of algorithms.

The rest of the paper is organized as follows. In Sec-
tions 2.1-2.3 we describe background necessary for under-
standing the rest of this paper. Next, we describe the his-
tory of automating algorithm design with a focus on hyper-
heuristic development in Section 2.4. Then, in Section 3, we
outline an experiment that tests different GP variants used
in hyper-heuristics and we describe stack-based GP (a GP
variant). Next, we go over current research being done with
stack-based genetic programming in Section 4; we briefly
discuss Push, a stack-based programming language, along
with a technique for automating algorithm design called au-
toconstruction. Finally, we summarize the results of the au-
toconstruction research in Section 4.3 and we go over some
conclusions in Section 5.

2. BACKGROUND
In this section, we introduce terminology used throughout

the rest of this paper. We also briefly go over the history of
hyper-heuristic development.

2.1 Evolutionary Computation
Evolutionary Computation (EC) is a subfield of Artifi-

cial Intelligence that uses algorithms modeled after biolog-
ical evolution to evolve potential solutions to problems. In
the following paragraph, we describe the general process of
an EC algorithm and define the basic terminology. Note



that this is not how all EC algorithms work – it depicts the
most common process.

These algorithms start with a group, or population, of ran-
domly generated potential solutions to a problem or set of
problems. These potential solutions, or individuals, are dif-
ferent depending on the problem; they could be vectors of
1’s and 0’s, antenna designs, or computer programs for ex-
ample. We measure the quality of these individuals using
a fitness function. This process is referred to as a fitness
test. Next, a selection method is used to pick individuals
for reproduction based on the results of the fitness test; this
means the more fit individuals, or higher quality solutions,
are the ones selected for reproduction. We then apply op-
erations like mutation and crossover on these individuals to
build new solutions. A mutation is an insertion, deletion,
or small change in an individual and crossover is when two
or more individuals are combined in some way to create a
new individual. When these operations are applied to po-
tential solutions, the original individual would be referred
to as the parent, and the new individual would be referred
to as a child. Parents can have more than one child. De-
pending on the EC algorithms used, entirely new, random
individuals may be introduced into the next population as
well. The next population would be referred to as the next
generation of potential solutions. This process is repeated
on this new generation. We continue to repeat this process
until the global optima, the best solution (or solutions) pos-
sible, is found, or until the algorithm hits a stopping point,
such as a time limit or a limit on the number of genera-
tions. Stopping points vary from system to system and are
implemented to make sure the algorithm run time is rea-
sonable – an algorithm that can find the global optima, but
takes a year to do so, is not a very good algorithm.

2.2 Genetic Programming
Most EC algorithms produce solutions in the form of a

set of answers to a problem or set of problems. In genetic
programming (GP), our solutions are in the form of pro-
grams. Looking at the general process of an EC algorithm
in Section 2.1, the individuals would be programs, a mu-
tation would be a change to the code of a program, and
crossover would be the combining of code between two or
more programs in some way. An example of crossover might
be, given programs A and B, take the first 50% of code from
program A and the last 50% of code from program B and
put them together to form a new program.

One common way that GP algorithms work is by encoding
programs into a set of genes. These genes can be thought of
as a reorganization of a program for the evolution process.
We then modify those genes with a genetic algorithm to
evolve a program which will perform well on a predefined
task. There are different representations and structures of
GP and these variants can affect how a program evolves (see
Section 3).

2.3 Hyper-heuristics
Before we can define hyper-heuristics, we must first define

heuristic. A heuristic is a function that ranks alternatives
in a search algorithm at each branching step and uses that
information to choose which branch to follow. If we look
at the knapsack problem,1 a heuristic might be, given a list
of items X, “take the highest value item out of list X and

1The knapsack problem: given a set of items, each with a

put it into the knapsack. If the knapsack will be overweight,
take the next highest valued item instead, etc. Repeat this
process until the knapsack is full/cannot hold any more of
the remaining items without becoming overweight, or until
there are no remaining items.”

Heuristics will always produce solutions, but they may not
produce the global optima. Heuristics are used to narrow the
search space of an algorithm to find solutions more quickly.
If the global optima is outside of that newly narrowed space,
it will not be found with that heuristic.

Hyper-heuristics are heuristic search methods which seek
to automate the process of selecting, generating, or adapt-
ing several simpler heuristics in order to solve computational
search problems. These work indirectly on the solution space
and work directly on the space of heuristics to solve prob-
lems [8]. Looking at the knapsack problem, this would mean
we are using a heuristic to narrow the search space of all pos-
sible heuristics for the knapsack problem in an attempt to
quickly find the ideal heuristic. The ideal heuristic would
be the one which gives us the path to the global optima,
which would be the solution with the highest possible value
the knapsack can hold without going overweight.

Genetic programming hyper-heuristics are systems which
use heuristics to find or design the best programs for a given
problem. These programs are generated and manipulated
using genetic programming [1].

2.4 History of Hyper-heuristics
We can trace the beginnings of hyper-heuristics to the

1960s (however, the term ‘hyper-heuristic’ was not coined
until 2000). Early approaches to developing hyper-heuristics
focused on automatically setting the parameters of evolu-
tionary algorithms. A parameter used to be thought of as
things like mutation rates, crossover rates, and other nu-
meric values. However the definition has expanded to in-
clude evolutionary algorithm components like selection mech-
anisms, and mutation and crossover operators. Many re-
searchers still question which parameters to tune when de-
signing hyper-heuristic systems. Traditionally, parameters
are tuned before the evolution starts and controlled during
the evolution. There are, however, exceptions; the idea of
self-adaption, where an algorithm is able to evolve parame-
ters while solving a given problem, emerged in the 1990s. [3]

Today there are two major types of hyper-heuristics: heuri-
stic selection and heuristic generation; the first focuses on
selecting the best algorithm from a set of existing heuris-
tics while the latter focuses on generating a new heuristic
from the components of existing heuristics [3]. The compo-
nents can be anything from the code of a heuristic function;
this means they could be instructions, like adding two num-
bers together or determining if two strings are identical, or
literals, such as strings, integers, booleans, etc. We will be
focusing on an example of heuristic generation in Section 4.2.

3. GENETIC PROGRAMMING VARIANTS
In genetic programming hyper-heuristics, genetic program-

ming (GP) can be used for heuristic and program evolution.
However, there are many different genetic programming vari-
ants, or variations on the representation and setup of GP

weight and value, determine the number of items to include
in a collection so that the total weight is less than or equal
to a given limit and the total value is as large as possible.



Input 2 1 add 2 mult

Stack 1 2
2 2 3 3 6

Table 1: Each column shows an input element and
the contents of the Stack after processing that ele-
ment.

algorithms. Does it matter which variants engineers use
in their hyper-heuristics? Harris et al. [1] addresses this
question; they performed an experiment with five different
GP variants to see if the variant chosen affects the success
of a hyper-heuristic. The variants tested were: Tree-based
GP, which uses parse trees to represent and manipulate pro-
grams; Linear GP, which represents program as linear se-
quences and uses registers to manipulate data; Cartesian
GP, which uses a directed acrylic graph to represent pro-
grams and has a distinct separation between phenotype and
genotype; Grammatical Evolution, which also has a sepa-
ration between phenotype and genotype and uses context
free grammars to define programs; and Stack-based GP uses
data-stacks to manipulate the input and output of opera-
tions (see Harris et al. [1] for details about each of these
variants). The hyper-heuristics that used the GP variants
were the same in every way except for the variant used.

These hyper-heuristics were tested the Boolean Satisfia-
bility Problem (SAT). The SAT problem is defined as fol-
lows: given a boolean function, determine if there is a set of
boolean values the variables can take on to make the func-
tion evaluate to true. Harris et al. [1] specifically tested
the hyper-heuristics on a major subproblem of SAT, called
3-SAT, which restricts the boolean function to conjunctive
normal form with clauses of three variables. This means the
functions took the form (x1

∨
x2

∨
x3)

∧
(x4

∨
x5

∨
x6)

∧
...

where the xi’s can be reused or inverted.
The hyper-heuristics produce programs that take in a set

of boolean values as input, filters and mutates this set of val-
ues, and produces new a new set of boolean values as output.
These boolean values are used to fill in the variables for the
3-SAT functions with the goal of having the functions evalu-
ate to true. The individual programs were tested on several
instances of SAT and were evaluated based on their overall
performance on all of the problems rather than performance
on a specific problem.

In Section 3.1 we discuss the details of stack-based GP
due to its relevance in Section 4, and in Section 3.2 we go
over the results of Harris et al.

3.1 Stack-based Genetic Programming
Stack-based GP (SGP) uses data-stacks to manage the

input and output of operations. To explain a data-stack,
it’s helpful to look at an example. If we have the program
((2+1)∗2), we would first put it into postfix notation, which
is where any arguments or parameters for a command are
listed before that command: 2 1 add 2 mult. We do this
because SGP programs are represented as linear sequences
and postfix notation is a good way to put programs into
this format. In our program, add means take two integers
off the top of the stack, add them together, and push the
result back onto the stack. And mult means the same thing
except multiply instead of add the integers.

In Table 1, this program is shown being input into a stack.

3.6 Experimental Parameters
Experimental parameters were manually tuned; the high

computational cost of meta-evolution unfortunately made
a more exhaustive tuning of parameters prohibitive. The
training data set contained 3 problems, and the test set
contained 8, all of which were 3-SAT problems containing
2000 clauses of 500 variables. This problem size was chosen
so that only the highest-performing algorithms generated
would get perfect fitnesses, in order to better distinguish
the GP types. To increase result accuracy, the generated
algorithms were tested on each problem 3 times. The meta-
evolution for all GP types used a population size of 20 in-
dividuals, with future generations selected by tournament
selection with tournament size of 5. 70% of children were
generated through recombination and 20% through muta-
tion. The remaining 10% was taken by truncation selection
from the previous generation to ensure a small amount of
elitism. Runs were terminated after 40 generations. While
the small population size limits how much of the search space
can be visited, it is necessary due to the long execution time
of meta-evolution. However, with these parameters evolu-
tion generally converges within the 40 generation limit.

For the evaluation of individual algorithms generated by
the hyper-heuristic, the maximum population size was set
at 100 solutions (overly large populations were truncated),
though many algorithms used smaller sizes. These were
given 30 seconds of wall time to run on each evaluation.
The reason for the use of wall time rather than number of
evaluations was because the number of evaluations per node
did not correlate well with the actual computational cost
of executing those nodes. Thus, some nodes which were
computationally expensive, but did not make heavy use of
evaluations, might be unfairly selected for if only evaluations
were limited.

TGP used a parsimony pressure of 0.1 per node and a
soft maximum size of 20 nodes; individuals which exceeded
that maximum were heavily penalized, but otherwise treated
normally. Fitnesses recorded in the results section do not in-
clude these penalties. The initial population was generated
to a depth of 5. During mutation, a normal function with
standard deviation 2 was used to determine the change in
depth of replaced segments. LGP used 3 registers, one of
which was designated as an output register. It used a parsi-
mony pressure of 0.1 per node and had a soft maximum size
of 20 nodes. The initial population was generated with 10
nodes. During mutation, a normal function with standard
deviation 2 was used to determine the change in size of re-
placed segments. CGP individuals had 20 layers of width 3,
with the option to take input from nodes at most 5 layers
higher. Due to the fixed maximum size of individuals, no
penalties were used. The mutation rate used was 0.1. GE
used a grammar equivalent to what was allowed for TGP.
It used a parsimony pressure of 0.1 per expansion and had
a soft maximum size of 50 expansions. The initial popula-
tion was generated with 30 expansions. This approximately
corresponds to an equivalent amount of nodes as was given
for the other variants, because the expansions also encoded
parameters for the nodes. The mutation function used a
standard deviation of 5 for similar reasons. SGP used a par-
simony pressure of 0.1 per node and had a soft maximum
size of 20 nodes. The initial population was generated with
10 nodes. The mutation function used a standard deviation
of 2.

4. RESULTS

Figure 1: Box plot describing the average number of
clauses satisfied by the best individuals of each run,
on the test set.

Tree Linear Cart. Gram. Stack Rand.
Train. 1995.8 1980.9 1991.0 1980.0 1996.7 n/a
S.D. (6.81) (29.01) (9.50) (41.20) (3.91) n/a
Test 1987.9 1962.4 1969.4 1928.1 1985.5 1750.2
S.D. (14.78) (43.43) (23.84) (65.03) (5.33) (4.80)

Table 1: Average performance of algorithms on
training and test sets (out of 2000), with standard
deviations below their respective values in parenthe-
ses; Rand. indicates the average number of clauses
satisfied by random SAT solutions

After running each GP variant thirty times, the best in-
dividual from each run was evaluated three times against
the test set. The resulting average fitnesses are shown in
Figure 1, with a score of 2000 indicating that the best algo-
rithm found was able to repeatedly find satisfying solutions
to all of the test problems after 30 seconds. These results
were compared to their reported performance on the train-
ing data sets used in the course of GP. While their perfor-
mance on the training sets was somewhat inflated, as this
was the value which they were selected for, the closeness of
the algorithms’ performance on a set they were not bred to
solve (usually within 10-20 fitness points) indicates that the
fitness results are indicative of general capability.

While the fitness scores listed are out of 2000, the fact that
all solutions produced satisfied above 1800 clauses does not
indicate that the algorithms all performed well. Random
assignments of boolean variables were shown to satisfy an
average of 1750 clauses. This is due to the nature of the
problem: each clause can be satisfied in one of three ways,
and while this makes it trivial to satisfy most of the clauses,
satisfying all or close to all of them requires satisfying each
clause ways which do not conflict with each other. Thus
the amount of clauses an individual satisfies, their fitness
score, is not linearly correlated with the actual performance
of individuals on the SAT problem.

Statistical analysis of the data through the use of two-
sample t-tests for sample means (↵ = 0.05) shows that TGP
and SGP perform similarly to each other, as do LGP and
CGP. However, there is a statistically significant di↵erence

1048

Figure 1: Box plot showing the average number of
SAT problem clauses that are satisfied by the best
individuals from each run on the test set [1].

When the stack encounters literals, such as strings, inte-
gers, booleans, etc., they are simply pushed onto the stack.
When the stack encounters instructions, which are opera-
tions like subtraction, string-length, greater-than, etc., it
executes them. Instructions are executed by taking ele-
ments, literals or instructions, off the stack, putting the el-
ements into the instruction as arguments, and pushing the
results back onto the stack. Walking through the execu-
tion of 2 1 add 2 mult, we begin by pushing 2 and 1 onto
the stack. Next we encounter the add; to execute this in-
struction, we pop 1 and 2 off the stack, add them together,
and push the result, 3, back onto the stack. Then we come
across 2, another literal, so this is simply pushed onto the
stack. Finally, we come across our last element: the mult

instruction; to execute this, we pop the 2 and 3 off the stack,
multiply them together, and push the result, 6, back onto
the stack. This was our last element, so our program has
finished executing.

What happens when we try to execute an instruction
without the necessary arguments? Say our program was
2 add 2 mult instead. We first push the 2 onto the stack.
Next, the add would try to execute, but fail because there
is only one integer on the stack. We simply skip the add
and move on to the next element. This would mean the
next part of the program would push 2 onto the stack and
execute the mult, leaving 4 on the stack instead of the 6.

At the end of Table 1, we can see that 6 is left on the
stack. Generally, the top item on the stack at the end of
a program is the answer to a problem that the program is
trying to solve.

This example was very simple and only dealt with integers.
What happens when we have multiple data types, such as
integers, strings, booleans, and more? Some SGP systems
will push and pop all of their data from one stack, regardless
of the data type. But other SGP systems have multiple data-
stacks (see Section 4.1 for an example), where there is a stack
for each data type. This means that there is an execution
stack, where the program is evaluated, and separate stacks
that data is pushed onto and popped from.

3.2 Results
Each hyper-heuristic (which is the same except for the

GP variant used) was first run 30 times on a separate set
of 3-SAT problems to ‘train’ the hyper-heuristic. Then, af-



ter each run, the best program generated by each hyper-
heuristic was run on the test set of 3-SAT problems 3 sepa-
rate times. There were 3 problems in the training set and 8
in the test set, each containing 2000 clauses, or subproblems,
and 500 variables (to be filled in with boolean values pro-
duced by the programs produced by each hyper-heuristic).
The hyper-heuristic runs were terminated after 40 genera-
tions. These results are summarized in Figure 1.

The results from Harris et al. [1] show that the GP variant
chosen has a significant impact on the success of the hyper-
heuristic. Tree-based GP and stack-based GP performed
the best and performed similarly to one another, solving
more clauses of the SAT problem on average than the other
GP variants. Linear and Cartesian GP performed similarly
to each other, but were not quite as good. Grammatical
Evolution performed the worst. This does not mean that
tree and stack are inherently better than other GP variants –
it means that GP variants have different strengths and some
are more suited to certain problem spaces than others. More
testing is needed to determine how the GP variant used can
cause a hyper-heuristics system to excel.

4. AUTOCONSTRUCTION
Autoconstruction is a genetic programming hyper-heur-

istic that uses genetic programming to evolve programs which
have heuristic functions available to them to design the best
program possible for a problem.

In most genetic programming hyper-heuristics, the indi-
vidual programs are evolving, but everything else is speci-
fied by the engineer. This means engineers might set half
the population to produce children through a mutation that
inserts an element every ten elements in a program. Then
they might set the other half to be generated by crossover
where the first half of the code for a child comes from one in-
dividual and the second half comes from another individual.
In autoconstruction, engineers don’t specify how programs
construct their offspring. Instead, the methods of variation
are encoded into the programs that are evolving so that, as
a program evolves, its variation methods also evolve. An
example of this is provided in Section 4.2.

Prior work on autoconstruction has explored a variety of
system designs, but, until recently, they have only been able
to solve simple problems. A new system called Autocon-
structive Diversification of Genomes (AutoDoG) has broken
this trend by solving a problem that many genetic program-
ming systems have struggled with: Replace Space with New-
line (RSWN) [7]. This problem (defined in Section 4.3) is
complex for GP systems because it involves multiple data
types and multiple outputs.

In Section 4.1, we introduce Push, the programming lan-
guage used by AutoDoG. In Section 4.2 we highlight some
key features of AutoDoG and in Section 4.3 we go over
AutoDoG’s recent success.

4.1 Push
Push is a stack-based programming language with a sep-

arate stack for each data type. This means, for example,
that there is a stack for integers, a stack for strings, and a
stack for booleans. There are as many stacks as there are
data types and designers can actually create their own data
stacks as well.

Autoconstruction was one of the driving forces behind the
original design of Push; Push was developed specifically for

exec 1 2 ‘hi’ string length integer add

string
‘hi’

integer
2

2 2 2 4
1 1 1 1 1

Table 2: Each column shows an element on the :exec
stack and the contents of the other two stacks after
processing that element.

program evolution [7]. Push programs are sequences of in-
structions, constants, and parentheses with only one syntax
requirement: the parentheses must be balanced [4]. For ex-
ample, ((1 ‘hello’) 2 integer_add string_length inte-

ger_gt) is a simple Push program.
Instructions are executed by putting them on the exec

stack. For example, assume all stacks are empty and assume
a program says (1 2 ‘hi’ string_length integer_add).
In Table 2, we illustrate the execution of this program (there
are more types of data stacks, but we only use two for this
example). We push the entire program onto the exec stack
to start. We then push 1, 2, and ‘hi’ onto their appropriate
data stacks. The string_length instruction takes a string
off the string stack and returns the string-length, in this
case 2. The integer_add works like add in Table 1. If
instructions do not have enough arguments, they are skipped
(as described in Section 3.1). [6]

4.2 AutoDoG
In this Section, we briefly describe some of the key features

of AutoDoG, designed by Spector et al [7].
AutoDoG works similarly to PushGP, a reasonably stan-

dard genetic programming system, but is run with auto-
construction as the sole genetic operator rather than using
human designed operators like muatation and crossover. In
PushGP, the methods for generating children (in the repro-
duction phase) are set by the designers, but in AutoDoG
this is not entirely the case. Spector et al. created building
blocks for generating children within AutoDoG’s instruction
set, but the rates at which these building blocks are used and
how they are combined into higher level operations changes
throughout the evolution of programs. One example of a
building block would be genome_uniform_addition; this is
an instruction which inserts random elements into a program
with a likelihood taken from the top of the float stack [5].
The number at the top of the float stack changes as a pro-
gram executes; so depending on where the genome_unif-

orm_addition occurs in the program, the rate of element
insertion may be very different between programs. [7]

There is an ongoing discussion about how much guidance
to give the AutoDoG system. Some of the designers think
building blocks like genome_uniform_addition are giving
the system too much instruction – some think we should
not give any building blocks and should let AutoDoG evolve
all instructions from scratch. The problem with evolving
everything from scratch is that the system would take much
longer to develop solutions and may not develop solutions
at all. [4, 5, 7]

In AutoDoG, the reproduction process works as follows:
A program that has performed well on the fitness tests has



Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

AutoDoG does not succeed as reliably on this problem as
has PushGP in some other configurations, but it does solve
the problem approximately 5 � 10% of the time, producing
general solutions. Because this is a harder problem than has
been solved by previous autoconstructive evolution systems,
we take this as an indication that something in AutoDoG
is on the right track, and we sought to understand what is
happening in AutoDoG populations when it does succeed.

4.2 Evolution evolving
One way to better understand the behavior of reproduc-

tion mechanisms is to look at the the ways in which they
convert parent genomes into child genomes. Here we use
the Damerau-Levenshtein (edit) distances (DL-distances),
applying them to sequences obtained by extracting the three
components of each gene (the instruction and the close and
silencing epigenetic markers discussed in Section 3.2).1 The
stability of the reproduction mechanisms in traditional, non-
autoconstructive runs is apparent in Figure 1. Here we see
that, after the variation in the initial random population set-
tles out, the distances between parents and children remain
fairly consistent across the duration of the run. This is also
reflected by the changes in genome size over time (Figure 2),
where there is a slight upward creep, but the sizes are again
bounded in a fairly narrow range.

Looking at the same data for a successful autoconstruction
run, we see dramatically di↵erent behaviors. Figure 3 shows
the DL-distances between parents and children in this run.
Distances were consistently under about 200 throughout the
non-autoconstructive run, while here they are scattered in
clear clusters across a much broader range, extending up to
nearly 2, 500 around generation 100. There is similar clus-
tering in the plot of genome sizes over time (Figure 4), with
many of those clusters having clear analogues in Figure 3.

Presumably these di↵erent groupings represent di↵erent
approaches to replication that are being explored by au-
toconstruction. Most of the DL-distances in the autocon-
struction run are small (a quarter below 5, half below 20),
suggesting that most of the autoconstruction mechanisms in
this run create o↵spring by making small changes to the par-

1This is why the maximum DL-distances in Figure 3 are
about three times the largest genome sizes in Figure 4.

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space
With Newline problem

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem

1353

Figure 2: DL-distances between parent
and child during a single PushGP run on
RSWN [7].

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

AutoDoG does not succeed as reliably on this problem as
has PushGP in some other configurations, but it does solve
the problem approximately 5 � 10% of the time, producing
general solutions. Because this is a harder problem than has
been solved by previous autoconstructive evolution systems,
we take this as an indication that something in AutoDoG
is on the right track, and we sought to understand what is
happening in AutoDoG populations when it does succeed.

4.2 Evolution evolving
One way to better understand the behavior of reproduc-

tion mechanisms is to look at the the ways in which they
convert parent genomes into child genomes. Here we use
the Damerau-Levenshtein (edit) distances (DL-distances),
applying them to sequences obtained by extracting the three
components of each gene (the instruction and the close and
silencing epigenetic markers discussed in Section 3.2).1 The
stability of the reproduction mechanisms in traditional, non-
autoconstructive runs is apparent in Figure 1. Here we see
that, after the variation in the initial random population set-
tles out, the distances between parents and children remain
fairly consistent across the duration of the run. This is also
reflected by the changes in genome size over time (Figure 2),
where there is a slight upward creep, but the sizes are again
bounded in a fairly narrow range.

Looking at the same data for a successful autoconstruction
run, we see dramatically di↵erent behaviors. Figure 3 shows
the DL-distances between parents and children in this run.
Distances were consistently under about 200 throughout the
non-autoconstructive run, while here they are scattered in
clear clusters across a much broader range, extending up to
nearly 2, 500 around generation 100. There is similar clus-
tering in the plot of genome sizes over time (Figure 4), with
many of those clusters having clear analogues in Figure 3.

Presumably these di↵erent groupings represent di↵erent
approaches to replication that are being explored by au-
toconstruction. Most of the DL-distances in the autocon-
struction run are small (a quarter below 5, half below 20),
suggesting that most of the autoconstruction mechanisms in
this run create o↵spring by making small changes to the par-

1This is why the maximum DL-distances in Figure 3 are
about three times the largest genome sizes in Figure 4.

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space
With Newline problem

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem

1353

Figure 3: DL-distances between parent and
child for a single autoconstructive run on
RSWN [7].

been selected2 for reproduction. We will call this program
Mom. Another program has also performed well and is se-
lected – we will call this program Dad. The code from both
Mom and Dad’s programs is pushed onto the genome stack.
The genome stack was created so that program code could
be classified as a type of data; this allows programs to ma-
nipulate a copy of their code without breaking during the
reproduction process.3 Since Mom was selected first, Mom
is run with the purpose of making a child. Part of Mom’s
code is dedicated to reproduction – for example, she may
have genome_uniform_addition in her code which would
take her program code off the genome stack and insert new
code into it. Mom uses her reproduction code, which may
or may not take pieces of Dad’s code, and Mom makes code
for a new program. This new code, which sits on top of the
genome stack, is the child of Mom and Dad.

Once this child is constructed, there is the question of
whether or not it will be passed on to the next generation.
Spector et al. [7] was especially concerned about cloning
when designing AutoDoG. Cloning is when a parent makes
a child that is an exact copy of the parent and this child
moves on to the next generation. This is a major concern
with evolutionary systems because, if a program performs
well enough on the fitness tests to move to the reproduction
phase, making a child that is an exact copy allows this child
to perform equally well on the fitness tests (and is therefore
a good strategy). Most programs do this if allowed because
changing the code is risky; if the change is for the worse,
then the program’s child will not pass the fitness tests given
to the next generation. This means the child would not get
to move to the reproduction phase and would therefore not
pass its code on to the following generation. Cloning is a
good strategy to pass fitness tests, but, from an engineer’s
perspective, cloning is bad; this because it prevents the sys-
tem from exploring a wide range of possible solutions, which
makes it difficult to find the global optima. It also signifi-
cantly slows down the rate of evolution.

Most autoconstruction systems have some form of the
“no cloning rule,” and AutoDoG has a form of this as well.

2There is a complex method called Lexicase Selection used
for this process (see Spector et al. [7]).
3There are actually these things called genomes which hold
the program code. These genomes are what gets pushed
onto the genome stack (see Spector et al. [7]).

AutoDoG’s version of this requires offspring to pass a more
stringent diversification test in order to enter into the next
generation. To describe this test, we will use the child cre-
ated by Mom and Dad earlier – we will call this child “Pat.”
This test begins by having Pat take itself as a mate (the way
Mom took Dad as a mate). Pat is run a few times with the
purpose of making children – Pat may manipulate its own
code or take code from its mates to do this. Pat finishes
running and the results are several children. If these chil-
dren differ enough from Pat and from each other, Pat will
be inserted into the next generation and the children will
be discarded. If Pat fails this test, the test is repeated on a
new, randomly generated program. If this random program
passes, then this random program will move into the next
generation. If this random program fails, then a completely
empty program, with no code in it, is generated and in-
serted into the next population.4 This empty program does
not undergo the diversification test. This test allows for a
more diverse set of potential solutions and allows for greater
exploration of the problem space. [7]

4.3 Results of AutoDoG
One challenging problem AutoDoG has solved is Replace

Space with Newline (RSWN). This problem is taken from
introductory level textbooks and is part the general program
synthesis benchmark suite of problems used to evaluate how
successful a GP system is [2]. A solution of RSWN is a
program that takes in a string and prints that string with all
spaces replaced by newlines; it also must return the integer
count of the non-whitespace characters [2]. This is complex
for GP systems because it involves multiple data types, such
as strings and integers, and multiple outputs.

AutoDoG solves the RSWN problem 5–10% of the time,
whereas PushGP solves it about 50% of the time [2]. Why
do we consider this a success when a relatively standard
GP system performs much more reliably? We consider it
a success because autoconstruction automates more of the
algorithm design process than other GP systems. So while
it may not perform as well on RSWN, AutoDoG performs
extremely well on the problem of automating algorithm de-
sign. The fact that AutoDoG solves RSWN at all is actually

4There is the danger of a population with mostly empty
programs, but there are restrictions and constraints within
AutoDoG to prevent this from becoming a problem [7].



quite impressive; it is not surprising that AutoDoG performs
less reliably because AutoDoG has to learn how to construct
offspring as well as learn how to solve problems.

AutoDoG is unique among autoconstructive systems in
that it can solve problems that are challenging for other
autoconstructive systems.5 However, as stated by Spector
et al. [7],

We do not know which of these [AutoDoG’s
features], or which combinations of these, may be
responsible for the fact that AutoDoG appears
to be capable of solving more difficult problems
than previous autoconstructive evolution systems.

This is because it’s hard to separate the pieces; there are a
lot of intertwined elements of AutoDoG and Push. Separat-
ing them to find exactly which elements contribute to the
success without unraveling the entire system is difficult and
has not yet been accomplished.

One interesting thing to note about AutoDoG is how it
evolves. In standard PushGP, there is not a lot of change in
Damerau-Levenshtein distance (DL-distance) in Figure 2. A
Damerau-Levenshtein distance can be thought of as a mea-
sure of change between the code of a parent and code of a
child over the course of a single generation. In Figure 2, over
the 150 or so generations, change occurs at a steady rate and
is not very dramatic from one generation to the next; the
most change that occurs is about 200 differences between a
parent and child, and the differences are often much smaller
than that (the scattered dots near the first generation occur
because the first set of individuals is randomly generated).
This is because engineers create a fixed set of reproduction
mechanisms before they run the program. On the other
hand, there are big differences between the code of some
parents and their children in the AutoDoG run as shown in
Figure 3. Notice how the y-axis goes up to 2500 DL-distance
in the AutoDoG graph compared to only about 800 in the
PushGP graph. This is due to the fact that, in AutoDoG,
the programs are evolving their reproduction mechanisms.
In the AutoDoG graph, we are essentially seeing evolution
evolve.

5. CONCLUSIONS AND FUTURE WORK
Automating algorithm design is a complex problem that

has been investigated for over 60 years. We have recently
automated more of the algorithm design process through
the use of genetic programming hyper-heuristics, specifi-
cally using a technique called autoconstruction. Systems
like AutoDoG are important because they bring us closer
to generating algorithms from scratch. This means we may
not need programmers to write simple algorithms in the near
future because the computer would do this job for us; this
could drastically change the programming industry.

However, according to Pappa et al. [3] in 2014, machine
learning was ahead of hyper-heuristics development on the
subject of automating algorithm design and “can operate
over different datasets, from different problem domains, and
even with different features.” This is not to say that machine
learning is better than hyper-heuristics; the two have differ-
ent methodologies and ways of approaching the problem of

5Note that these problems are not difficult for people to
solve – they are problems taken from introductory level text-
books – but they are difficult for GP systems to solve.

automating algorithm design. Pappa et al. states that the
next step is working on getting hyper-heuristic development
to the same level. They state that both heuristic and algo-
rithm selection/generation are useful for all types of domains
in which many parameters and methods are available, but
no clear criteria or methodology exists for selecting them.

It would be interesting to see machine learning techniques
combined with hyper-heuristics. Cartesian genetic program-
ming (one of the GP variants in Harris et al. [1]) has a simi-
lar structure to neural networks, a type of machine learning
technique. It might be interesting to try and combine the
two structures to automate more of the algorithm design
process.

Acknowledgments
Special thanks to Nic McPhee and Elena Machkasova for
their time, feedback, and constructive comments. And thanks
to Alex Jarvis and Michael Bukatin, my external reviewers.

6. REFERENCES
[1] S. Harris, T. Bueter, and D. R. Tauritz. A Comparison

of Genetic Programming Variants for Hyper-Heuristics.
In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO Companion ’15, pages
1043–1050, New York, NY, USA, 2015. ACM.

[2] T. Helmuth and L. Spector. General Program Synthesis
Benchmark Suite. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’15, pages 1039–1046, New York, NY, USA,
2015. ACM.

[3] G. L. Pappa, G. Ochoa, M. R. Hyde, A. A. Freitas,
J. Woodward, and J. Swan. Contrasting Meta-learning
and Hyper-heuristic Research: the Role of Evolutionary
Algorithms. Genetic Programming and Evolvable
Machines, 15(1):3–35, March 2014.

[4] L. Spector. Autoconstructive Evolution: Push, PushGP,
and Pushpop. In L. Spector, E. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke, editors, GECCO
’01: Proceedings of the 2001 on Genetic and
Evolutionary Computation Conference Companion,
pages 137–146. Morgan Kaufmann Publishers.

[5] L. Spector. Clojush. Accessed: April 29, 2017.

[6] L. Spector and N. F. McPhee. Expressive Genetic
Programming: Concepts and Applications. In
Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, GECCO ’16
Companion, pages 589–608, New York, NY, USA, 2016.
ACM.

[7] L. Spector, N. F. McPhee, T. Helmuth, M. M. Casale,
and J. Oks. Evolution Evolves with Autoconstruction.
In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, GECCO ’16
Companion, pages 1349–1356, New York, NY, USA,
2016. ACM.

[8] D. R. Tauritz and J. Woodward. Hyper-Heuristics. In
Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, GECCO ’16
Companion, pages 273–304, New York, NY, USA, 2016.
ACM.


