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Evolutionary Computation

https://www.spigotmc.org/attachments/evolution-jpg.137048/

Subfield of Artificial Intelligence

Algorithms based on biological evolution
Uses lots of terminology from biology, doesn’t always
mean same thing as term means in biology.

https://www.spigotmc.org/attachments/evolution-jpg.137048/
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Knapsack problem

[  0   1     1      1      1  ]

Computational 
Problem

Answer

[  1   0     0      1      1  ]
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Based on https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Knapsack.svg/
1200px-Knapsack.svg.png
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Evolutionary Computation – Terminology

Individual – a potential solution to a
problem (or set of problems)

Population – a group of individuals

Fit – how well suited an individual is at
solving a problem

Fitness Test – a set of tests to
determine how fit an individual is.
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Evolutionary Computation – Terminology

Mutation – an insertion, deletion, or small change in an
individual, creating a new individual

Sexual reproduction – when two or more individuals are
munged together to create a new individual

If individual A experiences a mutation to create individual B,
then:

Parent – Individual A

Child – Individual B
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Evolutionary Computation – Terminology

Generation – a population of individuals

Global optima – best solution (or solutions) possible

Stopping point – time limit, or generation limit.
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Genetic Programming

A family of algorithms in Evolutionary Computation that uses
biological techniques to create programs to solve computational
problems.
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Computational 
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Genetic Programming

Program jumpHurtle(int height){
personHeight = 0;
if(height>5){

personHeight = 6;
} else {

personHeight = 4;
}
return personHeight;

}
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Genetic Programming

Program jumpHurtle(int height){
personHeight = 0;
if(height>5){

personHeight = 6;
personHeight++;

} else {
personHeight = 4;

}
return personHeight;

}

Mutation

Program
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Heuristics

Heuristics – a function that ranks
alternatives in a search algorithm at
each branching step and uses that
information to choose which branch to
follow.

Example: “Select highest valued item
and put into knapsack. If item puts
knapsack overweight, select next
highest value instead. Repeat until all
items are gone or until the knapsack
is full"

https:
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Heuristics

H1, H2 … Hn

000, 001, 002 … 110, 111

Solution 
space (set 
of possible 
solutions)

Set of heuristics

Based on figures from Tauritz et al. [3]
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Hyper-heuristics

Hyper-heuristics – heuristic search methods which seek to
automate the process of selecting, generating, or adapting
several simpler heuristics in order to solve computational
search problems.

Genetic programming hyper-heuristics – hyper-heuristics
that use genetic programming for the process of selecting,
generating, or adapting several simpler heuristics.



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Hyper-heuristics

Hyper-heuristics – heuristic search methods which seek to
automate the process of selecting, generating, or adapting
several simpler heuristics in order to solve computational
search problems.

Genetic programming hyper-heuristics – hyper-heuristics
that use genetic programming for the process of selecting,
generating, or adapting several simpler heuristics.



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Outline

1 Background

2 Hyper-heuristics

3 Genetic Programming Variants
What are they?
Why should we care?
Stack-based genetic programming

4 Autoconstruction

5 Summary



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Genetic programming variants

GP variants – variations on the structure and setup of a
genetic programming system.

Harris et al. [1] performed an experiment to address whether or
not the GP variant used affected the success of the
hyper-heuristic

GP variants tested:
Cartesian GP
Linear GP
Stack-based GP
Tree-based GP
Grammatical Evolution
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Why should we care?3.6 Experimental Parameters
Experimental parameters were manually tuned; the high

computational cost of meta-evolution unfortunately made
a more exhaustive tuning of parameters prohibitive. The
training data set contained 3 problems, and the test set
contained 8, all of which were 3-SAT problems containing
2000 clauses of 500 variables. This problem size was chosen
so that only the highest-performing algorithms generated
would get perfect fitnesses, in order to better distinguish
the GP types. To increase result accuracy, the generated
algorithms were tested on each problem 3 times. The meta-
evolution for all GP types used a population size of 20 in-
dividuals, with future generations selected by tournament
selection with tournament size of 5. 70% of children were
generated through recombination and 20% through muta-
tion. The remaining 10% was taken by truncation selection
from the previous generation to ensure a small amount of
elitism. Runs were terminated after 40 generations. While
the small population size limits how much of the search space
can be visited, it is necessary due to the long execution time
of meta-evolution. However, with these parameters evolu-
tion generally converges within the 40 generation limit.

For the evaluation of individual algorithms generated by
the hyper-heuristic, the maximum population size was set
at 100 solutions (overly large populations were truncated),
though many algorithms used smaller sizes. These were
given 30 seconds of wall time to run on each evaluation.
The reason for the use of wall time rather than number of
evaluations was because the number of evaluations per node
did not correlate well with the actual computational cost
of executing those nodes. Thus, some nodes which were
computationally expensive, but did not make heavy use of
evaluations, might be unfairly selected for if only evaluations
were limited.

TGP used a parsimony pressure of 0.1 per node and a
soft maximum size of 20 nodes; individuals which exceeded
that maximum were heavily penalized, but otherwise treated
normally. Fitnesses recorded in the results section do not in-
clude these penalties. The initial population was generated
to a depth of 5. During mutation, a normal function with
standard deviation 2 was used to determine the change in
depth of replaced segments. LGP used 3 registers, one of
which was designated as an output register. It used a parsi-
mony pressure of 0.1 per node and had a soft maximum size
of 20 nodes. The initial population was generated with 10
nodes. During mutation, a normal function with standard
deviation 2 was used to determine the change in size of re-
placed segments. CGP individuals had 20 layers of width 3,
with the option to take input from nodes at most 5 layers
higher. Due to the fixed maximum size of individuals, no
penalties were used. The mutation rate used was 0.1. GE
used a grammar equivalent to what was allowed for TGP.
It used a parsimony pressure of 0.1 per expansion and had
a soft maximum size of 50 expansions. The initial popula-
tion was generated with 30 expansions. This approximately
corresponds to an equivalent amount of nodes as was given
for the other variants, because the expansions also encoded
parameters for the nodes. The mutation function used a
standard deviation of 5 for similar reasons. SGP used a par-
simony pressure of 0.1 per node and had a soft maximum
size of 20 nodes. The initial population was generated with
10 nodes. The mutation function used a standard deviation
of 2.

4. RESULTS

Figure 1: Box plot describing the average number of
clauses satisfied by the best individuals of each run,
on the test set.

Tree Linear Cart. Gram. Stack Rand.
Train. 1995.8 1980.9 1991.0 1980.0 1996.7 n/a
S.D. (6.81) (29.01) (9.50) (41.20) (3.91) n/a
Test 1987.9 1962.4 1969.4 1928.1 1985.5 1750.2
S.D. (14.78) (43.43) (23.84) (65.03) (5.33) (4.80)

Table 1: Average performance of algorithms on
training and test sets (out of 2000), with standard
deviations below their respective values in parenthe-
ses; Rand. indicates the average number of clauses
satisfied by random SAT solutions

After running each GP variant thirty times, the best in-
dividual from each run was evaluated three times against
the test set. The resulting average fitnesses are shown in
Figure 1, with a score of 2000 indicating that the best algo-
rithm found was able to repeatedly find satisfying solutions
to all of the test problems after 30 seconds. These results
were compared to their reported performance on the train-
ing data sets used in the course of GP. While their perfor-
mance on the training sets was somewhat inflated, as this
was the value which they were selected for, the closeness of
the algorithms’ performance on a set they were not bred to
solve (usually within 10-20 fitness points) indicates that the
fitness results are indicative of general capability.

While the fitness scores listed are out of 2000, the fact that
all solutions produced satisfied above 1800 clauses does not
indicate that the algorithms all performed well. Random
assignments of boolean variables were shown to satisfy an
average of 1750 clauses. This is due to the nature of the
problem: each clause can be satisfied in one of three ways,
and while this makes it trivial to satisfy most of the clauses,
satisfying all or close to all of them requires satisfying each
clause ways which do not conflict with each other. Thus
the amount of clauses an individual satisfies, their fitness
score, is not linearly correlated with the actual performance
of individuals on the SAT problem.

Statistical analysis of the data through the use of two-
sample t-tests for sample means (↵ = 0.05) shows that TGP
and SGP perform similarly to each other, as do LGP and
CGP. However, there is a statistically significant di↵erence

1048

Graph taken from Harris et al. [1]
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Stack-based genetic programming

Data-stacks are used for managing input
and output of operations.

Programs are represented as linear
sequences of literals and instructions.
Below is an example of a simple Push
program:

(1 integer_add 2 integer_equal)

exec integer boolean
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Stack-based genetic programming

Data-stacks are used for managing input
and output of operations.

Programs are represented as linear
sequences of literals and instructions.
Below is an example of a simple Push
program:

(1 integer_add 2 integer_equal)
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1

exec integer boolean
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Stack-based genetic programming

Data-stacks are used for managing input
and output of operations.

Programs are represented as linear
sequences of literals and instructions.
Below is an example of a simple Push
program:

(1 integer_add 2 integer_equal)
2 == 1

exec integer boolean

=



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Stack-based genetic programming

Data-stacks are used for managing input
and output of operations.

Programs are represented as linear
sequences of literals and instructions.
Below is an example of a simple Push
program:

(1 integer_add 2 integer_equal)
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exec integer boolean

=



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Stack-based genetic programming

Data-stacks are used for managing input
and output of operations.

Programs are represented as linear
sequences of literals and instructions.
Below is an example of a simple Push
program:

(1 integer_add 2 integer_equal)

F

exec integer boolean



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

Outline

1 Background

2 Hyper-heuristics

3 Genetic Programming Variants

4 Autoconstruction
What is it?
AutoDoG
Results of AutoDoG

5 Summary



Overview Background Hyper-heuristics GP Variants Autoconstruction Summary

What is Autoconstruction?

Autoconstruction is a type of genetic programming
hyper-heuristic (GPHH)

In most GPHH, the individual programs are evolving, but
everything else is specified by the engineer; in
autoconstruction, evolution is evolving as well.

Programs are responsible for evolving solutions and
responsible for constructing their offspring.
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AutoDoG

A system designed by Spector et al. [2] that uses
autoconstruction to evolve programs.

Uses the Push programming language

Uses Plush, a linear genome format for Push
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AutoDoG – reproduction

Now Sam moves on to the next generation, right?

WRONG!
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Results of AutoDoG

AutoDoG has solved Replace Space with New Line (RSWN).

RSWN: given a string S, print S with all spaces replaced with
new lines and return the integer count of all non-whitespace
characters.
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Results of AutoDoG

AutoDoG solves RSWN 5–10% of the time, where PushGP
solves this problem 50% of the time.

This is actually really impressive!
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Results of AutoDoG

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

AutoDoG does not succeed as reliably on this problem as
has PushGP in some other configurations, but it does solve
the problem approximately 5 � 10% of the time, producing
general solutions. Because this is a harder problem than has
been solved by previous autoconstructive evolution systems,
we take this as an indication that something in AutoDoG
is on the right track, and we sought to understand what is
happening in AutoDoG populations when it does succeed.

4.2 Evolution evolving
One way to better understand the behavior of reproduc-

tion mechanisms is to look at the the ways in which they
convert parent genomes into child genomes. Here we use
the Damerau-Levenshtein (edit) distances (DL-distances),
applying them to sequences obtained by extracting the three
components of each gene (the instruction and the close and
silencing epigenetic markers discussed in Section 3.2).1 The
stability of the reproduction mechanisms in traditional, non-
autoconstructive runs is apparent in Figure 1. Here we see
that, after the variation in the initial random population set-
tles out, the distances between parents and children remain
fairly consistent across the duration of the run. This is also
reflected by the changes in genome size over time (Figure 2),
where there is a slight upward creep, but the sizes are again
bounded in a fairly narrow range.

Looking at the same data for a successful autoconstruction
run, we see dramatically di↵erent behaviors. Figure 3 shows
the DL-distances between parents and children in this run.
Distances were consistently under about 200 throughout the
non-autoconstructive run, while here they are scattered in
clear clusters across a much broader range, extending up to
nearly 2, 500 around generation 100. There is similar clus-
tering in the plot of genome sizes over time (Figure 4), with
many of those clusters having clear analogues in Figure 3.

Presumably these di↵erent groupings represent di↵erent
approaches to replication that are being explored by au-
toconstruction. Most of the DL-distances in the autocon-
struction run are small (a quarter below 5, half below 20),
suggesting that most of the autoconstruction mechanisms in
this run create o↵spring by making small changes to the par-

1This is why the maximum DL-distances in Figure 3 are
about three times the largest genome sizes in Figure 4.

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space
With Newline problem

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem
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Graphs taken from Spector et al. [2]
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Summary

Genetic programming hyper-heuristics (GPHH) for
heuristic/program evolution

There are many types of GP variants, and the variant
chosen may affect the success of the hyper-heuristic

Autoconstruction is a type of GPHH

AutoDoG is a newer autoconstructive system that uses
stack-based GP and has had recent success in the field of
automating algorithm design

AutoDoG/autoconstruction is special because evolution is
evolving
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Summary

This may drastically change the way we program in the
future!
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Questions?
If your question was not answered during the presentation 

today, feel free to contact me: <brow3924@morris.umn.edu>
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