Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

Automating Algorithm Design through Genetic Programming Hyper-Heuristics

Elsa Browning

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

> April 15, 2017 Morris, MN

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

What does the title mean?

 Reducing the human component in algorithm design

https://scratch.mit.edu/ discuss/m/topic/200574/

Overview Ba

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

What does the title mean?

- Reducing the human component in algorithm design
- More work at the beginning, more possibilities

https://scratch.mit.edu/ discuss/m/topic/200574/

Overview Back

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

What does the title mean?

- Reducing the human component in algorithm design
- More work at the beginning, more possibilities
- Genetic programming hyper-heuristics as a method to the madness

https://scratch.mit.edu/ discuss/m/topic/200574/

Overview ○●	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Outlin					

- 2 Hyper-heuristics
- **3** Genetic Programming Variants
- Autoconstruction

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Outlin					

Background

- Evolutionary Computation
- Genetic Programming

2 Hyper-heuristics

- 3 Genetic Programming Variants
- Autoconstruction

5 Summary

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Evolutionary Computation

https://www.spigotmc.org/attachments/evolution-jpg.137048/

Subfield of Artificial Intelligence

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Evolutionary Computation

https://www.spigotmc.org/attachments/evolution-jpg.137048/

- Subfield of Artificial Intelligence
- Algorithms based on biological evolution

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Evolutionary Computation

https://www.spigotmc.org/attachments/evolution-jpg.137048/

- Subfield of Artificial Intelligence
- Algorithms based on biological evolution
- Uses lots of terminology from biology, doesn't always mean same thing as term means in biology.

Knapsack problem

Based on https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Knapsack.svg/ 1200px-Knapsack.svg.png

Overview Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Evolutionary Computation – Terminology

- Individual a potential solution to a problem (or set of problems)
- Population a group of individuals
- Fit how well suited an individual is at solving a problem
- Fitness Test a set of tests to determine how fit an individual is.

Evolutionary Computation – Terminology

- Mutation an insertion, deletion, or small change in an individual, creating a new individual
- Sexual reproduction when two or more individuals are munged together to create a new individual

Evolutionary Computation – Terminology

- Mutation an insertion, deletion, or small change in an individual, creating a new individual
- Sexual reproduction when two or more individuals are munged together to create a new individual

If individual A experiences a mutation to create individual B, then:

• Parent – Individual A

• Child - Individual B

Evolutionary Computation – Terminology

- Generation a population of individuals
- Global optima best solution (or solutions) possible
- **Stopping point** time limit, or generation limit.

A family of algorithms in Evolutionary Computation that uses biological techniques to create programs to solve computational problems.

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Summary

Genetic Programming

Individual/Potential Solution

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Genetic Programming

Based on https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Knapsack.svg/ 1200px-Knapsack.svg.png
 Overview
 Background
 Hyper-heuristics
 GP Variants
 Auto

 00
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Autoconstruction

Summary

Genetic Programming

Knapsack problem

Overview Background 000000

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Overview Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Outlin	e				

1 Background

- 2 Hyper-heuristics
 - Heuristics
 - Hyper-heuristics
- 3 Genetic Programming Variants
- Autoconstruction

5 Summary

Overview 00	Background	Hyper-heuristics ●○○○	GP Variants	Autoconstruction	Summary
Heuri	stics				

Heuristics – a function that ranks alternatives in a search algorithm at each branching step and uses that information to choose which branch to follow.
 Overview
 Background
 Hyper-heuristics
 GP Variants
 Autoconstruction
 Summary

 •••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••</t

Heuristics – a function that ranks alternatives in a search algorithm at each branching step and uses that information to choose which branch to follow.

https:

//upload.wikimedia.org/wikipedia/ commons/thumb/f/fd/Knapsack.svg/ 1200px-Knapsack.svg.png
 Overview
 Background
 Hyper-heuristics
 GP Variants
 Autoconstruction
 Summary

 00
 0000
 0000
 0000
 0000000
 00000000
 Summary

Heuristics – a function that ranks alternatives in a search algorithm at each branching step and uses that information to choose which branch to follow.

Example: "Select highest valued item and put into knapsack. If item puts knapsack overweight, select next highest value instead. Repeat until all items are gone or until the knapsack is full"

//upload.wikimedia.org/wikipedia/ commons/thumb/f/fd/Knapsack.svg/ 1200px-Knapsack.svg.png

Overview 00	Background	Hyper-heuristics ○●○○	GP Variants	Autoconstruction	Summary
Heuri	stics				

Based on figures from Tauritz et al. [3]

Hyper-heuristics – heuristic search methods which seek to automate the process of selecting, generating, or adapting several simpler heuristics in order to solve computational search problems.

 Overview
 Background
 Hyper-heuristics
 GP Variants
 Autoconstruction
 Summary

 Owner-heuristics
 Owner-heuristics
 Owner-heuristics
 Owner-heuristics
 Owner-heuristics

Hyper-heuristics – heuristic search methods which seek to automate the process of selecting, generating, or adapting several simpler heuristics in order to solve computational search problems.

Genetic programming hyper-heuristics – hyper-heuristics that use genetic programming for the process of selecting, generating, or adapting several simpler heuristics.

Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Outline

Background

2 Hyper-heuristics

3 Genetic Programming Variants

- What are they?
- Why should we care?
- Stack-based genetic programming

Autoconstruction

5 Summary

Genetic programming variants

GP variants – variations on the structure and setup of a genetic programming system.

Genetic programming variants

GP variants – variations on the structure and setup of a genetic programming system.

Harris et al. [1] performed an experiment to address whether or not the GP variant used affected the success of the hyper-heuristic

Genetic programming variants

GP variants – variations on the structure and setup of a genetic programming system.

Harris et al. [1] performed an experiment to address whether or not the GP variant used affected the success of the hyper-heuristic

GP variants tested:

- Cartesian GP
- Linear GP
- Stack-based GP
- Tree-based GP
- Grammatical Evolution

Overview 00	Background	Hyper-heuristics	GP Variants ○●○○	Autoconstruction	Summary		
Why should we care?							

Graph taken from Harris et al. [1]

Stack-based genetic programming

Data-stacks are used for managing input and output of operations.

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

(1 integer_add 2 integer_equal)

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	0000000	0000	0000	0000000	

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```

2					
=		1			
exec	i	ntege	 r b	oolea] in

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```

=	2	
exec	integer boolear	ı

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

```
(1 integer_add 2 integer_equal)
```


Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

(1 integer_add 2 integer_equal)

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

(1 integer_add 2 integer_equal)

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Outlin	ne				

Background

- 2 Hyper-heuristics
- **3** Genetic Programming Variants

Autoconstruction

- What is it?
- AutoDoG
- Results of AutoDoG

Autoconstruction is a type of genetic programming

hyper-heuristic (GPHH)

Overview
ooBackground
oocoooHyper-heuristics
oocoGP Variants
oocoAutoconstruction
oocoooSummary
output

What is Autoconstruction?

- Autoconstruction is a type of genetic programming hyper-heuristic (GPHH)
- In most GPHH, the individual programs are evolving, but everything else is specified by the engineer; in autoconstruction, evolution is evolving as well.

Overview
ooBackground
ooHyper-heuristics
ooGP Variants
ooAutoconstruction
ooSummaryOutputOutp

What is Autoconstruction?

- Autoconstruction is a type of genetic programming hyper-heuristic (GPHH)
- In most GPHH, the individual programs are evolving, but everything else is specified by the engineer; in autoconstruction, evolution is evolving as well.
- Programs are responsible for evolving solutions *and* responsible for constructing their offspring.

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
AutoDo	bG				

• A system designed by Spector et al. [2] that uses autoconstruction to evolve programs.

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Auto	DoG				

- A system designed by Spector et al. [2] that uses autoconstruction to evolve programs.
- Uses the Push programming language

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
ΔιιτοΓ					

- A system designed by Spector et al. [2] that uses autoconstruction to evolve programs.
- Uses the Push programming language
- Uses Plush, a linear genome format for Push

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	0000000	0000	0000	0000000	

AutoDoG – reproduction

Mom

Overview	Background	Hyper-heuristics	GP Variants	Au
00	000000	0000	0000	oc

Autoconstruction

Summary

AutoDoG – reproduction

Mom

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	0000000	0000	0000	0000000	

Overview	Background
00	0000000

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summa
_					

Summary

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
A					

Overview	Background	Hyper-heuristics	GP Variants	Auto
00	000000	0000	0000	00

Autoconstruction

Summary

AutoDoG – reproduction

Summary

AutoDoG – reproduction

Summary

Autoconstruction

Summary

AutoDoG – reproduction

Summary

Autoconstruction

Summary

GP Variants

Autoconstruction 00000000

Summary

Autoconstruction

Summary

Overview	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
00	000000	0000	0000	0000000	

GP Variants

Autoconstruction

Summary

GP Variants

Autoconstruction 00000000

Summary

Overview	Background
00	0000000

GP Variants

Autoconstruction

Summary

Overview	Background
00	0000000

GP Variants

Autoconstruction

Summary

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
	-				

Overview	Background
00	0000000

GP Variants

Autoconstruction

Summary

AutoDoG – reproduction

Now Sam moves on to the next generation, right?

AutoDoG – reproduction

Now Sam moves on to the next generation, right?

WRONG!

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary

Results of AutoDoG

AutoDoG has solved Replace Space with New Line (RSWN).

AutoDoG has solved Replace Space with New Line (RSWN).

RSWN: given a string S, print S with all spaces replaced with new lines and return the integer count of all non-whitespace characters.

Results of AutoDoG

AutoDoG solves RSWN 5–10% of the time, where PushGP solves this problem 50% of the time.

AutoDoG solves RSWN 5–10% of the time, where PushGP solves this problem 50% of the time.

This is actually really impressive!

Overview	Backgroun
00	0000000

GP Variants

Autoconstruction

Summary

Results of AutoDoG

d

Graphs taken from Spector et al. [2]

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Outlin	e				

Background

- 2 Hyper-heuristics
- 3 Genetic Programming Variants
- Autoconstruction

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Summa	ary				

 Genetic programming hyper-heuristics (GPHH) for heuristic/program evolution

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Summ	ary				

- Genetic programming hyper-heuristics (GPHH) for heuristic/program evolution
- There are many types of GP variants, and the variant chosen may affect the success of the hyper-heuristic

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Summ	ary				

- Genetic programming hyper-heuristics (GPHH) for heuristic/program evolution
- There are many types of GP variants, and the variant chosen may affect the success of the hyper-heuristic
- Autoconstruction is a type of GPHH

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Summ	ary				

- Genetic programming hyper-heuristics (GPHH) for heuristic/program evolution
- There are many types of GP variants, and the variant chosen may affect the success of the hyper-heuristic
- Autoconstruction is a type of GPHH
- AutoDoG is a newer autoconstructive system that uses stack-based GP and has had recent success in the field of automating algorithm design

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Summary					

- Genetic programming hyper-heuristics (GPHH) for heuristic/program evolution
- There are many types of GP variants, and the variant chosen may affect the success of the hyper-heuristic
- Autoconstruction is a type of GPHH
- AutoDoG is a newer autoconstructive system that uses stack-based GP and has had recent success in the field of automating algorithm design
- AutoDoG/autoconstruction is special because evolution is evolving
| Overview
00 | Background | Hyper-heuristics | GP Variants | Autoconstruction | Summary |
|----------------|------------|------------------|-------------|------------------|---------|
| Summ | ary | | | | |

This may drastically change the way we program in the future!

Acknowledgments

Special thanks to Nic McPhee and Elena Machkasova for their feedback and constructive comments.

Thanks for coming!

Overview Background

Hyper-heuristics

GP Variants

Autoconstruction

Summary

Questions?

If your question was not answered during the presentation today, feel free to contact me: <<u>brow3924@morris.umn.edu</u>>

Overview 00	Background	Hyper-heuristics	GP Variants	Autoconstruction	Summary
Refere	nces				

S. Harris, T. Bueter, and D. R. Tauritz. A Comparison of Genetic Programming Variants for Hyper-Heuristics.

In Sara Silva, editors, *GECCO '15*, pages 1043–1050, Madrid, Spain 2015.

L. Spector, N. F. McPhee, T. Helmuth, M. M. Casale, and J. Oks.

Evolution Evolves with Autoconstruction. In T. Friedrich, *et al*, editors, *GECCO '16*, pages 1349–1356, Denver, Colorado, USA 2016.

 D. R. Tauritz, and J. Woodward. Hyper-heuristics.
In T. Friedrich, *et al*, editors, *GECCO '16*, pages 273–304, Denver, Colorado, USA 2016.

See my paper for additional references.