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ABSTRACT
The compact structure of today’s smart phones has limited
the size of cameras these devices can use. With most smart
phones utilizing a small camera, this diminishes the amount
of light gathered during capture. When taking an image in
dimly lit scenes or when the amount of light captured is low,
the resulting photograph will contain image noise and low
dynamic range. This paper discusses methods for producing
images through computational photography pipelines. De-
veloped for mobile devices, these pipelines capture, align,
and merge a burst of multiple images in order to produce
a single high-dynamic-range and low noise image. Similar
pipelines have existed for a while in the forms of High-
Dynamic-Range (HDR) and Image Denoising algorithms.
This paper will present a recent development in computa-
tional photography pipelines called Burst Photography for
use in both high-dynamic-range and low-noise imagery.
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1. INTRODUCTION
The ability to shoot in burst mode is a setting found on

most newer cell phone cameras. Burst mode, or burst, allows
the user to capture multiple images in rapid succession by ei-
ther pressing or holding down the shutter button. Recently,
burst capturing has become ubiquitous in many hand-held
imaging devices (e.g., smartphone, compact and DSLR cam-
eras). For example, the iPhone 5 supports a burst of up to
10 shots per second [7].

The purpose of burst mode is to allow users to select the
best images of a subject in motion. Another common appli-
cation of burst mode is its use in high-dynamic-range (HDR)
photography. HDR photography consists of capturing mul-
tiple images at varying light settings (exposures) and merg-
ing them into a single image. As shown in Figure 1, HDR
photography is useful when a scene contains large contrasts
between highlights and shadows. This particular method of
HDR is known as bracketing and is a setting used in most
of today’s smart phone cameras. While HDR can produce
realistic looking images, the power needed to process the
images can be strenuous on weaker processors [3] leading
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Figure 1: An example of a scene taken with and
without HDR enabled. (a) shows how without
HDR, details in the sky and shadows are not vis-
ible. (b) shows that adding HDR brings out the
detail throughout the scene and preserves the color.
Image courtesy of Marc Levoy [6].

to a rapid loss in battery life. While burst mode accounts
for scene motion and HDR, it still has the issue of causing
graininess (image noise) when capturing in low light. An
ideal solution would involve capturing the images in HDR
while performing a noise reduction process. In recent years,
Google has developed such a solution for their Nexus line of
phones known as burst photography [4].

Burst Photography [4] is a computational photography
pipeline developed as an improvement upon HDR+ capture
mode found Googles’ Nexus line of phones. Burst photogra-
phy takes several images of a scene at the same exposure and
merges them together. This process produces a single im-
age that contains less noise and sharper detail than without
HDR turned on as illustrated in Figure 1.

I will begin this paper by providing some background in-
formation on dynamic-range and image noise. Next, I will
cover the general process of the burst photography pipeline
and end by discussing a comparison in image performance
between burst photography and a similar burst capture pipe-
line known as pixel fusion.

2. BACKGROUND
Dynamic range and noise are two major concerns to deal

with when taking a photograph. If a scene is in a darker set-
ting, then any image taken will contain noise. Noise occurs
when the sample size of light photons hitting the camera’s
sensor is very small. For instance, one pixel might register



Figure 2: An example of bracketing exposure by
taking multiple images beginning with an underex-
posed image (top left) and working towards an over-
exposed image (lower left) and then merging the im-
ages together. The purpose of this is to capture de-
tail in the shadows and highlights of the frame. [10].

twice the light value of the pixels next to it, causing image
noise. Due to the random nature of light photons hitting
the sensor, noise in an image will be unique in every image
from pixel to pixel [9]. Dynamic range is a span of light val-
ues ranging from the brightest highlights (full white) to the
darkest shadows (full black). Similar to how a human eye
opens and closes between bright and dark areas, a camera
lens will open to pick up detail in the dark scenes and close
to preserve detail in very bright scenes. However, unlike
human eyes, current cameras lack the capability of capture
both ends of the dynamic range spectrum. To account for
this, some cameras use a stack biased High-Dynamic-Range
imaging pipeline to widen the camera’s light capture capa-
bilities.

Stack-based High-Dynamic-Range imaging is a pipeline
used to generate a single image while preserving detail in
areas of extreme lights and shadows. Recent stack-based
pipelines generally operate by capturing multiple images at
varying exposures as shown in Figure 2, and then later merg-
ing each capture into a single HDR image [3]. While the
results are compelling, methods such as HDR bracketing
can be taxing on physical hardware and possibly produce
occasional artifacts such as motion blur or alignment incon-
sistencies.

In recent years, Google developed HDR+, a feature in the
Google Camera app for the Nexus 5 and Nexus 6. They
found that, instead of bracketing photos, they can take a
burst of shots with short exposure times and merge them al-
gorithmically by replacing each pixel with the average color
at that position across all the shots [6]. In this paper, I will
address the HDR+ setting of burst photography.

3. CAPTURE AND PROCESS OVERVIEW
Figure 3 represents the burst photography process as a

real-time pipeline. Once the camera app is opened, the
camera begins recording and streaming raw frames to the
viewfinder as shown in Figure 3 (top row). When the shut-
ter is pressed, a burst of frames is captured at a constant
exposure, formed into a stack and stored temporarily in

Figure 3: An overview of Hasinoff, et al’s., burst
photography processing pipelines on the Nexus line
of phones [4].

main memory. At this point the pipeline as shown in Fig-
ure 3 (bottom row) is activated and the stack of frames are
aligned and merged together (Sections 5 and 6) into a single
image. The pipeline then applies white balance adjustments
and tone mapping to produce a single full-resolution photo-
graph [4].

One of the key enabling technologies of burst photography
is the Camera2 API [1]. Camera2 utilizes a request-based
architecture that allows the camera to analyze a scene for
exposure setting, capture images in RAW file format, and
pre-record frames for burst capture. At the time of writing,
Hasinoff, et al. [4] describes the only documented pipeline
to capture in RAW natively. There are several reasons as to
why burst photography captures in RAW rather than tradi-
tional JPEG. First, RAW files store roughly 3x more data
than JPEG files, thus allowing for more detail and informa-
tion about the image to be preserved. Second, RAW files
use a combination of red, blue, and green filter patterns lo-
cated on the camera’s image sensor to capture high details
of light and color. For any 2x2 area of pixels, there will be
two green, one blue, and one red. This format (know as
RGGB) and is beneficial because our eyes distinguish lumi-
nance (brightness) with greater intensity within the green
channel [2]. Third, RAW files contain the entire dynamic
range spectrum for the photo. This means that the cam-
era can capture at a set exposure and adjust highlights or
shadows afterwards if need be.

The ability to adjust the dynamic range settings of an
image after capture means that there is no need to bracket
the exposure between frames as shown in Figure 2. Instead,
burst photography captures every frame at a the same ex-
posure. Removing the need to alter exposure is one of the
main shortcuts in reducing the processing time.

4. EXPOSURE METERING
It’s a difficult step in any photography pipeline to set a

cameras exposure settings. Because exposure setting are
scene dependent, most pipelines rely on an auto-exposure
algorithm to make the proper adjustments. These algo-
rithms usually operate by finding a balance between lights
and shadows within the dynamic range [3]. While a tradi-
tional auto-exposure algorithm will produce compelling re-
sults, there are some scenarios that indicate room for im-
provement.
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Figure 4: Above is an example of a sunset image
taken from Google’s example set along with the
Hasinoff, et al. [4] The image on the left (a) is an
illustration of the exposure setting from standard
auto exposure algorithm. The image on the right
(b) was taken using burst photography database to
set the exposure.

As shown in Figure 4 (a), most traditional auto-exposure
algorithms would select the bright light of the sunset and
lower the exposure in order to balance out the dynamic-
range. However, it’s usually acceptable in a scene like this to
leave the sun slightly over-exposed to preserve color through-
out the sky and maintain detail within the foreground as
shown in Figure 4 (b).

Another issue with setting the auto-exposure involves the
edits that are applied to the image throughout the burst
photography pipeline as mentioned in section 3. It is pos-
sible that what a user sees through the viewfinder could
be a misrepresentation of the final image. To address this,
Hasinoff, et al., [4] introduce the development of their cus-
tom auto-exposure algorithm that pre computes future im-
age processing and is responsible for adjusting the exposure
settings.

4.1 Exposure database
To account for auto-exposure failures, Hasinoff, et al., con-

structed a database of scenes for the camera to constantly
compare what it sees to. This database consists of about
5,000 images (at the time of writing) that have been taken
with the burst photography pipeline. The goal is to contain
enough images so that most scenes consumers are likely to
encounter will have a matching set of example images [4].

Using this database, the camera takes input frames from
the viewfinder and searches for images with matching de-
scriptors such as exposure, composition, and colors as shown
in Figure 4 (b). This way the sun in Figure 4 can be slightly
over exposed in order to bring out some detail in the streets.
Once a matching set of candidate images is found, then the
settings from that set is applied to the camera and the burst
is ready for capture.

4.2 Burst size
While setting were being made, the camera was constantly

recording through the viewfinder at 30 fps and storing frames
in temporary memory. This is performed alongside exposure
adjustments as a way to reduce the overall processing time.
Once the shutter is pressed, the camera captures the cur-
rent frame and saves the previous 2 – 8 frames. The number
of frames used is dependent on the exposure settings that
were used. Once the frames are captured, they are put into a
stack where one frame is selected to be the reference frame of

(c)

Figure 5: The upper images (a) and (b) are a pair
of 3 Mpix grayscale frames. Where the lower image
is a colorized representation of the motion between
the frames. In the lower image (c), hue and satu-
ration (depicted in the color wheel) indicate where
movement in each frame is present and to what de-
gree [4].

the burst [4]. To account for shutter lag, the reference frame
is chosen only from the first 3 frames in the burst. With the
reference frame selected the stack is ready to move on to
alignment and merging.

5. ALIGNMENT
The alignment phase of the burst photography prepares

the stack for merging by aligning each of the non-reference
frames to the chosen reference frame. This section will pro-
vide a brief overview of the hierarchical alignment process
for the burst photography pipeline. The details of this topic
are beyond the scope of this paper and can be found in the
alignment sections of Hasinoff, et al. [4], and Liu, et al. [7]

Before alignment occurs, the frames in the stack are con-
verted from color to grayscale in order to measure the aver-
age brightness of light at each pixel. The grayscaled frames
are then downsized from 12 mpixs to 3 mpixs [4]. At this
point each frame is divided up into multiple 16 x 16 pixel
tiles as shown in Figure 5 (c).

Alignment is broken up into two processes. First, hier-
archical alignment is performed on the downsized frames
matching up non-reference frame tiles to reference frame
tiles. This provides an initial guess as to how the frames
will align to the reference frame. The frames are then up-
scaled back to their original 12 mpix resolution and fast
subpixel L2 alignment is performed. Fast subpixel L2 align-
ment analyzes and aligns every pixel in each frame with the
corresponding pixels in the reference frame. The goal is to
align each of the frames 16 x 16 pixel tiles as close as pos-
sible to the reference frames tiles. Any misaligned tiles will
be handled in the merging process.

6. MERGING FRAMES
A key goal when merging frames produce a high-dynamic

range image with reduced levels of noise. The core function-
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Figure 6: Image (a) is an example of a noisy image.
Image (b) is the same image after denoising has been
applied. Image (c) is an example of a over denoising.

ality of a merging algorithm is accomplished by combining
non-reference frame tiles with reference frame tiles. This
way, noisy pixels should get overlapped by non-noisy pixels.
However, because noise is random, it’s bad practice to only
rely on the over-laying of tiles to denoise an image. Burst
photography accounts for this by implementing a denois-
ing algorithm known as Discrete Fourier Transformations or
DFTs.

6.1 DFT
Before going into detail about the burst photography merg-

ing method, I am going to take a moment to introduce a
denoising process called Discrete Fourier Transformations.
Discrete Fourier transformations are a key component used
in the burst photography merging method to prepare images
for denoising. DFTs use the RAW file format to locate large
quantities of noise data. Once selected, the noise values are
reduced in order to blend noisy pixels into the image.

Figure 6 provides an example of a DFTs impact on a noisy
image. One thing to note is that data used to represent noise
is also what defines edges and outlines within the image.
Therefore, the noise values can only be reduced to a certain
point before edge detail also begins to deteriorate. Figure 6
(c) shows what can happen if the noise values were removed
entirely from the image data. For more information on DFTs
reference [8].

6.2 Burst Merging
In this section, I will cover the merging method developed

for the Burst Photography pipeline. I will also be referring
to their method as burst merging for duration of this section.

Burst merging operates by taking each tiles light values
within the stack and constructing a new single image from
their weighted averages. The process starts by selecting a
tile in the reference frame and locating all corresponding tiles
in the non-reference frames. Once all tiles have be selected,
DFTs are performed on each tile to compute their noise
values as output (ω). The next step is to take the weighted
average coefficients of the noise values and apply them to
the corresponding tile in the new image. To compare the
noise values and construct the new image, burst merging
implements Pairwise temporal filtering.

6.2.1 Pairwise Temporal Filter
The main goal of this merging process is to reduce noise

in the final image. Burst merging handles this task by im-
plementing a pairwise temporal filter with aims to attenuate
noise within each non-reference tile. Let Tz(ω) be the noise

(a) (b) (c)

Figure 7: An example from Hasinoff, et al. [4] of
merging 8 frames from a moving scene. From top
to bottom, the rows consist of the input frames (top
row), a crop where alignment succeeds (middle row),
and a crop where alignment partially fails (bottom
row). (a) A reference frame is chosen. (b) Averag-
ing all 8 frames without alignment produces ghosts
in regions exhibiting motion. (c) The result of the
robust merge resemble the reference frames but with
less noise.

value output for the zth frame, w = (ωx, ωy) be coordinate

locations of noise in each tile, and T̃0(ω) be the output value
of the alternate tile that is applied to the new image [4].
Because noise is randomly generated, the position of noise
will vary from frame to frame. Thus, once the output Tz(ω)
is obtained, the alternate tile can be created and applied to
the new image:

T̃0(ω) =
1

N

N−1∑
z=0

Tz(ω)

While this method is common practice for most frequency-
based denoising methods, it does not account for alignment
failure as shown in Figure 7(b). To add robustness, burst
merging uses an expression similar to the first equation with
the addition of a filter that controls the contribution of the
alternate tiles [4]:

T̃0(ω) =
1

N

N−1∑
z=0

Tz(ω) +Az(ω)[Tc(ω)− Tz(ω)]

Az(ω) controls the degree of usage between the alternate and
reference tile in the new image. The body of this sum can
be rewritten as (1−Az) · Tz +Az · T0 to emphasize that Az

controls a linear interpolation between Tz and T0 [4]. This
added robustness will ignore any tiles identified to contain
alignment failures so that those failures will be avoided and
not applied to the new image. This can be seen in Figure 7
where the bottom row shows that, if alignment failure is
present, the reference tile will be used in the final result.

Since Az controls how involved alternative frames are in



creating the final image, it is important to determine which
alternative tile coefficients are lower in quality than the ref-
erence tile. The value Tz should only contribute to the final
image when its difference from T0 can be ascribed to as noise.
The contribution of T0 should also be reduced when it differs
from T0 due to poor alignment [4]. The following equation
defines Az as a shrinkage operator and is a variant of the
classic Wiener filter:

Az(ω) =
|Dz(ω)|2

|Dz(ω)|2 + c

where Dz(ω) = T0(ω) − Tz(ω), and c is a constant (set to
8 for Figure 7) that tunes the impact of Az. Because the
degree of contribution varies from tile to tile, the image is
allowed to degrade in a graceful manner when alignment
failure is present as shown in Figure 7 (c) row 3.

6.2.2 Overlap Adjustment and Post Processing
Up to this point, I have covered how burst merging op-

erates by creating a single image from a burst of frames.
However, before the image can be sent to finishing, the im-
age needs to be corrected for any border overlap. I will pro-
vide a brief overview of both processes. Further detail can be
found in Hasinoff, et al. [4] Tiles that have overlapped from
the aliment process are corrected by applying a windowed
function that acts a as a crop for the final image [4].

The image finishing process consists of 13 different oper-
ations that are applied with the goal of making the image
match what was initially seen by the user. To get a basic idea
of the resulting image after finishing, refer to Figure 4(b).
More information can be found in Hasinoff, et al. [4]

7. FAST DENOISING
In Hasinoff, et al.’s, study [4] a comparison was performed

between burst merging and other merging methods, one of
them being Liu, et al.’s [7] pixel fusion method. In this sec-
tion, I will compare images generated via the burst merging
and pixel fusion pipelines. However, first I will provide an
overview of how the pixel fusion pipeline works.

Fast denoising was developed by Lui, et al., under Mi-
crosoft Research Technologies in 2014 [7]. Similar to burst
merging, fast denoising produces a single image from a burst
of noisy images. Fast denoising handles scene motion by
identifying consistent pixels throughout each of the frames.
In the pipeline, the resulting images are aggregated through
the use of a processes called Temporal fusion.

Temporal fusion begins by assuming that xt are the color
values of consistent pixels from the tth frame of the input
set. Where consistent pixels refers to pixels that are consid-
ered to be correctly aligned across all frames. Let x̃ be the
resulting value of pixel fusion:

x̃ = u+
σ2
c

σ2
c + σ2

(xt − u)

where u is the mean of pixel values {xt}, and the variance
of true pixels (non-noisy pixels) is approximated by max(0,
σ2
t – σ2) [7]. σt is the standard deviation of {xt} and σ

is the standard deviation of noise across all frames. If the
variance of noise is greater than the variance of color, then
the approximation of true pixels is set to 0 for the resulting
image. Temporal fusion runs at every for every group of

(a) (b)

Figure 8: A comparison of two low-light photos pro-
duced by Hasinoff, et al.’s [4] burst merging (mid-
dle row) and Liu, et al.’s [7] pixel fusion (bottom
row). Also, note that the green outlines indicate
where cropping occurred within the pipeline. Taken
from [5].

consistent pixels which is followed up by multi-scale fusion to
aggregate the results into a single image. More information
about multi-scale fusion and the rest of the fast denoising
pipeline can be found in Lui, et al. [7]

8. COMPARISON AND RESULTS
For comparison test between the pipelines, 30 raw bursts

sets were used from Google reference image database (Sec-
tion 4.1). The photos chosen for the bursts were picked bi-
ased on of their coverage of motion levels and brightness. As
shown in Figure 8 (top row), the the two images displayed il-
lustrate performance on low-light scenes. Before the test, all
images where converted to JPEG because the burst fusion
pipeline does not operate with RAW files. This also en-
sured that the experiment only focused on the performance
of aligning and merging algorithms.

Looking at the examples in Figure 8, both pipelines pro-
duce a denoised image with an appealing dynamic range.
These examples also show that the main differences between
burst merging (middle row) and burst fusion (bottom row),
is in the alignment. Burst merging produced an image that
is nearly identical to the input due to the robustness of the
pairwise temporal filter. Any motion that was misaligned
was not used in the final image. In comparison, burst fusion
produced a result that is slightly different from the input
image. In Figure 8 (bottom row), image (a) shows a taxi
behind the car at a completely different position compared



to the input frame, and in image (b) some of the hiker’s arms
are repositioned in the final image. This can be attributed
to the alternate forms of handling alignment for the final
photo. More information can be found in Lui, et al. [7]

9. CONCLUSIONS
As demonstrated in this paper, solutions for capturing

detailed photos in low-light with high dynamic range have
existed for a while but fail to operate in a timely manner
on mobile devices [3]. With these hardware constraints in
mind, Hasinoff, et al., describe a system for capturing a
burst of underexposed frames, aligning and merging them
together to produce a high-resolution photograph on mobile
devices. The system was deployed on several mass-produced
cell phones, marketed as HDR+ in the Nexus 6, 5X, 6P,
and Pixel phone [4]. While other merging methods such as
Liu, et al.’s [7] pixel fusion produce similar results, from
the burst processing tests we can see that burst merging
produces better results especially in low-light scenes.

There are still limitations to future development of burst
photography. Hasinoff, et al., point out [4] that a major
hurdle is the computing time of the images and the differ-
ences between what’s shown in the viewfinder and how the
final image appears. In extreme circumstances, users might
abandon taking an image altogether due to the lack in qual-
ity displayed on the viewfinder, or miss out on capturing a
moment in rapid burst due to the HDR+ small processing
delay. These problems are possible to solve at the time of
writing, but might take time in order to bring the needed
technology down to a consumer level.
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