
Identifying Twitter Spam by Utilizing Random Forests

Humza S. Haider
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

haide043@morris.umn.edu

ABSTRACT
The use of Twitter has rapidly grown since the first tweet
in 2006. The number of spammers on Twitter shows a
similar increase. Classifying users into spammers and non-
spammers has been heavily researched, and new methods for
spam detection are developing rapidly. One of these classifi-
cation techniques is known as random forests. We examine
three studies that employ random forests using user based
features, geo-tagged features, and time dependent features.
Each study showed high accuracy rates and F-measures with
the exception of one model that had a test set with a more
realistic proportion of spam relative to typical testing proce-
dures. These studies suggest that random forests, in combi-
nation with unique feature selection can be used to identify
spam and spammers with high accuracy but may have short-
comings when applied to real world situations.

Keywords
random forests,decision trees, spam, machine learning

1. INTRODUCTION
Twitter has become one of the most widely used social

media services across the world averaging roughly 500 mil-
lion tweets per day [6]. As a result, the number of malicious
users on Twitter has also expanded. On Twitter, spam is
defined as any unsolicited, repeated actions that negatively
impact other users. On Twitter, spam can manifest itself
as links to harmful websites (such as phishing or malware
websites) or distribution of pornographic materials.

The data used to identify spam tweets and spammers is
made up of features also known as variables. Features are a
way of categorizing a dataset into mutually exclusive groups
such as tweets into spam and not spam or users into spam-
mers and non-spammers. Another feature could be an indi-
cator of whether or not a user has reported a tweet as spam.
This feature, Reported, takes on the values Reported = yes
and Reported = no. Note that a reported tweet doesn’t im-
ply the tweet is spam, just that it has been reported. All
features in this paper are denoted with italics.

Spammers typically share traits within their tweets and
their accounts. For example, in order to draw more atten-
tion to their tweets, a spammer is likely to have tweets con-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2017 Morris, MN.

taining many mentions, a way of bringing a user’s attention
to a tweet. Specifically, if we saw Number of Mentions = 5,
it would imply the spammer mentioned 5 other users in their
tweet. If a user has many mentions across their tweets the
likelihood that they are a spammer increases. By combin-
ing multiple features, models can be constructed to identify
spammers and spam tweets with a high degree of accuracy.

Machine learning is a specific type of artificial intelligence
that allows computers to learn without being specifically
programmed. Techniques in the field range from classifica-
tion analysis to pattern recognition. Our paper explores the
machine learning technique known as random forests. Intro-
duced in 2001 by Leo Breiman, random forests have become
one of the most widely used methods for classification analy-
sis. We examine three papers which are similar in that each
use a random forest to identify either spam or spammers on
Twitter but are different in their feature selection.

Authors, Chen et al., [2] use features directly available
from a tweet itself and features tied to a user’s account. For
example, they identify the the number of hashtags in a tweet
and then also examine the number of followers that the user
has. Guo and Chen [3] use similar features, but also in-
clude geographical information tied to a user and the user’s
tweets. For example, if a user travels large distances in rela-
tively short periods between tweets they may be a spammer.
Lastly, Washha et al. [6] make use of time-dependent fea-
tures to identify spammers. One such feature is how tweet-
ing diversity may change over time. If a user has little-to-no
diversity in their tweets, they are likely tweeting a single
message many times, making them a spammer.

First, a discussion of the concept and details of a random
forest is given in Section 2. From there, the three studies’
features are presented in Section 3. In Section 4, the analysis
of each study will be presented and a comparison of the
analyses will be made. Lastly, concluding remarks can be
found in Section 5.

2. BACKGROUND
Before we begin to discuss the intricacies of a random

forest, we will first consider a single tree. Random forests
are constructed from a combination of decision trees. A
decision tree is a method of classifying a feature of interest,
denoted T , through the use of other features available. In
the case of detecting spam tweets, knowing whether a URL is
present in a tweet, the users account age, and if the tweet has
been reported as spam could all be assessed before deciding
on whether a tweet is spam or not spam. Table 1 gives
examples of these features.

The data in Table 1 have been artificially constructed for
the example and do not come from a real data set. Table 1
includes five features in total: URL, AccountAge, Reported,
the feature of interest (Class), and an identification feature
(ID). The ID feature lets us uniquely identify rows, where
each row serves as a single observation (tweet). The fea-
ture URL identifies whether or not a URL is present in a
tweet, AccountAge specifies whether an account is old or
new, Reported specifies if the tweet has been reported as
spam or not, and Class determines whether or not the tweet
is spam.

Table 1: Example data for classifying a tweet as spam or
not spam.

ID URL Account Age Reported Class
e1 No Old Yes Not Spam
e2 Yes Old Yes Not Spam
e3 No New Yes Spam
e4 No Old Yes Spam
e5 No New No Not Spam
e6 Yes New Yes Spam
e7 Yes New No Not Spam
e8 No Old No Non Spam

Using the data in Table 1 a decision tree has been con-
structed, as seen in Figure 1. Each of the circles in the de-
cision tree is referred to as a node. Within each node of the
tree are the counts and proportions of Spam and Not Spam,
e.g. the topmost node contains 8 tweets, 3 Spam and 5 Not
Spam, giving the proportions 32% Spam and 68% Not Spam.
For each split of a node, the observations (rows) from Table
1 are partitioned. For example, in the left most node, which
represents Reported = No, the observations e5, e7, and e8
have been partitioned from the original dataset into a sub-
set. This subset has the classifications 0% Spam and 100%
Not Spam since each observation has Class = Not Spam. In
a given node, the classification with the higher proportion
is the classification decision of the observations within the
node. Thus, for the observations in the leftmost node the
classification decision is Not Spam.

Figure 1: Sample decision tree using data from Table 1.

2.1 Decision Trees
The goal of a decision tree is to recursively partition the

observations from a dataset until the feature of interest, T ,
can be classified with maximum probability. We examine
how splits in the nodes, as seen in Figure 1, are decided.

Suppose that each observation is labeled as pos or neg by
T . In Table 1, T is the Class feature and pos would refer

to Spam and neg to Not Spam. We then want to quantify
the average information content of each observation when it
is labeled as pos or neg. Denote ppos as the proportion of
observations that are labeled as pos by T .

Suppose that ppos = 1, i.e. every tweet is spam. Then,
if we take a random observation and see that T = pos, we
haven’t learned anything new about the observation. This
is because every observation will have T = pos; thus by
looking at label given by T , no new information about the
observation is learned. In the case that ppos = 1 we say the
average information content of the observations is 0 since T
doesn’t provide information about the observations.

Alternatively, if ppos = 0.5 then pos and neg observations
have the same probability of occurrence. Now, if we take a
randomly drawn observation and see that T = pos we know
information about that specific observation since not all ob-
servations have T = pos. Additionally, as ppos decreases
and we see an observation with T = pos the information in-
creases because the observation is more unique than others
among all observations. The standard way to quantify the
average information content of the pos observations is:

Ipos = − log2 ppos. (1)

The negative sign compensates for the fact that logarithm
will always be negative since ppos ∈ [0, 1]. Additionally, as
ppos decreases, the quantity of information increase.

However, there are also observations with T = neg. In
order to calculate the average information contents of T we
must consider both pos and neg observations. To compute
this, we introduce entropy [5]. Entropy is calculated as

H(T) = −ppos log2 ppos − pneg log2 pneg. (2)

Note that H(T) becomes maximized at 1, namely when
ppos = pneg = 0.5. Further, entropy reaches a minimum
when either ppos = 1 or pneg = 1. When either ppos = 1
or pneg = 1 it is known as perfect regularity since all ob-
servations have the same label of T. Alternatively, if ppos =
pneg = 0.5 it is known as a total lack of regularity.

Given the data in Table 1, we can calculate H(Class) as

H(Class) = −3

8
log2

(
3

8

)
− 5

8
log2

(
5

8

)
= 0.954.

Note that since H(Class) is close to 1 there is a lack of
regularity.

Decision trees were invented to deal with a lack of regu-
larity. Given data with a lack of regularity, we use features
which contribute the most information to classifying the la-
bel of T. These features are used to partition the dataset
into subsets with increased regularity. For example, of the
features from Table 1 (excluding ID and Class) we want
to identify which feature can best classify observations into
Class = Spam and Class = Not Spam.

We will denote a feature of the dataset as X. Note that X
will partition T into subsets, Ti, for each of the values that
X can take. For our case, where T = Class, suppose X =
Account Age and recall that Account Age can take the values
Old or New. In this case, Class would be partitioned into
ClassOld = {e1, e2, e4, e8} and ClassNew = {e3, e5, e6, e7}.

Let the number of elements inside of Ti be denoted as |Ti|.
Then, the probability that a randomly drawn observation
from the dataset be contained in Ti is

Pi =
|Ti|
|T | .

Then, to calculate the entropy of T given the values of X
we can sum across the entropies of all Ti, weighted by the
respective Pi. The equation for this is given by the following:

H(T |X) =
∑
i

Pi ·H(Ti). (3)

H(T |X) gives the entropy of a system where the labels of
T , (pos, neg), and the values of X are known. Specifically,
this will tell us the regularity of T when the values of X
have been accounted for. Recall that we are trying to take
a system with a lack of regularity and make it more regular
so lower values of H(T |X) are better.

We will continue our example with AccountAge. Using
the data in Table 1, |ClassOld| = |ClassNew| = 4. Thus, we
get POld = PNew = 0.5. To calculateH(Class|Account Age)
we make the following computations:

H(ClassOld) = −1

4
log2

(
1

4

)
− 3

4
log2

(
3

4

)
= 0.881,

H(ClassNew) = −2

4
log2

(
2

4

)
− 2

4
log2

(
2

4

)
= 1,

H(Class|Account Age) = 0.5 · 0.881 + 0.5 · 1 = 0.9405.

Thus the entropy when both the Class label and the values
for Account Age are known is 0.9405.

We then identify which feature supplies the most informa-
tion about how to classify an observation into pos or neg.
This is known as the information gain from each feature.
Continuing to denote a feature as X, information gain is
realized as the difference between the entropy (regularity)
before X has been taken into account and after X has been
taken into account, i.e.

I(T |X) = H(T)−H(T |X). (4)

For AccountAge this is:

I(Class|Account Age) = H(Class)−H(Class|Account Age)

= 0.954− 0.9405 = 0.014.

Then, by applying this same process to each feature, we
can find which feature gives the most information about clas-
sifying the labels of Class and thus serves as the best choice
to split on within a decision tree.

Using Equation (3) we find that

H(Class|URL) = 0.9511,

H(Class|Reported) = 0.607.

Lastly, Equation (4) gives us the following:

I(Class|URL) = H(Class)−H(Class|URL)

= 0.954− 0.9511 = 0.003,

I(Class|Reported) = H(Class)−H(Class|Reported)

= 0.954− 0.607 = 0.347.

Thus we conclude that the maximum amount of information
is contributed by the Reported feature. Looking back at
Figure 1, we see that this indeed was the first feature split
on. We will then apply the same process on the 5 tweets
on the right node after the split, but stop on the left node
since there is perfect regularity, i.e. all the observation have
the same Class value. In general, decision trees recursively
apply this process to each node until either perfect regularity
is attained or partitions fail to decrease the lack of regularity.

The procedure given above assumes all features have dis-
crete values, i.e. the feature can be broken up into cat-
egories. Unfortunately, this does not match many sets of
realistic data; many features, e.g. the time interval between
two consecutive tweets, take continuous values. A continu-
ous feature is one that can take an infinite number of values.
Luckily, transforming continuous features into discrete fea-
tures is relatively simple.

Consider a continuous feature denoted as x. We choose a
threshold value, θ, of x such that if x < θ then the value is
true and otherwise false. If there are N observations in the
dataset then we will consider N − 1 values for θ. Define a
threshold as

θi =
xi + xi+1

2
.

Suppose x takes on 4 different values, 3, 6, 8, and 10. Then
we have θ1 = 4.5, θ2 = 7 and θ3 = 9. Then the amount
of information for each threshold θi is calculated and the
threshold that supplies the maximum information is chosen.

2.2 Random Forests
While decision trees are often a very useful machine learn-

ing technique they have their drawbacks. Decision trees will
often build a tree to match a specific dataset and fail to
extrapolate to other datasets containing the same features.
This is known as overfitting. Overfitting leads to variance in
the predictions of decision trees constructed on different sub-
sets of the data. Random forests were developed to average
many decision trees in order to minimize this variance.

To reduce variance, multiple decision trees are built us-
ing different subsets of the data and then their results are
combined. Let B denote the number of trees to build. Then
each tree is constructed on a sample of the dataset. Sam-
ples are done with replacement, i.e. sampled observations
are put back into the dataset after a tree is built. This
process of making many trees on samples of the dataset is
known as bagging the dataset. When a new observation is
to be classified it is put through each of the B trees and the
observation’s classification decision is determined according
to the majority rule of the final classification decisions of the
B trees. By bagging the dataset, there is less variance due
to a decrease in the sensitivity to noise. However, it was
discovered that if the trees are highly correlated with one
another, the decrease in variance is likely minimal. [4]

In addition to bagging, random forests also employ feature
bagging which avoids correlated trees. At each split in the
decision tree, a random subset of features is considered as
opposed to the entire set of features. It is common prac-
tice that when there are p features in the data set,

√
p are

randomly made available at each split. The intuition is if
one or few features are very strong predictors of the feature
of interest, T, then most of the B trees will contain that
feature, thus correlating the trees. By avoiding correlated
trees, the decrease in variance is maximized.[1]

2.3 Model Evaluation
Now, we will introduce methods of comparing models for

random forests. In order to evaluate two random forests
they must first be trained and then tested. This uses two
distinct datasets: a training set and a test set. The training
set is used to construct the random forest and should be bal-
anced, i.e. the ratio of spam to not spam should be 1:1 [4].
Additionally, the training set is no part of model evaluation

and is used solely for the construction of the random forest
as discussed in Sections 2.1, 2.2.

Once the model is built, it can be evaluated using the test
set. For the test set, the Class feature is known but has
been removed before being evaluated by the random forest.
The random forest will evaluate an observation from the test
set and give a classification, i.e. spam or not spam. Once
the classification is given by the random forest we compare
the predicted classification against the true value (which was
removed prior to to classification). Doing so will result in
four different categories: true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). A true
positive would be an observation that a model predicted to
be spam and whose Class label was also spam. A false
positive would be an observation predicted to be spam by
the model but whose Class label was not. True negatives
and false negatives are analogous.

One method of evaluation is to compare the accuracy of
the model. Accuracy indicates the ability of the model to
correctly classify an observation. The calculation for Accu-
racy is given by

Accuracy =
TP + TN

TP + FP + TN + FN
. (5)

Additionally, we calculate the proportion of positive clas-
sifications that were correct according to Class. This is
known as the precision or positive predictive value of the
model. Similarly, we calculate the proportion of positive
classes that were classified as positive, known as the recall
or sensitivity. The computation for each of these are:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
. (7)

Instead of directly comparing these terms between models,
a combination of them, known as the F-measure, denoted as
F , is formed. To compute F we take the harmonic mean of
the precision and recall. Specifically,

F = 2 · Precision · Recall

Precision + Recall
. (8)

Note that F ∈ [0, 1] since both precision and recall are
proportions and can take values between 0 and 1. Using
this formulation, F weights precision and recall equally and
serves as a comparator to evaluate different models. Pre-
cision, recall, accuracy and F are evaluated for each study
and presented in Section 4.

3. METHODS
The three studies considered use features to either identify

a tweet as spam or a user as a spammer. Section 3.1 presents
a study by Chen et al. that only considers easily computable
user features and tweet features in order to have real-time
classification of spam against not spam [2]. In contrast, in
Section 3.2, we examine how Guo and Chen make use of geo-
tagged data to help identify spammers and non-spammers.
[3]. Section 3.3 presents the features constructed by Washha
et al. to incorporate time-dependent features to identify
spammers and non-spammers [6].

3.1 Tweet and User Content as a Feature for
Spam Detection

The easiest features to extract are those that are included
in the tweet itself and those tied to the account of the user
who posted the tweet. The benefit of using the features di-
rectly connected to a specific tweet and user is the tweet can
be processed in real time, i.e. the tweet can be recognized
as spam or not spam almost immediately.

Chen et al. specifically chose features that could be com-
puted as quickly as possible with the motivation that the
longer spam exists, the more exposure it has to victimize
users. They collected 12 of these computationally simplistic
features, as listed in Table 2. Six of their features concern
the user and the user history and the other six identify fea-
tures about the specific tweet. These features could be taken
directly from the data structure of the tweet.

Table 2: Features used by Chen et al. [2]. Features above
the horizontal line indicate user features whereas features
below are features of the tweet itself.

Features used by Chen et al.

Feature Description

accountAge Age in days of an account since creation
to the most recent tweet.

nFollower Number of followers of a user.

nFollowing Number of followees of a user.

nFavorite Number of favorites a user received.

nLists Number of lists a user has added.

nTweets Number of tweets a user has sent.

nRetweets Number of retweets a tweet has received.

nHashtag Number of hashtags in a tweet.

nMentions Number of users included in a tweet.

nUrls Number of URLs included in a tweet.

nChar Number of characters in a tweet.

nDigits Number of digits in a tweet.

Chen et al. used the Twitter API to construct a dataset
of 600 million tweets containing URLs. In doing this, they
were able to classify tweets as spam or not spam based on if a
tweet contained a malicious URL as listed by Trend Micro’s
Web Reputation Service. Approximately 1% (6.5 million) of
all the tweets were classified as spam using this system.

Using this data, they constructed four test sets by having
two different proportions of spam, 50% spam (test set I) and
5% spam (test set II) and two different sampling methods,
one continuous and one random. Given the space limitation
we discuss the two test sets in which continuous sampling
was applied. Note that this study identifies spam on a tweet
level rather than on a user level, which will differ from the
other two studies presented.

Using these two test sets they tested their random forest
using the features listed in Table 2. Results of these random
forest are presented in Section 4.

3.2 Using geo-tags for Identifying Spam
Next, we consider the features one can build when using

geographical location tags (geo-tags). Specifically, Guo and
Chen constructed seven different geographical features to
identify a user as a non-personal user [3]. Non-personal users
include organization accounts and bots as well as spammers;
for the sake of simplicity we will refer to non-personal users
as spammers and personal users as non-spammers.

Many of their features use tweeting speed in their calcula-
tion. They defined tweeting speed as the geographical dis-
tance (in miles) between two consecutive tweets of a user
divided by the time interval (in minutes) between the two
tweets. For example, if a user, Dan, tweets from Clontarf,
MN and 20 minutes later he again tweets from Morris, MN
the tweeting speed would be 18.9 miles (the distance be-
tween Clontarf and Morris) divided by 20 minutes. This
would result in a tweeting speed of 56.7 miles per hour. The
intuition behind using tweeting speed for feature construc-
tion is spammers may change location faster than is possible
given plausible transportation speeds, excluding air travel.
The seven geographical features can be seen in Table 3.

Table 3: Geo-tagged features used by Guo and Chen [3]

Features used by Guo and Chen

Feature Description

maxSpeed Maximum tweeting speed between two
consecutive tweets for a user.

meanSpeed Average tweeting speed for a user.

maxSpDist Distance interval associated with the
maximum tweeting speed.

spCntsPerM Average monthly number of times a user
has a tweeting speed higher than 90
miles per hour.

cntyChgsPerM Number of times per month a user
crosses county boundaries between con-
secutive tweets.

cntyCntsPerM Average monthly number of counties
that a user has been to.

locsCntsPerM Average monthly number of men-
tioned/replied users who have geo-
tagged tweets.

Using the Twitter streaming API, Guo and Chen collected
over 600 million tweets from a little over 5 million unique
users. In total, 2 million users had at least 5 geo-tagged
tweets. They performed their feature extraction on users
who had at least 5 geo-tagged tweets. To create a training
dataset random sampling was applied and manual classifica-
tion of spammer and non-spammer was determined. Similar
methodology was applied to make a test set of 1,177 users:
925 non-spammers and 252 spammers. The results from
Guo and Chen’s analysis are presented in Section 4.

3.3 Time as a Feature for Identifying Spam
Next, we study how to leverage time to identify spammers.

The intuition is that it is arduous to alter time-dependent
features of a tweet. Washha et al. placed features into one
of the following categories: user features, content features,
posting diversity features, and similarity features. [6]

3.3.1 Time-Dependent User Features
Followers and Followees - When a user has a low num-

ber of followers, a very small ratio of followees to followers, or
a very small number of bi-directional relationships then they
have a high probability of being a spammer. To counteract
this, spammers create many accounts such that the accounts
follow each other thus increasing followers, bi-directional re-
lationships, and evening out the ratio of followees to follow-
ers. However, this means that the majority of these accounts
will be made in the same time period.

Three features are created to exploit this occurrence. Given
a user, u, and a set of users (e.g. followers, followees), the
mean and variance of the account age difference between
u and users is computed. The intuition is if the mean or
variance of difference in account age is very small, then the
user, u, has high likelihood of being a spammer. Lastly, a
final computation is made by giving account age as a weight-
ing factor such that older accounts are given larger weights.
Again, a low value of this feature implies that u has a high
likelihood of being a spammer. These features are calculated
for three different sets of users:

• followers - followers of a user u

• followees - the followees of user u who have not been
verified by Twitter

• bi-directionals - those who are a followee of u and are
also followed by u

Thus a total of nine features are created, three for each of
the three sets of users.

Profile Description - Twitter accounts include profile
description which can consist of up to three objects: words,
hashtags, and URLs. Spammers will often defer from using
spam words within the profile description as to avoid detec-
tion. More so, a spammer will fill out the profile description
to appear as a normal user. Still, it is likely that each of
a spammers’ accounts have the same or similar profile ele-
ments and that the accounts are created in the same time
period. Washha et al. capture this weakness by calculating
the similarity between a user’s profile and their followers and
followees. The similarity calculation was obtained by using
the Kullback-Leibler Divergence and the Jaccard Similarity,
details of which can be found in the study by Washha et al.
Since spammers’ accounts are made around the same time,
Washha et al. used the difference between u’s age and the
ages of u’s followers and followees as a weighting factor. [6]

3.3.2 Content Across Time Features
Posting Behavior - Spammers often display similar, sys-

tematic posting behaviors while real users display random-
ness in their posting behavior. Washha et al. employs the
use of auto correlation between three different attributes:
hashtags, mentions, and URLs. While the specific statis-
tical techniques are not discussed in this paper, they are
available in the study conducted by Washha et al. [6]

3.3.3 Posting Diversity Features
Real users and spammers can intensively use the same

hashtags, URLs, and user mentions. When basic features
are employed (number of URLs, number of hashtags, num-
ber of user mentions, etc.), the model often fails to distin-
guish a spammer from a real user. To combat this, a feature
is constructed that measures the diversity of an instance
set, Is. For example, one instance set may be for hashtags,
Ihashtag = {#H1,#H2,#H3}. The posting diversity (PD)
of an instance set, Is, and the user u is computed as

PD(u, Is) =
|Is|

|u.Tweets| ,

where |Is| is the number or elements in Is and u.Tweets is
all of a user’s tweets.

A value of 0 for PD indicates that the instance set is
empty, whereas a value of 1 means that each element in Is
is used only one time in the user u’s tweets. This function
is then applied to hashtags, mentions, URLs, and textual
words (words that are not URLs, mentions, or hashtags).

3.3.4 Tweet Similarity Across time Features
Spammers will often tweet the same tweet many times in

a row. Tweet similarity can be used to help identify a spam-
mer as opposed to a real user. A tweet similarity function,
Tsim(t1, t2), is constructed where t1 and t2 are two tweets
such that t1.T ime > t2.T ime. Note that t1.T ime identifies
the time at which t1 was posted. Tsim is used to compare
the similarities of two tweets using only textual words. The
use of strictly textual words avoids potential similarities due
to hashtags and URLs. Additionally, spammers often post
similar tweets within a short period of time, whereas a real
user may post the similar tweets but it will typically be after
a longer period of time. Washha et al. controls for this by
creating a time weighted tweets similarity, TWTS(u).
TWTS(u) is calculated as

TWTS(u) =

∑
t1

∑
t2 Tsim(t1, t2)

|u.Tweets| ∗ (|u.Tweets| − 1)

2

.

TWTS ranges from 0 to 1 where a value of 0 means there is
no similarity between the users tweets (or the user has never
posted a tweet) and a value of 1 means that all tweets are
duplicates of one another within a relatively short time.

3.3.5 Data Construction
Washha et al. used the Twitter API to construct a testing

set of 1,082 spammers and 1,221 non-spammers. Roughly
300,000 tweets from 7,189 unique users were collected total.
From there, they used a manual process to classify each
user as a spammer or non-spammer. They used a three step
process. First, if the account had been banned at the time of
the manual process, the account was labeled as a spammer.
Next, if the account had been verified by Twitter it was
then labeled as a non-spammer. The rest of the accounts
were manually inspected to determine whether the account
was a spammer or non-spammer.

4. RESULTS
The model results from each of the three studies are pre-

sented in Table 4. Precision (p), recall (r), F-measure (F),
and accuracy are presented as defined in Section 2.3. Be-
tween the two test sets of Chen et al., there was a sharp drop
in F when the proportion of spam in the test set dropped.
Upon further analysis it was discovered that when the total
spam tweets decreased, the number of false positives rose
drastically, lowering the precision of the random forest [2].

Each model displayed high accuracies (≥ 0.931). Exclud-
ing test set II by Chen et al., all values of F are above 0.93,
showing that the models have high precision and recall.

Direct comparisons between models should be taken with
reservation; each study measures something different. Chen
et al. looked at individual tweets, Guo and Chen studied
non-personal users, and Washha et al. studied spammers.
That being stated, each study performs similar in terms of
accuracy and F , excluding test set II from Chen et al.

Table 4: Model results from the 3 analyses studied: Chen et
al., Guo and Chen, and Washha et al..

Model Results Of The 3 Studies

Study
%

Spam
p r F Accuracy

Chen et al.: I 50.0% 0.929 0.943 0.936 0.936

Chen et al.: II 5.0% 0.407 0.929 0.566 0.978

Guo and Chen 21.4% 0.959 0.959 0.958 0.959

Washha et al. 46.9% 0.932 0.931 0.931 0.931

5. CONCLUSIONS
This paper summarized three unique ways of classifying

spam tweets, spammers, and non-personal users using dif-
ferent features. All models displayed high accuracies and all
but test set II of Chen et al. showed high F-measures, indi-
cating a high classification ability of the different models.

Chen et al. performed a novel analysis when noting that
typically only 5% of tweets are spam and adjusting for this
by creating a separate test set. Future work could reapply
this notion to the work of Guo and Chen as well as that of
Washha et al. to see how this change affects their analysis.

All three models showed that random forests, in combi-
nation with particular features, can be used as strong clas-
sifiers of spam, spammers, and non-personal users. In ad-
dition, applications of random forests may have unexpected
results when applied to real data if a realistic proportion of
spam/spammers is not accounted for in the test set.

Acknowledgments
I thank my adviser, Peter Dolan, and my senior seminar
professor, Elena Machkasova, for their invaluable advice and
comments throughout the research and writing process. Ad-
ditionally, I thank my alumni reviewer, Jacob Opdahl, for
his revisions and comments during the review process.

6. REFERENCES
[1] L. Breiman. Random forests. Machine learning,

45(1):5–32, 2001.

[2] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou. 6
million spam tweets: A large ground truth for timely
twitter spam detection. In 2015 IEEE International
Conference on Communications (ICC), pages
7065–7070. IEEE, 2015.

[3] D. Guo and C. Chen. Detecting non-personal and spam
users on geo-tagged twitter network. Transactions in
GIS, 18(3):370–384, 2014.

[4] M. Kubat. An Introduction to Machine Learning.
Springer Publishing Company, Incorporated, 1st
edition, 2015.

[5] C. E. Shannon. A mathematical theory of
communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 5(1):3–55, 2001.

[6] M. Washha, A. Qaroush, and F. Sedes. Leveraging time
for spammers detection on twitter. In Proceedings of the
8th International Conference on Management of Digital
EcoSystems, MEDES, pages 109–116, New York, NY,
USA, 2016. ACM.

	Introduction
	Background
	Decision Trees
	Random Forests
	Model Evaluation

	Methods
	Tweet and User Content as a Feature for Spam Detection
	Using geo-tags for Identifying Spam
	Time as a Feature for Identifying Spam
	Time-Dependent User Features
	Content Across Time Features
	Posting Diversity Features
	Tweet Similarity Across time Features
	Data Construction

	Results
	Conclusions
	References

