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Background
Model Evaluation

I F-measure (F )
I Harmonic mean of Precision and Recall
I Equally weights both Precision and Recall

F-Measure

F-measure = 2 · Precision · Recall
Precision + Recall
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Methods
Tweet and User Content Features

I Two sets of testing data.
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Methods
Geo-Tagged Features

I 19.6 Miles
I From Clontarf at 7:53 PM
I From Morris at 8:00 PM
I Tweeting speed = 19.6 miles

7 minutes = 2.8 miles per minute (168 MPH)
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Geo-Tagged Features
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I Max Speed
I Mean Speed
I Max Distance (connected to Max Speed)
I Mean number of times a user exceeds 90 MPH per month

I County based features
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I Mean number of counties a user has been to per month

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



33

I Number of times a user crosses county borders per month

I Mean number of counties a user has been to per month

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



33

I Number of times a user crosses county borders per month
I Mean number of counties a user has been to per month

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



34

Outline

Background
Decision Trees
Random Forests
Model Evaluation

Methods
Tweet and User Content Features
Geo-Tagged Features
Time Features

Results

Conclusion

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



35

Methods
Time Features

I Washha et al. classify spammers on a user level

I Motivated to use time since altering time dependent features is a
challenge.

I Features that spammers can easily manipulate:
I Number of URLs
I Number of Hashtags
I Including Geo-tags
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I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts

I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time

I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers

I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees

I Bi-directional relationships
I Time weighted correlations:

I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:

I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs

I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions

I Hashtags
I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



36

Methods
Time Features

Features
I Differences in Account Age

I Spammers have multiple accounts
I Likely to be made at the same time
I Followers
I Followees
I Bi-directional relationships

I Time weighted correlations:
I URLs
I Mentions
I Hashtags

I Tweet similarity weighted by time

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



37

Outline

Background
Decision Trees
Random Forests
Model Evaluation

Methods
Tweet and User Content Features
Geo-Tagged Features
Time Features

Results

Conclusion

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests



38

Results

I Accuracy:
True PositiveSpam

Spam

False Positive

Not Spam

False NegativeNot Spam True Negative
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correctly identified?"

I Precision (p):
True PositiveSpam
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False Positive

Not Spam

False NegativeNot Spam True Negative
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TP+FP "How good is our spam
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I Recall (r ):
True PositiveSpam
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False Positive

Not Spam

False NegativeNot Spam True Negative

P
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n

Truth

TP
TP+FN "How much spam was

identified?"
I F-measure (F ): 2 · precision·recall

precision+recall

Model Results of the Three Studies

Study %
Spam p r F Accuracy

User/Tweet Features: I 50.0% 0.929 0.943 0.936 0.936
User/Tweet Features: II 5.0% 0.929 0.407 0.566 0.978
Geo-tagged Features 21.4% 0.959 0.959 0.958 0.959

Time Features 46.9% 0.932 0.931 0.931 0.931
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Conclusion

I Classification via random forest
I Recall (r ) may drop when test set contains a low proportion of

spam
I Future work: Apply this finding to geo-tagged tweets and time

features
I Future spam classification by Twitter: Random forests?
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