Identifying Twitter Spam by Utilizing Random Forests

Humza Haider Division of Science and Mathematics University of Minnesota Morris

2017-04-15

Top social media platforms

- Top social media platforms
- ▶ 500 million tweets per day

- Top social media platforms
- ▶ 500 million tweets per day
- Attracts spammers and malicious users

- Top social media platforms
- ▶ 500 million tweets per day
- Attracts spammers and malicious users
- Twitter spam: Any unsolicited, repeated actions that negatively impact other users

- Top social media platforms
- ▶ 500 million tweets per day
- Attracts spammers and malicious users
- Twitter spam: Any unsolicited, repeated actions that negatively impact other users
- How can we identify spammers?

- Top social media platforms
- 500 million tweets per day
- Attracts spammers and malicious users
- Twitter spam: Any unsolicited, repeated actions that negatively impact other users
- How can we identify spammers?
 - Manual classification

- Top social media platforms
- 500 million tweets per day
- Attracts spammers and malicious users
- Twitter spam: Any unsolicited, repeated actions that negatively impact other users
- How can we identify spammers?
 - Manual classification
 - URL blacklisting

- Top social media platforms
- 500 million tweets per day
- Attracts spammers and malicious users
- Twitter spam: Any unsolicited, repeated actions that negatively impact other users
- How can we identify spammers?
 - Manual classification
 - URL blacklisting
 - Machine learning classification

Outline

Background

Decision Trees Random Forests Model Evaluation

Methods

Tweet and User Content Features Geo-Tagged Features Time Features

Results

Conclusion

Decision Trees

Decision Trees

Machine learning technique for classification

Decision Trees

- Machine learning technique for classification
- Classifies an observation based on features available in a dataset

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
No	Old	No	Not Spam
No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	Spam
No	Old	Yes	Spam
Yes	New	No	Not Spam
	:		

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
No	Old	No	Not Spam
No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	Spam
No	Old	Yes	Spam
Yes	New	No	Not Spam

32% Spam 68% Not Spam <u>8 Tweets</u> 3 Spam 5 Not Spam

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
No	Old	No	Not Spam
No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	Spam
No	Old	Yes	Spam
Yes	New	No	Not Spam

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
No	Old	No	Not Spam
-No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	Spam
No	Old	Yes	Spam
-Yes-	New	No	Not Spam
			-

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
-No	Old	No	Not Spam
No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	Spam
No	Old	Yes	Spam
-Yes-	New	No	Not Spam

URL	Account Age	Reported	Class
No	Old	Yes	Not Spam
No	Old	Yes	Not Spam
No	Old	No	Not Spam
-No	New	No	Not Spam
Yes	New	Yes	Spam
No	New	Yes	- Spam
No	Old	Yes	Spam
-Yes-	New	No	Not Spam

13

Nic McPhee @NicMcPhee · Jan 29

#UnhinderedByTalent is about to go on air at @kumm_playlist kumm.org or 89.7FM if you're a cow somewhere in Stevens County.

URL	Account Age	Reported	Class
Yes	Old	Yes	TBD

15

15

15

► How are splits decided?

- How are splits decided?
 - Entropy

- ► How are splits decided?
 - Entropy
 - Information Gain

- How are splits decided?
 - Entropy
 - Information Gain
- Trees seem pretty neat! Why do I need a whole forest?

- ► How are splits decided?
 - Entropy
 - Information Gain
- Trees seem pretty neat! Why do I need a whole forest?
 - Disagreement in decisions between different trees

► How do we handle disagreement?

- How do we handle disagreement?
 - Train many trees on samples of the data (Bagging)

- How do we handle disagreement?
 - Train many trees on samples of the data (Bagging)
 - Don't let trees access all the features (Feature Bagging)

- ▶ How do we handle disagreement?
 - Train many trees on samples of the data (Bagging)
 - Don't let trees access all the features (Feature Bagging)
- After we make a bunch of trees, how do we combine them?

- How do we handle disagreement?
 - Train many trees on samples of the data (Bagging)
 - Don't let trees access all the features (Feature Bagging)
- After we make a bunch of trees, how do we combine them?
 - Majority vote

Random Forest Simplified

Source: https://i.ytimg.com/vi/ajTc5y3OqSQ/hqdefault.jpg

How do we evaluate a random forest's performance?

How do we evaluate a random forest's performance?

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Truth

Accuracy

"How many tweets were correctly identified?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Truth

Accuracy

Truth

"How many tweets were correctly identified?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Accuracy Accuracy = $\frac{TP + TN}{TP + TN + FP + FN}$

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests

Precision (p)

"How good is our spam prediction?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Truth

Precision (p)

"How good is our spam prediction?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Truth

Precision

$$Precision = \frac{TP}{TP + FP}$$

Recall (r)

"How much spam was identified?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Truth

Recall (r)

Truth

"How much spam was identified?"

		Spam	Not Spam
Prediction	Spam	True Positive	False Positive
	Not Spam	False Negative	True Negative

Recall Recall $= \frac{TP}{TP + FN}$

► F-measure (F)

- Harmonic mean of Precision and Recall
- Equally weights both Precision and Recall

F-Measure

$$\label{eq:F-measure} \text{F-measure} \ = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Background Decision Tree Random Fore

Model Evaluation

Methods

Tweet and User Content Features Geo-Tagged Features Time Features

Results

Conclusion

Chen et al. identify tweets, as opposed to users

- Chen et al. identify tweets, as opposed to users
- Utilized 12 features directly accessible from a tweet

- Chen et al. identify tweets, as opposed to users
- Utilized 12 features directly accessible from a tweet
 - 6 user features

- Chen et al. identify tweets, as opposed to users
- Utilized 12 features directly accessible from a tweet
 - 6 user features
 - 6 tweet features

- Chen et al. identify tweets, as opposed to users
- Utilized 12 features directly accessible from a tweet
 - 6 user features
 - 6 tweet features
- User Features
 - Age in days of account
 - Number of followers, followees
 - Number of tweets

- Chen et al. identify tweets, as opposed to users
- Utilized 12 features directly accessible from a tweet
 - 6 user features
 - 6 tweet features
- User Features
 - Age in days of account
 - Number of followers, followees
 - Number of tweets
- Tweet Features
 - Number of hashtags (#)
 - Number of mentions
 - Number of URLs

Two sets of testing data.

5% Spam

50% Spam

Background

Decision Trees Random Forests Model Evaluation

Methods

Tweet and User Content Features Geo-Tagged Features Time Features

Results

Conclusion

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests

So, what is a geo-tagged tweet?

So, what is a geo-tagged tweet?

The weather is boring. 50°F and Light Rain. #MorrisMNWeather

6:02 PM - 9 Apr 2017 from Morris, MN

Guo and Chen identify non-personal users

- Spammers
- Bots
- Business accounts

Guo and Chen identify non-personal users

- Spammers
- Bots
- Business accounts
- ► Features:

Guo and Chen identify non-personal users

- Spammers
- Bots
- Business accounts
- ► Features:
 - Tweeting Speed

▶ 19.6 Miles

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests

- ▶ 19.6 Miles
- From Clontarf at 7:53 PM

- ▶ 19.6 Miles
- From Clontarf at 7:53 PM
- From Morris at 8:00 PM

- ▶ 19.6 Miles
- From Clontarf at 7:53 PM
- From Morris at 8:00 PM
- Tweeting speed = $\frac{19.6 \text{ miles}}{7 \text{ minutes}}$ = 2.8 miles per minute (168 MPH)

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests

Max Speed

- ► Features:
 - Max Speed
 - Mean Speed

- ► Features:
 - Max Speed
 - Mean Speed
 - Max Distance (connected to Max Speed)

- ► Features:
 - Max Speed
 - Mean Speed
 - Max Distance (connected to Max Speed)
 - Mean number of times a user exceeds 90 MPH per month

- ► Features:
 - Max Speed
 - Mean Speed
 - Max Distance (connected to Max Speed)
 - Mean number of times a user exceeds 90 MPH per month
- County based features

Number of times a user crosses county borders per month

- Number of times a user crosses county borders per month
- Mean number of counties a user has been to per month

Background

Decision Trees Random Forests Model Evaluation

Methods

Tweet and User Content Features Geo-Tagged Features Time Features

Results

Conclusion

Washha et al. classify spammers on a user level

- Washha et al. classify spammers on a user level
- Motivated to use time since altering time dependent features is a challenge.

- ▶ Washha et al. classify spammers on a user level
- Motivated to use time since altering time dependent features is a challenge.
- ► Features that spammers can easily manipulate:

- ▶ Washha et al. classify spammers on a user level
- Motivated to use time since altering time dependent features is a challenge.
- ► Features that spammers can easily manipulate:
 - Number of URLs

- ▶ Washha et al. classify spammers on a user level
- Motivated to use time since altering time dependent features is a challenge.
- ► Features that spammers can easily manipulate:
 - Number of URLs
 - Number of Hashtags

- ▶ Washha et al. classify spammers on a user level
- Motivated to use time since altering time dependent features is a challenge.
- ► Features that spammers can easily manipulate:
 - Number of URLs
 - Number of Hashtags
 - Including Geo-tags

Differences in Account Age

- Differences in Account Age
 - Spammers have multiple accounts

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships
- Time weighted correlations:

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships
- Time weighted correlations:
 - URLs

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships
- Time weighted correlations:
 - URLs
 - Mentions

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships
- Time weighted correlations:
 - URLs
 - Mentions
 - Hashtags

- Differences in Account Age
 - Spammers have multiple accounts
 - Likely to be made at the same time
 - Followers
 - Followees
 - Bi-directional relationships
- Time weighted correlations:
 - URLs
 - Mentions
 - Hashtags
- Tweet similarity weighted by time

Outline

Background

Decision Trees Random Forests Model Evaluation

Methods

Tweet and User Content Features Geo-Tagged Features Time Features

Results

Conclusion

Results

► F-measure (*F*): 2 · precision-recall precision+recall

identified?"

Model Results of the Three Studies					
Study	% Spam	р	r	F	Accuracy
User/Tweet Features: I	50.0%	0.929	0.943	0.936	0.936
User/Tweet Features: II	5.0%	0.929	0.407	0.566	0.978
Geo-tagged Features	21.4%	0.959	0.959	0.958	0.959
Time Features	46.9%	0.932	0.931	0.931	0.931

Humza Haider | Identifying Twitter Spam by Utilizing Random Forests

- Classification via random forest
- Recall (r) may drop when test set contains a low proportion of spam
 - Future work: Apply this finding to geo-tagged tweets and time features
- ► Future spam classification by Twitter: Random forests?

Acknowledgments

Peter Dolan

 For acting as my advisor for this research project and his continued friendship for the past few years

Elena Machkasova

 For the invaluable advice and insightful comments throughout the entire senior seminar course

Jacob Opdahl

 For the exceptional revisions and comments he made as my alumni review

References I

- Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgilio Almeida, *Detecting spammers on twitter*, Collaboration, electronic messaging, anti-abuse and spam conference (CEAS), vol. 6, 2010, p. 12.
- Leo Breiman, *Random forests*, Machine learning **45** (2001), no. 1, 5–32.
- Chao Chen, Jun Zhang, Xiao Chen, Yang Xiang, and Wanlei Zhou, 6 million spam tweets: A large ground truth for timely twitter spam detection, 2015 IEEE International Conference on Communications (ICC), IEEE, 2015, pp. 7065–7070.
- Diansheng Guo and Chao Chen, Detecting non-personal and spam users on geo-tagged twitter network, Transactions in GIS 18 (2014), no. 3, 370–384.

References II

- Miroslav Kubat, *An introduction to machine learning*, 1st ed., Springer Publishing Company, Incorporated, 2015.
- Nikita Spirin and Jiawei Han, *Survey on web spam detection: Principles and algorithms*, SIGKDD Explor. Newsl. **13** (2012), no. 2, 50–64.
- Claude Elwood Shannon, A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review 5 (2001), no. 1, 3–55.
- Igor Santos, Igor Miñambres-Marcos, Carlos Laorden, Patxi Galán-García, Aitor Santamaría-Ibirika, and Pablo García Bringas, *Twitter content-based spam filtering*, pp. 449–458, Springer International Publishing, Cham, 2014.

- Kurt Thomas, Chris Grier, Dawn Song, and Vern Paxson, Suspended accounts in retrospect: An analysis of twitter spam, Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (New York, NY, USA), IMC '11, ACM, 2011, pp. 243–258.
- Mahdi Washha, Aziz Qaroush, and Florence Sedes, *Leveraging time for spammers detection on twitter*, Proceedings of the 8th International Conference on Management of Digital EcoSystems (New York, NY, USA), MEDES, ACM, 2016, pp. 109–116.