
Data Dependent Hashing for Approximate Nearest
Neighbor Searching

Matthew Kangas
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

kanga139@morris.umn.edu

ABSTRACT
Searching for items similar to a query item is a straight-
forward process when the data being compared has only
a few dimensions. This changes as the complexity of the
data increases, causing a problem referred to as the curse
of dimensionality, where the runtime of a search is linear in
both dimension of the data and number of elements being
searched. The solution is to approximate a near neighbor
instead of finding the nearest neighbor. A modification to
locality sensitive hash based methods reaches a less than
linear runtime based on the number of items in the dataset
being searched. This is an improvement over possible run
query times seen with locality sensitive hash based methods
for this problem.

1. INTRODUCTION

1.1 Nearest Neighbor Search
The computational problem called the nearest neighbor

search is a simple one: find the item in a set S closest to a
given query item q. This problem is solved easily in low di-
mensional spaces. Datasets that reside in one, two, or three
dimensions are generally solved with conventional searches,
running through the dataset and computing the distance
between every item in the dataset s and q. This becomes a
problem when the dimension of the data increases, since the
cost of performing that distance calculation increases with
the dimension of the dataset, and is referred to as the “curse
of dimensionality” This curse of dimensionality has provided
motivation towards finding more time efficient ways of find-
ing a nearest neighbor, and given incentive to change the
problem, creating the “Approximate Nearest Neighbor”, or
ANN subproblem.

1.2 Approximate Nearest Neighbor
ANN is similar to the standard nearest neighbor prob-

lem in that the goal is to find an item s that is close to
a query item q, but the qualification that it is the closest
item is removed. Instead, the search just needs to return an
s that is sufficiently close to the q. The level of accuracy
changes based on the characteristics of the dataset, and the
requirements of the goal of the search. Trying to compare
handwritten characters to those in a database have less rea-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2017 Morris, MN.

son to be cautious about returning bad matches compared
to a system checking the fingerprints of a unknown person.
In the latter case, returning nothing would be better than
returning something that did not really match.

2. BACKGROUND

2.1 Nearest Neighbor Searching
Nearest neighbor search methods are used when matching

a given piece of data up against a larger collection of data
that may not exactly match the data that is being matched
against. These methods commonly show up in spell check-
ing, where there is a dictionary of possible words, and the
goal is to find those words in the dictionary that are closest
to the word that is misspelled. Nearest neighbor searching is
also used for pattern recognition with textual information,
matching up the symbol scanned in with items in a set of
possible symbols. [6]

2.2 Approximate Nearest Neighbor
While finding the closest match between a queried item

and a set of possible matches is ideal, sometimes this is a
computationally expensive task, with costs scaling both in
terms of the number of items being searched through, and
the dimension. As dimension increases, it is a multiplicative
factor of the number if items, since the costs of the com-
parisons between each item are all more complicated. The
answer to this situation is to find an item in the set that
is close enough, and is within some acceptable distance of
the queried item. Deciding on an acceptable distance for a
given problem is a trade-off between the cost of searching,
with tighter bounds taking more time to find an acceptable
item, and quality of a match, where less strict bounds will
return faster results, but with less guarantee about the ac-
curacy of the matching item being returned. [3]

2.3 Hashing
General hash functions are many-to-one functions. Where

a larger variable length space of data is mapped onto a
smaller fixed length space of data. A larger space is one
that takes more space to store any given value, so the space
of integers, (138, 23459, 34776, 439674, ...) is larger than the
space of integers that are four long (4727, 8410, 3773, 9344, ...).
So that for any output of a hash function f(x), there can be
multiple values for x. Where x is an item in the larger space,
and f(x) is an item in the smaller space. Since the output
space is generally smaller than the input space, a collision
occurs where two input values return the same hash result



for a given hash function. Two of the primary uses of hashes
are fast lookup of items in a data set, and verifying integrity
of files. Verifying file integrity requires a few special prop-
erties that are not needed here, so the hash functions being
discussed here will be those used for fast lookup applica-
tions. This is normally accomplished though the use of hash
tables, where the data to be searched is hashed, and the re-
sults are stored in the table. To lookup an item from the
hash table, a query item is hashed, and the item is retrieved
from the hash table from the location that has that value.
[4]

2.4 Locality Sensitive Hashing
Locality Sensitive Hashes (LSH) are a variant of a stan-

dard hash function, with some key differences. LSH func-
tions are designed in ways such that when two inputs are
within a distance r1, there is a probability, p1, that they
will have the same LSH output. These values, p1 and r1,
are picked when the LSH is made, and are chosen by those
that create the LSH. The exact values chosen are dependent
on how accurate matches have to be given the context of the
search. This collision should ideally only happen on values
that are considered close to each other, so there should be at
most a small probability, p2, that values that are far apart,
r2, will collide. However, instead of using r1 and r2, we will
use r and cr, where c >1. These functions are defined over
a set of data, S, and will be accompanied with a function
that can measure distance between two items in this set. [5]

For example, given a LSH function f for the set of all five
letter strings, where p1 = .5, p2 = .1, r = 2, and c = 1.
The distance function in this example just measures match-
ing letters, so “jolly” and “joker” would be three away. The
values of r = 2 and p1 = .5 mean that f will generate
a collision in 50% of possible strings that are within two
characters. So there is a 50% probability that “jolly” will
collide with “moldy”. Remember that even strings that are
not words will have valid results in f , so this can be used
to possibly find the correct spelling of a word based on a
misspelling such as “jooli”.

2.5 Applied Locality Sensitive Hashing
These collisions can be used to quickly find possible close

matches to the query value in a already existing dataset.
Since LSH functions are designed in such a way that close
items are more likely to have collisions than items that are
far apart, by presorting the dataset based on the results of
the hash functions used, the number of items that have to be
directly checked for closeness is reduced. However, each hash
function generated only has a chance of creating a collision
between the query item and any given item that is close to
it. This is based on that probability, p1, defined in the hash
function. So any given point within r1 of the query point
only has a chance to collide with any given LSH function.
To compensate for this, and increase the chance that we will
find a close match between the query point and the items
in the dataset, we will make multiple attempts at creating
collisions with the hash functions. This is done in the LSH
search method by making multiple different LSH functions.
The functions are randomly generated from a family of LSH
functions with a series of linear combinations. Since there
are many functions that will meet the requirements to be a
LSH for a given set, a large family of hash functions that
meet the requirements can be generated. [3]

Table 1: My caption
f 1 f 3
Key Value Key Value

f 1(jooli) f 1(jolly) jolly f 3(squib) squib
f 1(jibed) jibed f 3(jooli) f 3(jolly) jolly
f 1(qubit) qubit f 3(qubit) qubit
f 1(squib) squib f 3(jibed) jibed

Table 2: An illustration of the LSH search data
structure

To make the query process efficient, the dataset to be
searched is preprocessed into a set of hash tables. Each
hash table in the set is assigned a hash function that was
generated from the family of hash functions. Then for each
table, the entire dataset that is being preprocessed is hashed
with each of the hash functions. The results of these hashes
are used as the keys in the hash table. There will be L
different LSH functions in the set for a given dataset such
that 1 < L < n. In the best case scenario, L will be np.
With p being defined as the ratio between the log of the
true collision probability and the log of the false collision

probability, or r = log(p1)
log(p2)

. This will be 0 <p <1. When this

is complete, for a dataset with n items, there will be around
nL items being stored. Then after the hashing is finished, all
unallocated positions in the hash tables are removed. Giving
this method a space efficiency of O(nL). The LSH method
has a time requirement of O(nLKT ). n and L represent
the same values from above. K represents a measure of the
complexity of the hash functions being generated from the
family of LSH functions. A larger K will add more variation
to the functions being used to preprocess the data and larger
values are required for datasets with higher dimensions, but
will increase the time required to run the preprocessing. T is
the computational time requirements of each LSH function
call. There are methods of reducing the dimension of data,
at the expense of the accuracy of that data. [3]

For example, there is a dataset W which contains a collec-
tion of words. This dataset would have to be preprocessed
before any searching can happen, this takes place before the
LSH method can be used for querying. When a word w is
given, it is hashed with each of the randomly generated LSH
functions tied to each hash table in the structure. The values
that are associated with the keys returned by the hash re-
sults are then returned for the next stage. Only these words,
which have a matching hash in one of the tables, are going
to be compared directly with the query word w. The time
saved is a trade off between both reliability and accuracy. If
L is too small, there is a possibility that no close matches
will be found, and if L is too large, the efficiency gains are
lost to excessive computations. [3]

The data after preprocessing will be in L hash tables of
length n as shown in figure 2. Most of these hash tables will
have at least one element in box and boxes that are empty
are trimmed for space efficiency. Each hash table is also
pared with a locality sensitive hash function from the LSH
family G denoted g0 through gl. These are all randomly
created to help increase the distribution of points that will
get matched up in the hash table and therefore increase the
chance that a good match is found for the query point. To
then query a point, the hash functions g0 through gl are
applied to the point, and the corresponding values are pulled



Figure 1: An illustration of the spherical LSH par-
titioning when applied to a dataset of words

from each hash table for a final distance comparison to see
if any of them are actually close.

3. METHOD

3.1 Data Dependent Hashing
The data dependent hashing DDH method was introduced

in [1] and was improved upon in [2]. This method strays
away from the LSH method discussed above in that the
structure used to hold the processed dataset before it is
queried is determined by the properties of the data. In an
LSH search, the data structure is always a set of hash ta-
bles, no matter what the dataset looks like. In DDH the
dataset takes the shape of a recursively constructed tree,
that is determined by the properties of the dataset.

3.2 Spherical LSH Partitioning
[NOTE: This section needs to be rewritten already, it was

written before the section after it, and contains information
that belongs there and not here]

To bring the dataset being searched into a uniform shape,
the data is normalized to fit on a d-dimensional sphere with
a radius of 1. The dimension used here is normally smaller
than the original dataset, but it can be the same dimension.
The normalization step can introduce some small distortions
to the dataset. To partition the dataset into discreet groups,
first, a random value, g from a normal distribution is cho-
sen. Then every point within

√
2 − o(1) is added into a

subset. This value ends up being slightly smaller than the
hypotenuse of a right triangle with the two shorter sides
being 1. That will put every item that is currently not in
another subset, and on this half of the sphere into this sub-
set. This continues until every item in the dataset is in a
subset. This can be a computationally expensive process
since there is a random element added in what points get
picked to partition on, and the costly distance measurements
that have to be done between each item in the set and the
item that they are being grouped with. However once the
preprocessing is done for a dataset, it reduces the work that
needs to be done to query from the dataset. [2]

In figure 1, each circle is an area that the spherical LSH
found a partition of points. The areas between these circles

Figure 2: Searching for a near neighbor to “apble”

have points but they were included for sake of clarity, and
would actually be partitions as small as a single point. This
structure is constructed recursively at each level by the pre-
processing, with one level being made a time before passing
the contents of any of the partitions into the spherical LSH
to construct the next level down of the structure.

3.3 Preprocessing
The efficiency gained with data dependent hashing for ap-

proximate nearest neighbor search come from the way that
the data is preprocessed before it can be queried. The pre-
processing operates on a dataset containing n elements. This
dataset is assumed to be of dimension θ(log n · log logn),
if the dataset is not in this dimension, it can be normalized
with small distortions. Where LSH based methods build a
set of hash tables for querying purposes, the DDH based
method will build a tree with recursive partitions of the
space. This starts by splitting the dataset into a number of
dense data partitions using the spherical partitioning. Since
not every point in the dataset will be in one of these clus-
ters, an extra partition will contain every point that isn’t in
another partition. These dense partitions are limited to a
chosen radius, so there will be items that are in the dataset,
but are not in something that can be a considered a dense
partition. From this point, this process is repeated on each
dense partition recursively, by mapping the partition onto a
sphere of radius 1. The set of items that is not considered
a dense partition is transformed and then also preprocessed
like the original dataset. This in the end leaves a tree where
all of the items that are in a dense partition at the lowest
level of the tree are similar enough that they count as near
neighbors for each other. This preprocessing can be done in
near linear time, O(noc(1)), where oc(1) is some small quan-
tity that approaches 0 as c increases. c being the parameter
that defines what is a far neighbor versus a near neighbor in
conjunction with r.

In figure 3.3 is a representation of the preprocessing being
done on a 2-dimensional space. This is much lower than
the spaces generally used, and would not actually be a good
application of data dependent hashing. In the figure, there
are partitions of points, these are found using the spherical
LSH algorithm described above, and are stored along with
another partition of all of the points that are not included in



Figure 3: A partition that is close to the query point
“apble” but not close enough

Figure 4: The partition whose center point is con-
sidered close enough th “apble” to qualify as a near
neighbor

these partitions. Normally this process will then be repeated
inside each partition, but for the sake of image clarity, this
process was left out. [2]

3.4 Querying
Once preprocessing is complete, the dataset can be queried.

To query for a near neighbor to the point q, the first step
is to recursively query the recursively structured partitions
described above. If the point is found in the top level, the
search stops there. The neighbor to q is found when a value
s is found within r of q in dataset. This distance is com-
puted between q and the origin of the current partition. If
the point is not found at the current level, the recursive call
is made on partitions that are approximately as far away
from the current partition’s origin, as q was found to be
with the distance function call. These are the partitions
that are likely to contain q, or to contain the partition that
contains q.

Looking at figure 3.3, To query for a point that’s close
to the misspelled word “apble”, first the method finds the
distance between “apble” and the center point in the top
partition. If the distance between these points is less than
r, which is the maximum distance for a close match, then
that center point is returned as the match. If the distance is
greater than r, the method computes the distance between
the query value“apble”and the centers of the partitions that
are inside the current partition marked in red.

In figure 3.3 the method is currently looking in the parti-
tion marked in red, though at this stage the method would
be checking all partitions that could reasonably contain a
close match, this would be determined by checking the dis-
tance of the query value against the center of each partition,
if the distance minus the radius of the partition is larger than
r, the partition is ignored, since all elements in that parti-
tion will be too far away to return a possible near neighbor.
At this stage, the process recursively repeats the steps from
the top level.

The method will continue to recurse down the tree struc-
ture until it either finds a suitable item or it runs out of items
to check. In figure 3.3 the method is checking a partition of
the space that happens to contain“apple”as the center point
of the partition. Assuming that “apple” is considered close
enough to “apble” to be a match, the method will return
“apple” and this run will be complete. However, if “apple”
wasn’t the center item in that partition, and was instead
just contained by that partition. Then a different word such
as “able” might be returned even when the intended word
was “apple”. [2]

4. RESULTS

4.1 Efficiency
The space requirements of the preprocessing and query

steps are on the scale of O(n1+oc(1)). This is just slightly
above linear due to the restricted number of times that the
preprocessing will recurse on itself for a given dataset. Most
elements in the original dataset will only be stored in one
location in the new query tree, and the overlap of elements is
minimal. The Query is actually has sub linear time costs, at
O(noc(1)). This is mostly explained by the query traversing
a tree with a relatively high branching factor in a near depth
first manner. The depth first properties of the search doesn’t
open this up to a bad worst case, since any possible paths



where a match could be found, are in the direction that is
being searched. The areas that are ignored are far enough
away from the query target that there is very little chance
a match will be found there. These two factors, the reason-
able item storage and fast query time, mean that this is a
good candidate for searching high dimension space. Earlier
methods for approximate nearest neighbor search had query
times around O(dlog(n)) and or O(dn1/clog2n log log n).
These will both have significantly longer query times com-
pared to the data dependent hashing query time in most
cases. There is a case where on specifically designed data,
and a purposefully picked set of query points, the data de-
pendent hashing will perform worse. However given that
both of the older methods have a dimension component, and
this new one does not, the datasets that the others might
be able to perform better in, are probably the datasets that
would not be best handled by algorithms like this.

5. CONCLUSION
In conclusion, using this data dependent hashing scheme

for approximate nearest neighbor searching in high dimen-
sionality space is going to improve the cost of preprocess-
ing, down from O(LNKT ) in classical LSH to O(noc(1))
with data dependent hashing, the space requirements, from
O(LN) to O(n1+oc(1)), and the query time requirements,

from O(dlog(n)) to O(noc(1)). These are significant improve-
ments that can be applied to spell checking, image recogni-
tion, plagiarism detection, and computer vision applications,
among others. The benefits gained by moving from a list of
hash tables to a new tree build using spherical locality sensi-
tive hashing reduces the space required to store the dataset,
decreases the time required to pre-process the dataset, and
speeds up the query process by limiting the search space to
only the areas that are likely to contain matches.

6. REFERENCES
[1] A. Andoni, P. Indyk, H. L. Nguyen, and

I. Razenshteyn. Beyond locality-sensitive hashing. In
Proceedings of the Twenty-fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’14, pages
1018–1028, Philadelphia, PA, USA, 2014. Society for
Industrial and Applied Mathematics.

[2] A. Andoni and I. Razenshteyn. Optimal
data-dependent hashing for approximate near
neighbors. In Proceedings of the Forty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’15,
pages 793–801, New York, NY, USA, 2015. ACM.

[3] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98,
pages 604–613, New York, NY, USA, 1998. ACM.

[4] Wikipedia. Hash function — Wikipedia, the free
encyclopedia.
https://en.wikipedia.org/wiki/Hash_function,
2017. [Online; accessed 1-May-2017].

[5] Wikipedia. Locality-sensitive hashing — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/
Locality-sensitive_hashing, 2017. [Online; accessed
29-March-2017].

[6] Wikipedia. Nearest neighbor search — Wikipedia, the
free encyclopedia. https:

//en.wikipedia.org/wiki/Nearest_neighbor_search,
2017. [Online; accessed 29-March-2017].


