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Spell Checking

“Aple”?

“Aple”, “Spple”, “Apble”, or “Aplpe”?

“Apple” could be misspelled as “Aple”, “Spple”, “Apble”, or
“Aplpe”?

These are all close, but not exact

Many possible dictionary words, very few are plausible

Goal is to find the nearest neighbor to the misspelled word
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Searching for an exact match in a dictionary doesn’t work, since it
won’t match exactly

Use data-dependent hashing to structure the dictionary to find close
neighbors
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1 Background
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Background Nearest Neighbor and Approximate Nearest Neighbor

Nearest Neighbor Applications

Spell Checking

Fingerprint Matching

Character Matching
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Background Nearest Neighbor and Approximate Nearest Neighbor

What is a nearest neighbor search? (NNS)

Used for finding close, but maybe not exact matches

Requires an established set of possible matches

Dictionary or Collection of faces

Takes a query item, and finds the closes matching item in the set

This is very computationally expensive on large sets
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Background Nearest Neighbor and Approximate Nearest Neighbor

Approximate Nearest Neighbor (ANN)

Variant of the nearest neighbor search

Returns an item that is within set bounds instead of the absolute
closest

Implementations are considerably faster than NNS implementations

Data-Dependent Hashing (DDH) is an improvement on Locality
Sensitive Hashing (LSH), two methods of solving ANN
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Background Hashing

Hashing

Commonly used in both organizing data and verifying equality

If two files return the same result given the same hash function, they
are most likely the same

However if two distinct files are hashed and return the same result,
this is called a collision

Hash(”Apple”) = 9f6290f4436e5a2351f12e03b6433c3c

Hash(”Apble”) = 674dc064ecd744c1d85d2b471cca818b
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Background Hashing

Hash Tables

Table 1: Possible Words Hash Table

Key Value
9f6290f4436e5a2351f12e03b6433c3c Apple

674dc064ecd744c1d85d2b471cca818b Apble

c935d187f0b998ef720390f85014ed1e Dog

6d5c6fcfde82eb131e35fb1cf1cd8143 Cog

b81a30c12698563b79179ec37d43629b Approximate

e498749f3c42246d50b15c81c101d988 Application
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Background Locality Sensitive Hashing

Locality Sensitive Hashing

Family of hash functions defined on a data space

Build to have specific properties distinct from conventional hashing

Similar inputs ideally collide

Dissimilar inputs ideally do not collide

Apple and Applw have a higher chance of collision in their outputs
than Apple and Brown

Allows for data to be loosely categorized based on hash results
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Background Locality Sensitive Hashing

Locality Sensitive Hashing Continued

Set of information is preprocessed into a data structure using set of
hashes

Stored in hash tables each tied with a different hash function

To query, item is passed through each hash, items are retrieved from
tables based on hash results

This reduces the number of items that need to be compared directly
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Background Locality Sensitive Hashing

Preprocessing

Table 2: LSH Hash Tables

Hash #1 Hash #2 Hash #3
Key Value Key Value Key Value
AP Apple A P Apple P L Apple
AB Able A L Able B E Able
PL Play P A Play L Y Play
TH This T I This H S This
AI Airplane A R Airplane I L Airplane
FL Flight F I Flight L G Flight
BA Banana B N Banana A A Banana
GR Green G E Green R E Green
BR Brown B O Brown R W Brown
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Background Locality Sensitive Hashing

Querying

Table 3: LSH Hash Tables

Hash #1 Hash #2 Hash #3
Key Value Key Value Key Value

→ AP Apple A P Apple → P L Apple
AB Able A L Able B E Able
PL Play P A Play L Y Play
TH This T I This H S This
AR Arbor → A B Arbor R O Arbor
FL Flight F I Flight L G Flight
BA Banana B N Banana A A Banana
GR Green G E Green R E Green
BR Brown B O Brown R W Brown
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Data-Dependent Hashing

Outline for section 2

1 Background
Nearest Neighbor and Approximate Nearest Neighbor
Hashing
Locality Sensitive Hashing

2 Data-Dependent Hashing
Spherical LSH
Preprocessing
Querying

3 Conclusion
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Data-Dependent Hashing

Overview

Faster and More efficient ANN search

Created by Andoni et al.[1]
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Data-Dependent Hashing Spherical LSH

Spherical LSH

Version of a locality sensitive hash

Partitions a d-dimensional set

Data set is projected onto the surface of a d-dimension sphere or
radius 1

Items are chosen randomly to be the center of a partition

When complete every partition will be a group of relatively close items
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Data-Dependent Hashing Preprocessing

Building the data structure

Data set is recursively partitioned with spherical hash

Each partition’s contents are partitioned if the radius of the partition is
over a set size
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Data-Dependent Hashing Preprocessing

Building the Data Structure
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Data-Dependent Hashing Preprocessing

Building the Data Structure

Data set must be at most dimension log(n) · log(log(n))

Methods exist to insure this

Most cases have minimal distortion
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Data-Dependent Hashing Querying

Querying the data structure

“Apble” is the misspelled word being queried
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Data-Dependent Hashing Querying

Querying the data structure

Our word is not close to the center, so the recursive path is taken
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Data-Dependent Hashing Querying

Querying the data structure

“Apble” is not found in the subpartition, so the query continues
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Data-Dependent Hashing Querying

Querying the data structure

Here the point is found to be close enough to the center of the
partition to be returned
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Conclusion

Outline for section 3

1 Background
Nearest Neighbor and Approximate Nearest Neighbor
Hashing
Locality Sensitive Hashing

2 Data-Dependent Hashing
Spherical LSH
Preprocessing
Querying

3 Conclusion
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Conclusion

Preprocessing Time

Data-dependent Hashing

O(n1+oc (1))

n = number of items in set

oc(1) small constant that
approaches 0

Locality Sensitive Hashing

O(kt · n1+P)

n = number of items in set

P = constant less than 1

k = complexity of the hash
function

t = time to run each hash
function
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Conclusion

Search Efficiency

Data-dependent Hashing

O(noc (1))

n = number of items in set

oc(1) small constant that
approaches 0

Locality Sensitive Hashing

O(nP(kt + d))

n = number of items in set

P = constant less than 1

k = complexity of the hash
function

t = time to run each hash
function

d = data set dimension
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Conclusion

Space Requirements

Data-dependent Hashing

O(n1+oc (1))

n = number of items in set

oc(1) small constant that
approaches 0

Locality Sensitive Hashing

O(n1+P)

n = number of items in set

P = constant less than 1
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Conclusion
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Conclusion

Questions?
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