# Data-Dependent Hashing for Approximate Nearest Neighbor Searches

Matthew Kangas

U of M - Morris

15<sup>th</sup> April 2017

Matthew Kangas (U of M - Morris)

Data-Dependent Hashing



• "Aple", "Spple", "Apble", or "Aplpe"?

• "Apple" could be misspelled as "Aple", "Spple", "Apble", or "Aplpe"?

- "Apple" could be misspelled as "Aple", "Spple", "Apble", or "Aplpe"?
- These are all close, but not exact

- "Apple" could be misspelled as "Aple", "Spple", "Apble", or "Aplpe"?
- These are all close, but not exact
- Many possible dictionary words, very few are plausible

- "Apple" could be misspelled as "Aple", "Spple", "Apble", or "Aplpe"?
- These are all close, but not exact
- Many possible dictionary words, very few are plausible
- Goal is to find the nearest neighbor to the misspelled word

• Searching for an exact match in a dictionary doesn't work, since it won't match exactly

- Searching for an exact match in a dictionary doesn't work, since it won't match exactly
- Use data-dependent hashing to structure the dictionary to find close neighbors

## Outline

### Background

- Nearest Neighbor and Approximate Nearest Neighbor
- Hashing
- Locality Sensitive Hashing
- 2 Data-Dependent Hashing
  - Spherical LSH
  - Preprocessing
  - Querying



## Outline for section 1

#### Background

- Nearest Neighbor and Approximate Nearest Neighbor
- Hashing
- Locality Sensitive Hashing
- Data-Dependent Hashing
  - Spherical LSH
  - Preprocessing
  - Querying

### Conclusion

### Nearest Neighbor Applications

- Spell Checking
- Fingerprint Matching
- Character Matching





• Used for finding close, but maybe not exact matches

- Used for finding close, but maybe not exact matches
- Requires an established set of possible matches

- Used for finding close, but maybe not exact matches
- Requires an established set of possible matches
  - Dictionary or Collection of faces

- Used for finding close, but maybe not exact matches
- Requires an established set of possible matches
  - Dictionary or Collection of faces
- Takes a query item, and finds the closes matching item in the set

- Used for finding close, but maybe not exact matches
- Requires an established set of possible matches
  - Dictionary or Collection of faces
- Takes a query item, and finds the closes matching item in the set
- This is very computationally expensive on large sets

#### • Variant of the nearest neighbor search

- Variant of the nearest neighbor search
- Returns an item that is within set bounds instead of the absolute closest

- Variant of the nearest neighbor search
- Returns an item that is within set bounds instead of the absolute closest
- Implementations are considerably faster than NNS implementations

- Variant of the nearest neighbor search
- Returns an item that is within set bounds instead of the absolute closest
- Implementations are considerably faster than NNS implementations
- Data-Dependent Hashing (*DDH*) is an improvement on Locality Sensitive Hashing (*LSH*), two methods of solving ANN

# Hashing

• Commonly used in both organizing data and verifying equality

- Commonly used in both organizing data and verifying equality
- If two files return the same result given the same hash function, they are most likely the same

- Commonly used in both organizing data and verifying equality
- If two files return the same result given the same hash function, they are most likely the same
- However if two distinct files are hashed and return the same result, this is called a *collision*

- Commonly used in both organizing data and verifying equality
- If two files return the same result given the same hash function, they are most likely the same
- However if two distinct files are hashed and return the same result, this is called a *collision*
- Hash("Apple") = 9f6290f4436e5a2351f12e03b6433c3c

- Commonly used in both organizing data and verifying equality
- If two files return the same result given the same hash function, they are most likely the same
- However if two distinct files are hashed and return the same result, this is called a *collision*
- Hash("Apple") = 9f6290f4436e5a2351f12e03b6433c3c
- Hash("Apble") = 674dc064ecd744c1d85d2b471cca818b

### Hash Tables

#### Table 1: Possible Words Hash Table

| Кеу                              | Value       |
|----------------------------------|-------------|
| 9f6290f4436e5a2351f12e03b6433c3c | Apple       |
| 674dc064ecd744c1d85d2b471cca818b | Apble       |
| c935d187f0b998ef720390f85014ed1e | Dog         |
| 6d5c6fcfde82eb131e35fb1cf1cd8143 | Cog         |
| b81a30c12698563b79179ec37d43629b | Approximate |
| e498749f3c42246d50b15c81c101d988 | Application |

• Family of hash functions defined on a data space

- Family of hash functions defined on a data space
- Build to have specific properties distinct from conventional hashing

- Family of hash functions defined on a data space
- Build to have specific properties distinct from conventional hashing
- Similar inputs ideally collide

- Family of hash functions defined on a data space
- Build to have specific properties distinct from conventional hashing
- Similar inputs ideally collide
- Dissimilar inputs ideally do not collide

- Family of hash functions defined on a data space
- Build to have specific properties distinct from conventional hashing
- Similar inputs ideally collide
- Dissimilar inputs ideally do not collide
- Apple and Applw have a higher chance of collision in their outputs than Apple and Brown

- Family of hash functions defined on a data space
- Build to have specific properties distinct from conventional hashing
- Similar inputs ideally collide
- Dissimilar inputs ideally do not collide
- Apple and Applw have a higher chance of collision in their outputs than Apple and Brown
- Allows for data to be loosely categorized based on hash results

• Set of information is preprocessed into a data structure using set of hashes

- Set of information is preprocessed into a data structure using set of hashes
- Stored in hash tables each tied with a different hash function

- Set of information is preprocessed into a data structure using set of hashes
- Stored in hash tables each tied with a different hash function
- To query, item is passed through each hash, items are retrieved from tables based on hash results

- Set of information is preprocessed into a data structure using set of hashes
- Stored in hash tables each tied with a different hash function
- To query, item is passed through each hash, items are retrieved from tables based on hash results
- This reduces the number of items that need to be compared directly

## Preprocessing

#### Table 2: LSH Hash Tables

| Hash #1 |     |          |  | Hash #2 |          |   | Hash #3 |          |  |  |
|---------|-----|----------|--|---------|----------|---|---------|----------|--|--|
|         | Key | Value    |  | Key     | Value    | 1 | Key     | Value    |  |  |
|         | AP  | Apple    |  | A_P     | Apple    | 1 | P_L     | Apple    |  |  |
|         | AB  | Able     |  | A_L     | Able     | 1 | B₋E     | Able     |  |  |
|         | PL  | Play     |  | P_A     | Play     | 1 | L_Y     | Play     |  |  |
|         | TH  | This     |  | T_I     | This     |   | H_S     | This     |  |  |
|         | AI  | Airplane |  | A_R     | Airplane |   | I_L     | Airplane |  |  |
|         | FL  | Flight   |  | F_I     | Flight   |   | L_G     | Flight   |  |  |
|         | BA  | Banana   |  | B_N     | Banana   | 1 | A_A     | Banana   |  |  |
|         | GR  | Green    |  | G₋E     | Green    | 1 | R₋E     | Green    |  |  |
|         | BR  | Brown    |  | B_O     | Brown    | 1 | R_W     | Brown    |  |  |

# Querying

#### Table 3: LSH Hash Tables

| Hash #1       |     |        |               | Hash     | #2     |               | Hash #3  |        |
|---------------|-----|--------|---------------|----------|--------|---------------|----------|--------|
|               | Key | Value  |               | Key      | Value  |               | Key      | Value  |
| $\rightarrow$ | AP  | Apple  |               | A_P      | Apple  | $\rightarrow$ | _P_L     | Apple  |
|               | AB  | Able   | -             | $A_{-}L$ | Able   |               | _B_E     | Able   |
|               | PL  | Play   |               | P_A      | Play   |               | _L_Y     | Play   |
|               | TH  | This   |               | T_I      | This   |               | _H_S     | This   |
|               | AR  | Arbor  | $\rightarrow$ | A_B      | Arbor  |               | _R_O     | Arbor  |
|               | FL  | Flight |               | F_I      | Flight |               | $_L_G$   | Flight |
|               | BA  | Banana |               | B_N      | Banana | 1             | $\_A\_A$ | Banana |
|               | GR  | Green  |               | G₋E      | Green  |               | _R_E     | Green  |
|               | BR  | Brown  |               | B_O      | Brown  |               | $_R_W$   | Brown  |
|               |     |        |               |          |        |               |          |        |

# Outline for section 2

#### Background

- Nearest Neighbor and Approximate Nearest Neighbor
- Hashing
- Locality Sensitive Hashing
- 2 Data-Dependent Hashing
  - Spherical LSH
  - Preprocessing
  - Querying

### Conclusion

### Overview

#### • Faster and More efficient ANN search

### Overview

#### • Faster and More efficient ANN search

• Created by Andoni et al.[1]

Matthew Kangas (U of M - Morris)

• Version of a locality sensitive hash

- Version of a locality sensitive hash
- Partitions a *d*-dimensional set

- Version of a locality sensitive hash
- Partitions a *d*-dimensional set
- Data set is projected onto the surface of a *d*-dimension sphere or radius 1

- Version of a locality sensitive hash
- Partitions a *d*-dimensional set
- Data set is projected onto the surface of a *d*-dimension sphere or radius 1
- Items are chosen randomly to be the center of a partition

- Version of a locality sensitive hash
- Partitions a *d*-dimensional set
- Data set is projected onto the surface of a *d*-dimension sphere or radius 1
- Items are chosen randomly to be the center of a partition
- When complete every partition will be a group of relatively close items

- Data set is recursively partitioned with spherical hash
  - Each partition's contents are partitioned if the radius of the partition is over a set size







### • Data set must be at most dimension $log(n) \cdot log(log(n))$

- Data set must be at most dimension  $log(n) \cdot log(log(n))$
- Methods exist to insure this

- Data set must be at most dimension  $log(n) \cdot log(log(n))$
- Methods exist to insure this
- Most cases have minimal distortion

• "Apble" is the misspelled word being queried



• Our word is not close to the center, so the recursive path is taken



• "Apble" is not found in the subpartition, so the query continues



• Here the point is found to be close enough to the center of the partition to be returned



## Outline for section 3

#### Background

- Nearest Neighbor and Approximate Nearest Neighbor
- Hashing
- Locality Sensitive Hashing
- 2 Data-Dependent Hashing
  - Spherical LSH
  - Preprocessing
  - Querying



### Preprocessing Time

Data-dependent Hashing

- $O(n^{1+o_c(1)})$
- *n* = number of items in set
- $o_c(1)$  small constant that approaches 0

- $O(kt \cdot n^{1+P})$
- *n* = number of items in set
- P = constant less than 1
- *k* = complexity of the hash function
- *t* = time to run each hash function

# Search Efficiency

Data-dependent Hashing

- $O(n^{o_c(1)})$
- *n* = number of items in set
- $o_c(1)$  small constant that approaches 0

- $O(n^P(kt+d))$
- *n* = number of items in set
- P = constant less than 1
- *k* = complexity of the hash function
- *t* = time to run each hash function
- *d* = data set dimension

### Space Requirements

Data-dependent Hashing

- $O(n^{1+o_c(1)})$
- *n* = number of items in set
- $o_c(1)$  small constant that approaches 0

- $O(n^{1+P})$
- *n* = number of items in set
- P = constant less than 1

### References

#### [1] ANDONI, A., AND RAZENSHTEYN, I.

Optimal data-dependent hashing for approximate near neighbors. In *Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing* (New York, NY, USA, 2015), STOC '15, ACM, pp. 793–801.

#### [2] INDYK, P., AND MOTWANI, R.

Approximate nearest neighbors: Towards removing the curse of dimensionality. In *Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing* (New York, NY, USA, 1998), STOC '98, ACM, pp. 604–613.

#### [3] WIKIPEDIA.

Locality-sensitive hashing — Wikipedia, the free encyclopedia, 2017. [Online; accessed 29-March-2017].

#### [4] WIKIPEDIA.

Nearest neighbor search — Wikipedia, the free encyclopedia, 2017. [Online; accessed 29-March-2017].

### Questions?