
Alpha-beta Pruning in Chess Engines

Otto Marckel
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

marck018@morris.umn.edu

ABSTRACT
Alpha-beta pruning is an adversarial search algorithm that
uses tree pruning to improve the minimax search of data tree
structures. This method of searching allows two opponents
to each attempt to get the best result when analyzing a
search tree. Some of the best examples of this approach are
modern chess engines, which use Alpha-beta as the primary
method to calculate their moves. Throughout this paper we
discuss the steps of the Alpha-beta pruning and how it is
implemented in chess engines. In particular we analyze how
the 60 year old Alpha-Beta method has been refined been
improved and optimized to better utilize current hardware.

Keywords
ACM proceedings, Alpha-Beta, Minimax, Chess, Artificial
intelligence

1. INTRODUCTION
Since the creation of computers, people have used the

game of chess as a means to test the power and ability of
these machines. Each chess game has an estimated 10120

potential moves [11]. To put this number into perspective;
if every atom of the universe calculated one possible move
every nanosecond since the big bang, we would be more then
10 orders of magnitude short of looking at all possible moves
in chess. Therefore, with current technology we cannot ex-
plore every possible option to find the best move, so search
algorithms are used to automate and optimize the process.
These algorithms and the code they use are known as chess
engines.

The technique used since nearly the beginning of autonomous
chess engines is the Alpha-Beta Search Algorithm [6]. Alpha-
Beta allows computers to exhaustively search all potential
options for moves and choose the best one. It is currently
the most efficient method of doing so.

This paper contains several sections:
Section 1 is an overview of the history of chess engines

and how they have been developed to make decisions.
Section 2, Implementing Alpha-Beta, describes the algo-

rithm used to make decisions as quickly and effectively as
possible, and the different parts necessary for it to work.

Section 3, Implementing Alpha-Beta in Chess Engines,

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, Spring 2017 Morris, MN.

discusses implementing the algorithm into chess engines and
enhancements that cant be used to make it more efficient.

Section 4, Hidden Parts of Chess, examines the applica-
tion of Alpha-Beta Pruning in specific stages of a chess game.

1.1 History and Today
1912 marked the creation of the first chess device, which

could automatically play a partial game - a king and rook
endgame against king from any position, without any hu-
man intervention. In the 1950’s, Alan Turing published a
complete program capable of playing chess. In 1956 John
McCarthy is credited with inventing the Alpha-Beta Search
Algorithm. In 1957 the first programs were widely released
and in 1961 the first program that is capable of credible play
is created using the Alpha-Beta Algorithm as its base [6].

In 1997 the supercomputer Deep Blue beat the world-
champion, Gary Kasparov, in an official tournament setting.
This was the first time that the world champion was defeated
by a computer.

Modern chess software and hardware leaves Deep Blue in
the dust. On an average computer, any top consumer chess
engine could defeat Deep Blue today. This is due to im-
provements in hardware, better implementation of software,
including Alpha-Beta, and its use.

1.2 How Chess Engines Think
How is it possible to make a computer that can play chess?

There are several potential ways.
One approach is combining analysis, strategy and tactics

to determine the next move. This mimics the way humans
play in theory, this approach would produce chess player
that, with constant advancement, would become the great-
est player in the world. In practice the weakness of this
approach is a lack of ability to program the complex combi-
nations that humans perform intuitively.

A second option is to look through every possible move,
using brute force computing power to calculate the entire
game. We showed earlier that there is no way to do this
with current technology [11].

A third option is to look forward a limited number of
moves and evaluate positions, choosing the move that is
most likely to result in a win. This option avoids the prob-
lems inherent in the previous options and is the option that
is taken. This is what the Alpha-Beta algorithm is used to
do.

In the following section, we look at how Alpha-Beta works
and methods that can be used to both improve and speed
up the searches.



Figure 1: An simple Minimax tree

2. ALPHA-BETA

2.1 Tree Structure
We will use a search tree to look at the board and evaluate

specific board states. Our search algorithm will look at this
data structure and encode the potential nodes into the tree.
Each connecting branch represents a legal move that can
be made from one game state to another. Each node can
have as many children, or branching nodes, as there are
legal moves with, with the single root node represents the
beginning of the game [8].

The specific type of search tree in use is the adversarial
search tree. We can use a adversarial tree because chess is a
two-player, zero-sum, perfect information game. Zero-sum
means that any loss to one player is advantage to the other
and perfect information means that nothing is hidden or left
to chance [9].

A search tree has two defining parts; the branching factor
and the depth. The branching factor is the number of pos-
sible options that can be taken from a node. The depth is
the number of moves that will be made in a specific line.

For example the game of chess has 20 possible opening
moves, or child nodes. The next player also has 20 possible
moves, making 20 the branching factor. Therefore, after
each player has moved once there are 400 potential game
states, or nodes. The result of this for the tree is a root node
that has 20 child nodes which, in turn, each have 20 child
nodes. This means that with a depth of 2 the branching
factor of 20 at each stage will leave us with 400 possible
nodes.

The nodes in the tree are evaluated according to a linear
scoring polynomial. This is what Alpha-Beta will use to
find its choice of move. The polynomial puts the value of
the node into the following function example:

V = c1f1 + c2f2 + ... + cnfn

With the node value V being the sum of evaluations of dif-
ferent features of the game cn multiplied by some function
giving it weight fn. For chess engines features include things
such as remaining pieces, position of pawns, and captureable
pieces among others This polynomial is what we use to fill
our nodes and evaluate with the search algorithm [4].

2.2 Minimax

We need a method to search the tree of game states.
That is our search algorithm Minimax. The Minimax al-
gorithm is a decision rule used to minimize the loss for the
worst possible case [3]. It returns the branch choice with
the highest guaranteed value, without knowing the moves of
the other players. Minimax takes node values of a certain
depth to evaluate a path to take. There are two types of
decisions that alternate, a maximum player and minimum
player. Each will choose the best end result for themselves
at every choice [8].

Minimax is a bottom up algorithm, the search begins eval-
uating at the bottom of the tree and works its way back to
the root node for the result [6].

The nodes are each given a value for their position with
higher being better for the current player. The value that
they are given represents the position evaluated to represent
the strength of each position for the player. Higher numbers
indicate better position.

Minimax must search through the entire tree in order to
work, or the entire tree up to a certain depth. In order to
find the best move the whole tree must be searched, there
are no shortcuts with this method.

The “maximin” value the algorithm is named for is the
value the current player can be sure to get without knowing
the actions of the other players. Each node of our adversar-
ial search tree has a value that corresponds to the current
player. The result of this is that the player choosing will al-
ways choose the branch that can force the highest minimum
value.

Minimax has a search time of O(bm) which is the sum of
all levels of the search tree, b0+b1+b2+...+bm, b equaling
the maximum branching factor of the search tree and m is
the maximum depth of the tree.

Figure 1 shows us a tree that we can use to demonstrate
the decision process that the engine would take with a search
depth and branching factor of 2. Each player is attempting
to get the best result for themselves. This means that the
Max player will always choose the higher number and the
Min player will always choose the lower number

The algorithm starts at the root (green) node and goes
down the left branch. It goes to the bottom and compares
bottom (red) layers the 2 and the 8. Since the blue layer is
a Min player they choose the lower number the 2. Next the
tree goes down the right branch and compares the bottom
(red) nodes the 1 and the 9. Since it is a Min player again it
chooses the lower, the 1. Now the root (green) node chooses
between the 2 blue nodes which currently have 2 and 1. The
blue node is the Max player and so wants a higher number,
choosing the 2. This is the final calculation and results in
choosing the left branch.

This example is good at showing the basics but the system
becomes much more complicated as you add layers. Going
up to a depth of 3 will allow both players to make decisions
effecting the game tree. This is where the Min and Max
values come into play more. Each decision will be based on
choosing the tree that has the guaranteed highest minimum.
This is a result of each player wanting different results, and
needing to force as good a result for the choosing player as
possible.

The original Minimax algorithm, when first conceived,
was based on exact values from game-terminal positions,
or finding the fastest way to win the game. Later methods
used by chess engines would focus on the heuristic analysis



of position and given the large search space, a more realistic
method of playing the game [6].

2.3 Alpha-Beta
Alpha-Beta is an improvement over naive Minimax. It

eliminates, or prunes, branches that are guaranteed to be
worse then what has already been considered.

The name of Alpha-Beta comes from the two variables in
the algorithm [6]. These are the same basic ideas as the Max
and Min from the Minimax algorithm with one being the
best guaranteed option for the alpha player in the current
branch and the other the best guaranteed option for the beta
player in the current branch. The two values begin at -∞
for alpha and ∞ for beta. This is used in order to guarantee
that each value will be replaced. The function uses these in
the same way with one exception, storing them to be used
for pruning.

In the algorithm Alpha is used to show the best value
that the Max or alpha player currently can force along the
current branch. Beta is used to show the best value that the
Min or beta player can force along the current branch.

Each node keeps its alpha and beta value that it has found
along the branch and when it reaches a branch that guar-
antees it can’t beat it, prunes the remaining nodes, saving
valuable calculation time. This allows more searching of a
more promising subtree in the same time.

We can use Figure 2 to see a simple example of Alpha-
Beta pruning with the result, keeping the same search depth
of 2 as the Minimax example.

Evaluating the tree begins the same as Minimax, from left
to right. This also uses that adversarial search tree with Min
and Max players. Searching through the left tree will yield 2
as the Min value by default as the first node to be evaluated
setting the beta value to 2. Next we encounter 7 and, while
it is better then 2, we know that the next player will choose
the best move and so choose the 2 node making it irrelevant.
Brining the 2 back up to the root node sets sets alpha to 2
as it is the best option so far. Going down to 1 as the first
choice in the second branch sets this branches beta to 1 since
it the lowest option it has seen so far. The program then
can cut off all remaining analysis of the branch as it knows
that the beta is less then the alpha or 1 < 2, making it
unnecessary calculation time to look at the remaining nodes
in the branch. This pruning is what makes Alpha-Beta an
improvement over Minimax.

This simple example is good at showing how the system
works but doesn’t truly show what it has the ability to do.
Figure 3 shows this better with entire branches of nodes
being cut off. Alpha-Beta will not just trim single nodes
but entire branches without needing to even generate the
positions. In exhaustive search methods this is extremely
useful.

Modern chess engines will go to a depth of up to 35 mak-
ing trimming even more valuable then the examples. For
example, with 288 billion different possible positions after
four moves each, we can see that being able to trim off bil-
lions of calculations is extremely advantageous. By the time
a depth of 35 is reached it is impossible to evaluate the entire
tree directly [11].

This ability to cut off unnecessary calculation speeds up
the process by an average of 25% per level. Alpha-beta
pruning has a worst case search space of O(bm) with a best

case time of O(
√
bm) [6].

Figure 2: An Alpha-beta pruned simple tree

2.4 Enhancements
Given a proper evaluation function it seems that a chess

engine should have the ability to play a perfect game. The
trouble arises when we look at the number of moves, and by
extension, decisions needed to be made.

We looked at how the tree is put together and say that
there are 400 different positions after each player makes one
move apiece. The faster tree traversals, with the fewer nodes
visited and generated allows us to reach higher depths.

The first of the enhancements is to limit the search space.
The first chess engine to beat the world champion, Deep
Blue, had a depth of 6-12 on average. A engine on mod-
ern hardware will typically be limited to around a depth of
35 [11].

The next is the method called iterative deepening. This
is a search method for trees that can be used on any search
tree data-structure. It is a time-management strategy that
is good for depth-first searches such as Minimax. This is
similar to limiting the search space as in iterative deepening
the program will first evaluate one node, then all at level 2,
followed by level 3 and so on. This will guarantee a move
by the end of alloted time as, even if the full search is not
completed, it can return the most recent best result. This is
used in the time sensitive tournament settings with limited
calculation time per move [4].

Combining iterative deepening with Alpha-Beta, eliminat-
ing bad branches explores deeply only the good nodes. There
can be problems with this, of course, where seemingly bad
options can result in a better choice in the long run. Only
deeper searches can fix this problem.

The last part to understand is that there is uneven tree
development. Plenty of branches will end sooner then others
through the chess game completing. This makes the search
time even less as it will trim more of the tree so only un-
finished, promising branches will need to be explored even
close to all of the way [4].

2.5 New pruning techniques
In Tree pruning for new search techniques in computer

games K. Greer looks at other methods for searching the
best move. The method proposed in the paper evaluates and
proposes different search techniques to evaluate a position
and choose the best move.

The first method, The Chessmaps Heuristic, uses neural



Figure 3: A large Alpha-Beta Pruned Tree

networks to evaluate the potion and choose the move. A neu-
ral network is a collection of artificial neurons that is linked
by different weighted connections. Using these neurons and
changing values of connections the neural network is able to
keep improving through use to accomplish its purpose. This
networks is put to use as a positional evaluator.

This method runs many iterations of tests trying each pos-
sibility and ranking the results. Based on this it re-weights
the connections between the neurons making it more accu-
rate each time.

The network is given a position to work with and ranks
using the following criteria: safe capture moves, safe forced
moves, safe forcing moves, safe other moves, unsafe capture
moves, unsafe forced moves, unsafe forcing moves, unsafe
other moves. Using these parameters the possible moves are
ordered.

This was then combined with Alpha-Beta by using the
neural network to organize the order in which nodes were
sorted. This neural network is an addition to standard
Alpha-Beta and is combined with it as an enhancement. It
was lightweight enough that it could be used in this method
but proved difficult to code in a way that provided any im-
provement over other methods.

The new method this paper proposes is Dynamic Move
Sequences. This method creates chains of moves from the
root node instead of a branching tree like Alpha-Beta. When
used with Heuristics to choose the most likely move it can be
used to search deeper in several branches without needing to
look at other options. The downside to this is the possibility
of skipping over moves that Alpha-Beta would see.

This method is proven not to return bad moves. It can of-
ten out perform Brute force algorithms in low depth searches,
usually depths of 3-4. Due to improved technology and
therefor depth brute force algorithms, such as Alpha-Beta,
are still more successful.

The test results suggest that the potential of the move
chains might be the fact that it can provide a basis for new
ways to search a game tree and even under different circum-
stances. The coding and algorithm to implement these does
not exist yet and is one of the topics that can be looked at
in the future [4].

3. ALPHA-BETA IN CHESS ENGINES
Now that we know how the algorithm works we must see

how it is implemented in the actual engine.

3.1 Board Representation
Computers cannot look at a chess board the same way

that humans do. Where we see the chess board the com-
puter must be able to read and analyze each of the pieces
and as separate objects. First we must put the board in
a format that the computer can understand. This can be
done using lists, arrays, or similar sets of data. It should
be noted that the way a program stores and accesses this
information can greatly impact its performance as millions
upon millions of moves are being processed and by exten-
sion data-structures being accessed. The pieces are placed
in one of two ways, piece-centric and board-centric. Piece
representation is done by storing the remaining pieces (the
ones not captured at this point of the game) on the board
in the data structure. One method of storing is with a bit-
board approach, with one 64-bit word for each piece type,
with bits to associate their occupancy, or board position.
The other method, board-centric is done by looking at each
square and determining what is there, empty or full of what
piece, and storing it in a similar fashion as piece-centric [10].

3.2 4-Bit Piece Coding
In An Alternative Efficient Chessboard Representation Based

On 4-Bit Piece Coding the author V. Vuckovik shows a new
method of compact chessboard representation. This is based
on bitboards as opposed to arrays of data. The proposal this
paper makes is to encode the board in a more efficient format
with each square needing 4 bits instead of 8 [10].

Bitboards are the chessboard representation based on the
idea that a chessboard has 64 squares that is exactly the
capacity of one long integer. One 64-bit register is able
to represent the Boolean condition for each square of the
chessboard, whether or not it is occupied . Since each bit in
a bitboard indicates the absence or presence of some state
about each place on the board, a board position can then
be represented using a series of bitboards.

Bitboards have some flaws that limit their performance
in certain conditions. They are substantially slower on 32-
bit machines than on 64-bit. This limitation is impossible
to overcome because the bitboards require compact 64-bit
CPU registers to operate with maximal efficiency. This pa-
per proposes a better method of encoding that will allow a
computer to get rid of this problem.

Between the 6 types of pieces, both colors, and the empty
square there are 13 different entities to represent. We need
4 bits to represent them, we can assume that this is the
minimal uncompressed form of square coding. There are
64 squares on chessboard, so we need 32 bytes to define it
completely. 4 bits * 64 squares gives us the 32 bytes for the
board.

In tests this method of encoding was used to create the
Achilles engine which was tested against 3 others: Fruit 21,
Shredder 9 UCI, and Aristarch 4.50. It out performed them
all with a high rate of victory, with at least a 67 percent
win rate. These games were played usually with 15 minutes
of time per player. Tests against chess grandmasters were
also done with similar results. The time in these tests is less
then normal tournament conditions, this is mainly done to
show the speed of the engines is noticeable even with less
time to work from. It is estimated that longer games would
improve results even more.

Coding in this way is efficient and this method of storage
can be easily converted to 64-Bit classic bitboards. There is



Figure 4: Differences in Search Depth Strength

therefore no disadvantage in adding this method of encoding
to a chess engine as it can easily be used by both 32 and 64
bit systems.

3.3 Evaluating Position
Once the computer has the ability to represent the board

the next stage is evaluating the position. Each node that is
evaluated through Alpha-Beta is ranked through this func-
tion. Remember though that each evaluation the algorithm
computes is not the current state but upcoming states of the
game. In the same vein as the representation the method
used to store and read will greatly effect the time spent on
analysis. In subsection 4.1 we went over the formula used
for it, but what are examples of variables that will go into
the formula?

The first thing looked at and most important is obviously
if the game has been won, if the king has been checkmated.
The next, and more important for looking at the Alpha-Beta
algorithm, is how many pieces remain and their values. Each
piece has a defined worth and having more pieces, or points,
will almost always result in a win if two players are equal.
Once that has been tallied there are as many other methods
as the programmer desires. Common additions are: pawn
structure, ability to castle, development of pieces (their lo-
cations), and King safety. It’s important to note that there
are many others that are included with more or less value
for each chess engine [6].

These evaluations are what Alpha-Beta uses to search
with, what number is put into the nodes. Figure 1 has only
4 nodes, with the engine seeing those as 4 values that rep-
resent the board state after 2 moves. The engine will then
use those values to move according the the algorithm as dis-
cussed before.

The main danger in other methods, such as the neural
networks and the dynamic move sequences mentioned ear-
lier, is the loss in evaluation quality because of the reduction
in the search space. The potential for these methods seems
to lie in potential new options for searching a game tree.

3.4 Search Depth
One of the largest reasons that chess engines are improv-

ing over time is increased computing power. This allows
Alpha-Beta to search more deeply which in turn increases
its playing ability [2]. According to Ferreria we can see the
increase in depth and playing ability in action.

There is a significant difference in ability even at 1 deeper
depth search. Figure 5 shows a search depth of 13 versus

depths of 6-20. The winning percentage is displayed for 200
games in the Figure.

Ferreria’s research in the paper The Impact of Search depth
on Chess Playing Strength is the first demonstration of the
specific ratings compared to depth. The purpose of this pa-
per being finding the increase in ability that each move pro-
vides. Played on the Houdini Chess Engine this was affected
by both the software and hardware available.

This paper found that the ELO difference between each
level was approximately 86.5 points. [2] The Elo rating sys-
tem is a method for calculating the relative skill levels of
players. It is named after the inventor Arpad Elo. In chess
ratings a rating above 2300 are usually associated with the
Master title and a rating above 2500 being a Grandmaster.
It should be noted that rating alone is not how one acquires
these titles. 5 Grandmasters have gone above the rating of
2800. Current computers compete around the level of 3300.
These numbers should help to give an estimate for how much
improvement 86.5 elo points is.

As software and technology improves there may be changes
in the specific numbers found here. Even using different ones
currently could give different results. Even accounting for
these changes the basic premise that a engine improves with
search depth should remain the same [2].

4. HIDDEN PARTS OF CHESS
There are many things about a position a computer can

read and evaluate. With perfect play these are harder and
harder to achieve. Features like tempo (in chess meaning
gaining a extra move), mobility of pieces, control of the cen-
ter, and the value of these verses the more standard and
easily quantifiable parts of chess that are difficult to put
into a algorithm.

When making a proper evaluation function these become
increasingly important the stronger a computer is. For ex-
ample: is it worth sacrificing a pawn to gain 3 tempos? How
much should king safety matter? These things must be ac-
counted for in some way as they are what can make the
difference. Traps and Gambits are both things that com-
puters have struggled with for a long time as the standard
evaluation methods do not work. Traps are setting up a ob-
vious move that should result in a better position but long
term will often be a mistake for the player that falls into
it. Gambits are trading one obvious advantage for another
possible advantage, for example in chess trading a bishop for
a attack on the king. If we want Alpha-Beta to work to its
fullest then they must be accounted for [4].

4.1 Parts of the Game
The next component that is not apparent on the surface

is how to deal with different parts of the chess game. There
are classically 3 separate sections of the game: the opening,
the middle-game, and the end-game.

The Opening is a prepared set of moves that is “from
book” meaning that it has been played and studied before.
Most openings are only a few moves, though some can go
up to 10 moves for each player. The middle game is what
takes place as soon as the “book” moves are no longer in ac-
tion, when new options are taken that have not been played
before. Lastly the end-game is where few pieces are left.
Exactly when the middle-game transitions to the end-game
can differ according to who is analyzing. Common meth-
ods of determining this is when there is 13 or less points on



the board (the value of the remaining pieces) or less then 5
pieces that are not the pawns or King.

Each of these sections of the game gives power to differ-
ent pieces and positions. The best evaluation functions can
take advantage of these differences to adjust their play ac-
cordingly.

4.2 Opening books
In the hundreds of years of the existence of chess, many

different ways of playing the game have been tried. [4] The
beginning moves of the game, the opening, has resulted in
the creation of many strategies and styles of game. In order
to limit the search space at the beginning of the game, most
modern chess engines will use a book of openings to play up
to the point where it leaves standard ideas [1].

This does a few helpful things. It allows for different
play. If you gave the computer a static state and told it to
search through the options, the result would always, barring
changes to the algorithm, return the same move. The pro-
grams can be enhanced with a certain degree of randomness,
for example changing what openings are used and keeping
things fresh. Without an element of randomness at the be-
ginning only one game would every be played over and over
with two unchanging computers.

4.3 Middle Game
The true power of Alpha-Beta comes into play in the mid-

dle game of chess. People have been trying to solve chess
from both ends of the game for years but the middle game
remains that part that is most elusive. With the exhaustive
use of Alpha-Beta we can see the best we have ever been able
to into how it should be played. There are no special tricks
for this part that haven’t already been mentioned. Only raw
computing power can really improve this dramatically.

4.4 Endgame tables
One weakness of Chess engines has historically been end-

games. When there is little change over a huge number of
moves the Alpha-Beta function does not do well as nearly
all of the positions are evaluated to the same value. The
answer to this has been to use a massive amount of time
and computing power to analyze every possible set of moves
for a select number of pieces.

Chess has not been solved but there is progress of a sort.
Going backwards from checkmate with few pieces limits your
search space to the point where we can still calculate every
possibility and solve the best move for each case. This has
been done, at the current date, up to every combination of
6 pieces. Some 7 pieces have been solved as well [5].

New research by Haworth and Rusz has been looking into
improving endgame by analyzing positions in order to realize
if there are winning positions. This is mainly done by finding
time wasting moves and eliminating them. By not moving
the same pieces back and forth the endgame simplifies and
is easier to search with Alpha-Beta [5].

The problem with endgame tables is their storage space.
The number of moves stored for each option will exponen-
tially increase with more pieces. 5-piece end-games take 7.05
GB of hard disk space for all five-piece endings. Storing all
the six-piece endings requires approximately 1.2 TB. It is
estimated that all of the seven-piece end-game table-bases
will require between 50 and 200 TB of storage space. Sim-
ilar to the reason that chess can’t be solved from the front

end, there is only so far we can go from the other side before
space constraints are met [7].

5. CONCLUSION
The Alpha-Beta Pruning Algorithm has been extremely

successful in improving that ability of chess playing engines
through its optimality. Used in the chess engine Alpha-Beta
has been advancing the ability of programs for the last 60
years [4].

The applications of the algorithm can be expanded very
easily to any zero-sum game and used to solve what oth-
erwise would still be guessed. Until computers have the
processing power to solve chess entirely, Alpha-Beta will be
the top method for playing the game of chess. There can,
and have been, advancements in recent years through addi-
tions and enhancements to the algorithm as well as better
utilization of current and improved hardware.

Acknowledgments
I’d like the thank Elena Machkasova for advising me. Thanks
to Emma, Jake, and Dan who gave me feedback on this pa-
per.

6. REFERENCES
[1] P. Audouard, G. Chaslot, J.-B. Hoock, J. Perez,

A. Rimmel, and O. Teytaud. Grid coevolution for
adaptive simulations: Application to the building of
opening books in the game of go. Applications of
Evolutionary Computing, pages 323–332, 2009.

[2] D. R. Ferreira. The impact of the search depth on
chess playing strength. ICGA Journal, 36(2):67–80,
2013.

[3] A. Godescu. Information and search in computer
chess. arXiv preprint arXiv:1112.2149, 2011.

[4] K. Greer. Tree pruning for new search techniques in
computer games. Advances in Artificial Intelligence,
2013:2, 2013.

[5] G. M. Haworth and Á. Rusz. Position criticality in
chess endgames. In Advances in Computer Games,
pages 244–257. Springer, 2011.

[6] D. E. Knuth and R. W. Moore. An analysis of
alpha-beta pruning. Artificial intelligence,
6(4):293–326, 1975.

[7] E. V. Nalimov, G. M. Haworth, and E. A. Heinz.
Space-efficient indexing of chess endgame tables.
ICGA Journal, 23(3):148–162, 2000.

[8] A. Plaat, J. Schaeffer, W. Pijls, and A. De Bruin. A
new paradigm for minimax search. arXiv preprint
arXiv:1404.1515, 2014.

[9] A. Saffidine, H. Finnsson, and M. Buro. Alpha-beta
pruning for games with simultaneous moves. In AAAI,
2012.

[10] V. Vučković. An alternative efficient chessboard
representation based on 4-bit piece coding. Yugoslav
Journal of Operations Research, 22(2):265–284, 2012.

[11] P. Winston. 6. search: Games, minimax, and
alpha-betaf.


