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Why?
● Scouting and season analysis

● Coaches and managers can use this info to find optimal lineups versus 

given opponents

● Sports betting
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○ Multiple Leagues
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Forest Building
● Takes a group of decision trees and their outputs

● Voting is done on these outputs and the majority is chosen as final output

● Randomization can come from differences in tree divisions or input data



Breiman’s Random Forest

● Breiman is generally considered the creator of random forests how we 

use them today

● Selects a random subset of the data for each tree- feature bagging
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Structure
Three Layers

1. Input Layer
2. Hidden Layer 
3. Output Layer

● Weights connect the layers and 
show importance of given nodes

Input Layer
Hidden Layer

Output Layer

Weights

2 8



Training
● Features- data selected for 

training
● Involves running algorithm 

multiple times to produce optimal 
weights of the nodes

● Each run reassigns weights based 
on new data and adjusts 
accordingly
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Training
● Features- data selected for 

training
● Involves running algorithm 

multiple times to produce optimal 
weights of the nodes

● Each run reassigns weights based 
on new data and adjusts 
accordingly
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Backpropagation and MLPs
● Used for training the network
● Repeats a 2 part cycle: propagation and weight update
● Propagation:

○ Input is shuffled through the network to the output layer
○ Output is compared to desired result
○ Error value is calculated for each node in output layer
○ Error values are propagated backwards until each node has an associated error value

● Weight Update
○ The error value at each node is used to update the weight between nodes

● MLP (Multilayer Perceptron)
○ Each layer of the network is connected fully to the next



Backpropagation Example
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● Compares initial output to 
desired output

● Error value is assigned to 
each output node

● Error = x - y
○ x is desired output
○ y is actual output



Backpropagation Example
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● Error values are propagated 
back through the network

● Weights are updated to account 
for the error values assigned to 
each node
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Data
● Pretorius and Parry (2016) tested 

on every 2nd match from the 
start of 2015 to start of the 
tournament (late 2015)

● Examples of features: outcome, 
home/away, rank-home, 
rank-away

● x and y axis are identical lists of 
the features

Pretorius and Parry (2016) 



Data
● Pretorius and Parry (2016) tested 

on every 2nd match from the 
start of 2015 to start of the 
tournament (late 2015)

● Examples of features: outcome, 
home/away, year, month, largest 
points scored home/away, 
rank-home, rank-away

● Ex: games drawn away, games 
won away



Method
● Breiman’s Random Forest RI (Random Input)

○ Uses orthogonal splits of the variable space

● Chosen on fast training time (14.32 secs) and low test error (19.05%)

● Ensemble size 200

● Input data was updated after each completed match



Results
● Authors prediction- human 

methods (SuperBru and 
OddsPortal) would be superior 
(null hypothesis)

● Conclusion- evidence showed 
random forests were at least as 
accurate

Approach Correct Accuracy

Breiman 
Forest-RI

43/48 89.58%

OddsPortal 41/48 85.42%

SuperBru 41/48 85.42%
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Data
●  Kyriakides, Talattinis, and George use aggregations of data from 

www.football-data.co.uk (2014)

● Targets for machine learning approaches were sum of goals and matches 

up to the current game

● Training set was always number of matches played in current season

http://www.football-data.co.uk
http://www.football-data.co.uk


Methods
● Breiman’s Random Forest

○ Uses random subset (around 66%) to train each tree

● Neural network: multilayer perceptron using backpropagation for 

learning

○ Starts with random weights for each weight and updates based on the delta rule

● Predicted win, loss, or draw



Results
● Random forests were far superior in 

hindsight prediction
● Neural networks were better at 

foresight especially when focused on 
profit

● Both methods at least slightly more 
accurate than linear algebra methods 
also tested

Season RF NN

2010/2011 41.58% 46.32%

2011/2012 37.89% 46.84%

2012/2013 48.42% 50.53%

Season RF NN

2010/2011 94.74% 51.32%

2011/2012 96.32% 50.53%

2012/2013 95.79% 45.79%
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Data and Methods
● McCabe and Trevathan (2008)

● Multilayer perceptron using 
backpropagation

● Features:
○ Points-for
○ Points-against
○ Win-loss record
○ Home-away record
○ Previous game result
○ Previous n game performance
○ Team ranking
○ Points-for and against in previous n 

games
○ Location
○ Player availability



Results
● Showed expected growth of 

course of season- early rounds 
show how random weights affect 
predictions

● Super Rugby- 2 new teams 
introduced- algorithm adjusted 
quickly

2006 Super 12

%

Round

McCabe and Trevathan (2008)
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Comparisons
● Neural Networks- accurate in foresight prediction and profitable in 

betting

● Random Forests- hindsight prediction accuracy, showed in some cases to 
be profitable in betting

● Both: were at least slightly superior to both human and linear algebraic 
methods at predicting results



Applications
● Random Forests- scouting, season analysis, possible betting profitability

● Neural Networks- lineup optimizations, seems to be a definite possibility 
as a betting tool



Questions?
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