
Conflict-Free Vertex Coloring Of Planar Graphs

Shawn Seymour
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

seymo079@morris.umn.edu

ABSTRACT
The conflict-free coloring problem is a variation of the vertex
coloring problem, a classical NP-hard optimization problem.
The conflict-free coloring problem aims to color a possibly
proper subset of vertices such that there is a unique color
within the closed neighborhood (a vertex and its neighbors)
of every vertex. This paper presents recent findings and
heuristics to solve the conflict-free coloring problem on both
general graphs and planar graphs.

1. INTRODUCTION
Consider the map of the 48 contiguous states in the United

States of America. Suppose we would like to color each state
such that no two states that share a boundary have the same
color. This problem can be modeled with a graph. We can
represent each state with a vertex and represent a boundary
between two states with an edge.

This is a famous example of the vertex coloring problem
and one of many graph coloring problems. The vertex col-
oring problem aims to find the minimum number of colors
needed to color a graph such that no two adjacent vertices
are colored with the same color. While some problems are
relatively easy to solve, the vertex coloring problem is one
of the most computationally complex problems in computer
science and mathematics [3]. The vertex coloring problem
has many real-world applications such as finding the min-
imum number of time slots needed to schedule final exam
periods such that no two courses (taken by the same stu-
dent) are scheduled at the same time slot.

The conflict-free coloring problem is a relaxed variation
of the vertex coloring problem. The conflict-free coloring
problem does not aim to color every vertex. Rather, it aims
to color some vertices such that the neighborhood of every
vertex contains at least one uniquely colored vertex.

This paper looks into some applications and heuristics of
conflict-free coloring. We then look into the specific case of
conflict-free coloring planar graphs. Section 2 provides the
background necessary to understand the problem and how
it is used. Section 3 introduces some applications for the
conflict-free coloring problem. Section 4 describes a heuristic
for conflict-free coloring general graphs. Section 5 looks into
the specific case of conflict-free coloring planar graphs.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2017 Morris, MN.

2. BACKGROUND
To understand the problem, the algorithms to solve it,

and its results, we must first understand some graph theory,
some computational complexity theory, and the precise def-
initions of the vertex coloring problem and the conflict-free
coloring problem.

1 2 3

4 5 6

Figure 1: A simple, undirected graph G1

2.1 Graph Theory
A graph, denoted G = (V,E), is an ordered pair of two

sets: a set of vertices V and a set of edges E. Each edge
consists of a set of two unordered vertices from V . For ex-
ample, {u,w} ∈ E is an edge connecting vertices u and w
where u,w ∈ V . Vertices are adjacent if they are connected
by an edge. An edge that connects a vertex to itself is called
a loop. A graph without loops is called loopless.

A simple graph is a loopless graph where no two edges
connect the same pair of vertices. A planar graph is a graph
that can be drawn on the plane such that its edges only
intersect at their endpoints. This drawing is referred to as
a planar drawing. All graphs used by the vertex coloring
problem and conflict-free coloring problem are assumed to
be simple graphs. An example graph is shown in Figure 1.

The open neighborhood of a vertex is a set of all vertices
adjacent to v. A closed neighborhood, denoted NG(v), con-
sists of the vertices adjacent to v plus v itself. For example,
let’s examine NG1(1) from Figure 1. The open neighbor-
hood of 1 is {2, 5} while the closed neighborhood is {1, 2, 5}.
For the rest of the paper, the term neighborhood will refer
to closed neighborhoods unless stated otherwise.

A path is a sequence of edges that connect a sequence
of distinct vertices. A subgraph is a graph H that can be
formed from a subset of the vertices and edges of G. A graph
is connected if there exists a path between every pair of
vertices. A component of a graph G is a subgraph H where
H is connected and H is not contained in any connected
subgraph of G that has more vertices or edges than H has.
An isolated path is a component that is itself a path.



The distance of a path can be thought of as the small-
est number of edges needed to get from one vertex to an-
other vertex. For example, in Figure 1, the distance from
vertex 3 to vertex 4 would be 3 as it takes 3 edges to get
there. A distance-3-set is a set of vertices that all have ex-
actly pairwise distance 3 from each other. An example of a
distance-3-set from Figure 1 would be {3, 4}. [3, 11]

1 2 3

4 5 6

Figure 2: A minimum vertex coloring of G1

2.2 Graph Coloring
A vertex coloring is an assignment of colors to each ver-

tex of a graph G. A proper vertex coloring assigns colors
such that no two adjacent vertices share the same color.
Mathematically, it can be described as a function f : V →
S = {1, 2, . . . , k} such that ∀u,w ∈ V , if (u,w) ∈ E, then
f(u) 6= f(w). The chromatic number of G, denoted χ(G),
is the minimum number of colors needed to properly color
G. The vertex coloring problem (VCP), when given a simple
graph G, is to find χ(G). [3]

A graph G is said to be k-colorable if it can be colored
using k or fewer colors, i.e. χ(G) ≤ k. A graph hav-
ing χ(G) = k is said to be a k-chromatic graph. The k-
colorability problem asks if a graph can be colored using k
colors. This problem is slightly different than the VCP as it
is a decision problem rather than an optimization problem.
An example of a 3-colorable graph and a vertex coloring is
shown in Figure 2.

1 2 3

4 5 6

Figure 3: A minimum conflict-free coloring of G1

A conflict-free k-coloring of a simple graph G assigns col-
ors, {1, 2, . . . , k}, to a subset P ⊆ V of vertices such that
∀v ∈ V , there is a vertex u ∈ N(v) where the color of u
is unique in the neighborhood of v. The set V \ P is the
uncolored vertices, if any. Generally, a conflict-free color-
ing of a graph assigns colors to some of the vertices such
that, for every vertex v, there is a unique color assigned to
a vertex among v and v’s neighbors. The vertex u can be
thought of the conflict-free neighbor of v. The conflict-free
chromatic number of G, denoted χCF (G), is the smallest
k for which a conflict-free coloring exists. The conflict-free
coloring problem (CFCP) aims to find χCF (G). [1]

An example of a conflict-free coloring is shown in Figure
3. All uncolored vertices are in gray. It is a valid conflict-
free coloring because every vertex has a unique color within

its neighborhood. For example, N(1) = {1 : uncolored, 2 :
uncolored, 5 : red}. As there are no other vertices colored
red, we have verified there is a unique color in the neigh-
borhood of vertex 1. We observe from Figures 2 and 3,
χ(G1) = 3 and χCF (G1) = 2. It is worth noting that all
proper vertex colorings are also conflict-free colorings. This
is because in a proper vertex coloring, every vertex is its own
conflict-free neighbor [1].

A dominating set is a subset D of V such that every ver-
tex not in D is adjacent to at least one vertex in D. The
set of colored vertices in a conflict-free coloring is a domi-
nating set [1]. The domination number of G, denoted γ(G),
is the size of a minimum dominating set of G. An example
of a dominating set is {3, 5} of graph G1 where γ(G1) = 2.
The conflict-free domination number for some k, denoted
γk
CF (G), is the minimum number of vertices that have to be

colored in a conflict-free k-coloring of G. The k-conflict-free
dominating set problem asks if a given k-coloring of a graph
colors the minimum amount of vertices needed to have a
conflict-free coloring that utilizes k colors.

2.3 Computational Complexity Theory
A decision problem, as mentioned earlier, is a problem

that can be answered with ‘yes’ or ‘no’ [9]. A problem can
be solved in polynomial time if an algorithm with input size
n can run in at most nk steps where k is a constant that
does not depend on n. A decision problem is said to be in
the class P if in the worst case, it can be solved with an
algorithm that runs in polynomial time.

Given a decision problem and a proposed solution, it can
be possible to verify the answer quickly. If a decision prob-
lem can be verified in polynomial time but not necessarily
solved in polynomial time, it is said to be in the class NP.
Take note that this does not exclude problems in class P; P
is a subset of NP.

There are certain problems, called NP-hard, that can be
proven to be as hard as every problem in NP. If problem Y
can be transformed into problem X by a polynomial-time
algorithm, it is said that Y can be polynomially reduced to
X. A problem is NP-hard if it every problem in NP can be
polynomially reduced to it. This means that if an NP-hard
problem can be solved with a polynomial-time algorithm,
then any problem in NP could be solved in polynomial time.
A decision problem is said to be NP-complete when it is both
in NP and NP-hard.

The k-colorability problem as well as the conflict-free k-
colorability problem are NP-complete. This can be proven
by using a reduction from a known NP-complete problem
[5]. If we find a known hard problem Y , we can prove that
another problem X is hard by a reduction from Y to X.
The VCP and the CFCP have both been shown to be NP-
hard [1, 6]. The k-colorability problem is proven to be NP-
complete with a reduction from 3-SAT, another well-known
NP-complete problem [8]. The conflict-free k-colorability
problem is shown to be NP-complete by a reduction from
k-colorability [1].

It is often desirable and necessary to use approximation
algorithms, known as heuristics, to solve complex problems
like the VCP and the CFCP. In our case, heuristics are
polynomial-time algorithms that give good, but not opti-
mal, solutions to our optimization problems. A polynomial-
time approximation scheme (PTAS) is any polynomial-time
approximation algorithm that takes an instance of an op-



timization problem and a parameter ε > 0 and produces
a solution that is within a factor (1 + ε) (for minimization
problems) of being optimal.

3. APPLICATIONS
Before digging into methods for solving the CFCP, it is

important to understand what motivated the recent studies
into conflict-free coloring.

3.1 Wireless Networks
The main application for conflict-free coloring surrounds

wireless networks. Cellular networks, radio, television broad-
casting, and satellite communication utilize some form of
wireless networks. For each of these systems, a frequency
assignment problem arises with specific characteristics.

For example, imagine a cellular network. Cellular net-
works are heterogeneous networks with two different types of
nodes. They have base-stations (servers) and clients. Base
stations are all interconnected through an external backbone
network. Clients can only be connected to base stations and
connect via radio links. Base stations are each assigned a
fixed frequency. Clients, however, are constantly searching
frequencies for base-stations with strong reception.

The main problem when initially setting up these net-
works comes into play when assigning frequencies. Imagine
two base-stations near each other having the same frequency.
If a client is in reception range of both base-stations, then
mutual interference occurs and the radio link is too noisy
to be used for proper communication. The goal is to as-
sign frequencies to base stations such that every client is
served by some base-station and to minimize the number of
frequencies used.

Figure 4: Cellular tower VCP and CFCP example

This problem was initially modeled as a vertex coloring
problem, where the vertices are the base-stations and the
edges are the pairs of base-stations that overlap in their re-
ception range. This model is too wasteful and restrictive.
Imagine a situation where a client is within the reception
range of 3 base-stations. The VCP model would require 3
colors, one for each base station. If we assign one base-
station a color (say blue) and the other 2 a different color
(say red), then we only utilize two colors and the client uti-
lizes the blue base-station and has no mutual interference.
This model is shown in Figure 4. This is exactly what a
conflict-free coloring does. [10]

3.2 RFID Networks
Radio frequency identification (RFID) networks are sim-

ilar to wireless networks. An object, such as a credit card
with an RFID chip, has a specific tag attached to it. A
reader, such as a credit card scanner, can sense the presence
of this object and read an ID that is assigned to the tag of
the object. RFID is used for tracking progress of automo-
biles through a production assembly line, timing marathons

and races, security access control to parking garages and
buildings, and much more.

Multiple RFID readers are often set up in a given location
to improve coverage of the overall area. There can also be
multiple RFID readers set up that each do a different ac-
tion after reading a tagged object. Unlike cellular towers, a
reader can only be reading (i.e. connected to) a single tag
at a time. Two readers trying to access a tagged object at
the same time can cause mutual interference. The goal is to
schedule for each reader a time slot for when the reader will
be active.

Imagine we have a set of readers, R. Suppose they all
are assigned the same frequency. We would like to schedule
each reader r ∈ R a time slot t(r) where the reader r will be
active. We have a set of tags P (i.e. product RFID chips).
We can say that P is read by our schedule if for every tag
p ∈ P , there is at least one reader r ∈ R and a time t such
that p is read by r at time t. We want to minimize the total
time slots used by the schedule. This can be accomplished
by modeling the situation as a conflict-free coloring problem.
Again, we aim to find the minimum number of colors needed.
[4, 10]

4. CF COLORING OF GENERAL GRAPHS
For this section, we will consider the NP-complete prob-

lem of conflict-free k-colorability. Given a graph G and an
integer k, determine if graph G can be colored using k or
fewer colors. Although all graphs can be conflict-free col-
ored, a given graph G may not be able to be colored with k
colors.

As shown with graph G1 in section 2, even though all
proper vertex colorings are also conflict-free colorings, fewer
colors can usually be used. This leads us to use heuristics
that differ from the vertex coloring problem. Abel et al. [1]
present an efficient heuristic to color certain general graphs
with k colors in a conflict-free manner. They call this heuris-
tic iterated elimination of distance-3-sets.

4.1 Guaranteeing CF k-Colorability
It is wasteful to spend time coloring a graph that cannot

be conflict-free colored. This leads Abel et al. to provide suf-
ficient criterion to guarantee the conflict-free k-colorability
of a certain graphs. To introduce this criterion, we need to
introduce a few specific graphs. A complete graph is a sim-
ple, undirected graph where every pair of distinct vertices
is connected by an edge. A complete graph on n vertices
is denoted as Kn. The graph K−3

n is the graph obtained
by removing any three edges forming one single triangle, i.e.
K3.

A graph H is called a minor of a graph G if H can be
formed by deleting edges and/or contracting edges (combin-
ing the vertices of an edge) from G. [1, 3]

Theorem 1. Let G be a graph and k ≥ 1. If G has nei-
ther Kk+2 nor K−3

k+3 as a minor, G has a conflict-free col-
oring that can be found in polynomial time using iterated
elimination of distance-3-sets.

Abel et al. give a criterion that guarantees k-colorability
which is stated in Theorem 1. In the proof of this theorem,
found in [1], the authors prove that their heuristic, given in
section 4.3, will always generate a k-colorable graph when
the specified criterion is met.



4.2 Setting Up Example CF Coloring
Before demonstrating Algorithm 1, we will demonstrate

how to check if a graph, say G2 in Figure 5, meets the given
criterion.

1 2 3

4 5

6 7 8 9

Figure 5: A simple graph G2

We will be focusing on the simplest example, k = 1.
Graph G2 is a simple graph with 6 vertices. For k = 1,
this means our graph cannot contain K3 or K−3

4 as a minor.
These graphs are shown in Figure 6.

Figure 6: Graphs K3 and K−3
4 , respectively

We can see that G2 has both of these as minors. The
transformation needed to see the minors is shown in Figure
7. By contracting the dotted edges, vertices 1 and 4 would
combine as well as vertices 3 and 5. We would have both
K3 and K−3

4 . This graph does not fit our criterion; it even
breaks both properties as it has both Kk+2 and K−3

k+4 as a
minor. Thus, this graph cannot be conflict-free colored with
one color.

1 2 3

4 5

6 7 8 9

Figure 7: How to transform G2 to see the minors

4.3 Iterated Elimination of Distance-3-Sets
The iterated elimination of distance-3-sets algorithm, de-

fined in [1] and shown in Algorithm 1, is a polynomial-time
heuristic for generating a conflict-free k-coloring of general
graphs that satisfy the criterion given in Theorem 1. If the
criterion is not met, the heuristic will produce a conflict-free
coloring of more than k colors.

To illustrate this algorithm and show it produces a valid
conflict-free coloring, we’ll use graph G3 shown in Figure
8. The algorithm starts by setting a variable i, the current
color, to a (color) 1. We then remove all isolated paths from
the input graph. There are currently no isolated paths in
G3, so we do not remove anything.

Algorithm 1 Iterated elimination of distance-3-sets

Input: A simple, undirected graph G
1: i← 1
2: Remove all isolated paths from G
3: while G is not empty do
4: D ← ∅
5: for all components of G do
6: Pick any vertex v
7: D ← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D

10: D ← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G

16: Remove all isolated paths from G

17: Color all removed isolated paths using color i

Since G3 is not empty, we enter the first while loop and set
a variable D to the empty set. G3 has only one component
(the whole graph) so we will only iterate through the for all
on line 5 once. Pick any vertex from G3, say vertex 8. We
then add 8 to set D and thus D ← {8}. Now, while there
exists a vertex with a distance of at least 3 from all vertices
in D, we must pick a vertex of exactly distance 3 and add
it to D. For example, vertex 2 has distance 3 from vertex 8.
Now, we add vertex 2 to D and now D ← {2, 8}.

1 2 3 4

5 6 7 8

Figure 8: Graph G3 to illustrate Algorithm 1

There are no more vertices of at least distance 3 from all
vertices in D, so we move on to line 11. We color all vertices
in D, {2, 8}, with color i which is known as color 1 (say
red). This coloring is shown in Figure 9. We increase i by
one leading to i← 2.

1 2 3 4

5 6 7 8

Figure 9: Graph G3 after lines 1-13

Next, for every vertex in D, we must remove their closed
neighborhood from the graph. The neighborhood of vertex 2
consists of {1, 2, 3, 6} and the neighborhood of vertex 8 con-
sists of {4, 8}. By removing these vertices and any edges con-
taining these vertices, we are left with vertices {5, 7}. This
is shown in Figure 10.

The last step of the algorithm is to remove all isolated



5 7

Figure 10: Graph G3 after lines 14-15

paths from G. Since we are left with only two isolated ver-
tices, which are trivially isolated paths, we have 2 isolated
paths. We remove these isolated paths from G and are left
with an empty graph. Since the graph is empty, we exit the
outer while loop and execute line 17. We color all removed
isolated paths using color i, which is color 2 (say blue). Since
we had 2 isolated paths, which are really just two vertices 5
and 7, we color each vertex with color 2.

1 2 3 4

5 6 7 8

Figure 11: Coloring of G3 based on algorithm

It was easy to color our removed isolated paths as they
consisted solely of a vertex. In a more complex example,
an isolated path is colored by coloring the middle vertex of
every three vertices [1]. This graph is not 1-colorable as it
includes K3 as a minor. As we have shown that this graph
is 2-colorable and Theorem 1 shows it is not 1-colorable, we
can conclude that χCF (G3) = 2.

It is wise to note that this algorithm does not necessarily
minimize the number of colored vertices. It can be beneficial
to minimize the number of colored vertices (less cost) in
certain applications such as building wireless networks. The
conflict-free domination number for k = 2 of G3, γ2

CF (G3),
is three even though we have four colored vertices in our
example. This can be seen by coloring vertices {2, 8} with
one color and vertex 6 with another.

5. CF COLORING OF PLANAR GRAPHS
Conflict-free coloring has some interesting properties when

we limit the input graph to be a planar graph. Recall that
a graph is planar if it can be drawn on the plane in such a
way that its edges intersect only at their endpoints.

5.1 Bounds for Planar Graphs
Recall the map of the USA example given in the introduc-

tion. This is an example of a planar graph and illustrates
a famous theorem associated with it. We present this theo-
rem, called the four color theorem, in Theorem 2. The most
widely-accepted proof, which utilizes a computer to brute
force every possible case, can be found in [7].

Theorem 2. Every loopless planar graph admits a proper
vertex coloring with at most four distinct colors.

Due to Theorem 2, we immediately know that every pla-
nar graph is conflict-free 4-colorable. This raises the ques-
tion of whether there are planar graphs that require four
colors or if fewer colors could suffice for all planar graphs.
This leads us to the conflict-free variation of this theorem.
We present this in Theorem 3. It is given and proven in [1].

Figure 12: A vertex and CF coloring, respectively

Theorem 3. Every loopless planar graph admits a valid
conflict-free coloring with at most three distinct colors.

Figure 12 looks at a planar graph that requires four colors
in a proper vertex coloring. Based on Theorem 3, we know
that this planar graph can be conflict-free colored with only
three colors. This is shown in Figure 12 as well.

5.2 CF Coloring via Dominating Set
Algorithm 1 presented in section 4.3 gives us an efficient

heuristic for coloring general graphs including planar graphs.
Algorithm 2, called conflict-free via dominating set, gives
us another way of coloring planar graphs, albeit likely less
efficient with regards to running time.

Algorithm 2 Conflict-Free Coloring via Dominating Set

Input: A planar graph G = (V,E)
1: Find a dominating set, D, of G
2: for all v ∈ V \D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u

5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

To demonstrate this algorithm, we will utilize graph G3

as we did for Algorithm 1. It is a planar graph, so we can
use this algorithm to generate a conflict-free coloring. First,
we must find a dominating set for G3. Finding a dominating
set can be done with a greedy algorithm. For small graphs,
such as G3, it is easy to find one by hand. A dominating set
of G3, {2, 6, 8}, is shown in Figure 13.

1 2 3 4

5 6 7 8

Figure 13: A dominating set of G3

We assign our dominating set {2, 6, 8} to D. Since V \D 6=
∅, we enter the for all loop in line 2. Here, we iterate through
all vertices in V \D. For each vertex v ∈ V \D, we will pick
another vertex in D that is connected to v by an edge. Then,
we will contract the edge {u, v} towards u. This means that
we combine u and v together and update any edges to reflect
the changes.

To illustrate this, we start the loop by picking a vertex
v, say vertex 3. We pick vertex u to be vertex 2 because
2 ∈ D and {2, 3} ∈ E. We contract the edge and show the



resulting graph G in Figure 14. By iterating over the rest of
the vertices in V \D, we obtain a graph that is itself a path
from vertex 2 to vertex 6 to vertex 8. This graph, along
with its proper vertex coloring, is shown in Figure 15. We
can find a proper vertex coloring by any heuristic, such as a
greedy algorithm, for the VCP.

1 2 4

5 6 7 8

Figure 14: The graph after the first for loop

Lastly, we color our original graph G3 based on the proper
vertex coloring we generated. We leave any nodes not in the
graph G uncolored when we color G3. The coloring of G3

is shown in Figure 16. It is clear that this has produced a
conflict-free coloring.

2 6 8

Figure 15: The graph after lines 2-5

Take note that this algorithm has produced fewer colored
vertices than Algorithm 1. We had 4 colored vertices based
on that algorithm where here we have 3. This algorithm
helps us prove theorems based on minimizing the number of
colored vertices.

1 2 3 4

5 6 7 8

Figure 16: G3 with minimized colored vertices

5.3 Minimizing Colored Vertices
Abel et. al [1] present results on minimizing colored ver-

tices when conflict-free coloring planar graphs. They pro-
pose and prove Theorem 4 by using the polynomial-time
algorithm described in Algorithm 2.

Because the planar minimum dominating set problem is
NP-hard [5], we know that the conflict-free dominating set
problem is NP-hard because we aim to find a dominating
set. It follows that the corresponding decision problem, the
k-conflict-free dominating set problem, is NP-complete.

Theorem 4. For k ≥ 4, the k-conflict-free dominating
set problem is NP-complete and γk

CF (G) = γ(G) for a planar
graph G. Also, there exists a PTAS for estimating γk

CF (G).

We get a PTAS for the conflict-free domination number by
applying Algorithm 2 and finding the dominating set using
the PTAS defined by Baker and Hill [2]. As the input graph
G is planar, the resulting graph G′ is also planar because
G′ is a minor of G. Thus, it can be colored with 4 colors or

less by Theorem 2. We then color G with the colors of G′,
leaving any vertex in G but not in G′ uncolored. This leaves
us with a conflict-free coloring of G.

6. CONCLUSION
We have presented some of the recent heuristics and find-

ings on the conflict-free coloring problem. Although the
CFCP is NP-hard and finding the minimum number col-
ors needed requires inefficient brute force algorithms, there
are heuristics to find good conflict-free colorings.

There are many applications of the CFCP that benefit
from the recent research into conflict-free coloring. It is eas-
ier to minimize frequency assignment for wireless networks
and design RFID networks. Current research focuses on
finding bounds and properties on specific cases such as in-
terval graphs, types of hypergraphs, and more [4, 10].

There is also recent interest in variations of the CFCP
such as requiring another vertex (not the selected vertex)
to be colored within the neighborhood of a selected vertex.
This allows for applications such as guiding a specific robot
to other locations (i.e. the robot and its destination would
both be a distinct unique color). Relaxing the proper vertex
coloring problem to satisfy new requirements leads to new
heuristics that can effectively solve more real-world prob-
lems.

7. ACKNOWLEDGMENTS
Thanks to Peter Dolan, Elena Machkasova, Peh Ng, and

Jeremy Eberhardt for their advice and feedback.

8. REFERENCES
[1] Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete,

A. Gour, A. Hesterberg, P. Keldenich, and C. Scheffer.
Three colors suffice: Conflict-free coloring of planar
graphs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
1951–1963. SIAM, 2017.

[2] B. S. Baker. Approximation algorithms for
np-complete problems on planar graphs. Journal of
the ACM (JACM), 41(1):153–180, 1994.

[3] J. A. Bondy and U. S. R. Murty. Graph theory with
applications, volume 290. Citeseer, 1976.

[4] P. Cheilaris, L. Gargano, A. A. Rescigno, and
S. Smorodinsky. Strong conflict-free coloring for
intervals. Algorithmica, 70(4):732–749, 2014.

[5] M. R. Garey and D. S. Johnson. Computers and
intractability, volume 29. wh freeman New York, 2002.

[6] B. M. Moret. The theory of computation. Technical
report, Addison-Wesley, Reading, Mass., 1998.

[7] N. Robertson, D. Sanders, P. Seymour, and
R. Thomas. The four-colour theorem. journal of
combinatorial theory, Series B, 70(1):2–44, 1997.

[8] P. C. Sharma and N. S. Chaudhari. A new reduction
from 3-SAT to graph k-colorability for frequency
assignment problem. Int. J. Comp. Applic, pages
23–27, 2012.

[9] M. Sipser. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston, 2006.

[10] S. Smorodinsky. Conflict-free coloring and its
applications. In Geometry Intuitive, Discrete, and
Convex, pages 331–389. Springer, 2013.

[11] D. B. West et al. Introduction to graph theory,
volume 2. Prentice hall Upper Saddle River, 2001.


