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Graph Theory

• Simple graph: undirected graph with no loops.

• Planar graph: no edges cross.
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Graph Theory

• Neighborhood of a vertex: a set of all adjacent vertices and the vertex itself.

• Example: The neighborhood of vertex 1: {1, 2, 5}.
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Graph Theory

• Neighborhood of a vertex: a set of all adjacent vertices and the vertex itself.

• Example: The neighborhood of vertex 5: {1, 2, 4, 5, 6}.
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Graph Theory

• Distance: smallest number of edges to get from one vertex to another.

• Example: distance from vertex 1 to 3: 2.

4

1 2 3

4 5 6



Graph Theory

• Distance: smallest number of edges to get from one vertex to another.

• Example: distance from vertex 1 to 6: 2.
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Graph Theory

• Distance: smallest number of edges to get from one vertex to another.

• Example: distance from vertex 3 to 4: 3.
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Graph Theory

• Distance-3-set: contains all vertices with exactly distance 3 from each other.

• Example: Distance from vertex 1 to 3: 2.
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Graph Theory

• Distance-3-set: contains all vertices with exactly distance 3 from each other.

• Example: The only possible distance-3-set: {3, 4}.
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Graph Theory

• Dominating set: all vertices not in the set must have distance 1 to some
vertex within the set.

• Example: The neighborhood of vertex 1: {1, 2, 5}.
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Graph Theory

• Dominating set: all vertices not in the set must have distance 1 to some
vertex within the set.

• Example: {2, 5}
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Graph Theory

• Dominating set: all vertices not in the set must have distance 1 to some
vertex within the set.

• Example: {2, 4}
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Vertex Coloring

• A proper vertex coloring assigns colors to every vertex such that no two
adjacent vertices share the same color.

• The chromatic number is the minimum number of colors needed to properly
color a graph.
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Vertex Coloring

• A proper vertex coloring assigns colors to every vertex such that no two
adjacent vertices share the same color.

• The chromatic number is the minimum number of colors needed to properly
color a graph.
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Conflict-Free Coloring

• A conflict-free coloring assigns colors to some vertices such that the
neighborhood of every vertex contains at least one uniquely colored vertex.

• Proper vertex colorings are also conflict-free colorings.

6

1 2 3

4 5 6



Conflict-Free Coloring

• A conflict-free coloring assigns colors to some vertices such that the
neighborhood of every vertex contains at least one uniquely colored vertex.

• Proper vertex colorings are also conflict-free colorings.
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Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

1: blue
2: red
3: blue

4: red
5: yellow
6: blue
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Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

1: blue
2: red
3: blue

4: red
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Conflict-Free Coloring Examples

Isolated vertex Triangle Missing unique
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Conflict-Free Coloring Examples

Isolated vertex Triangle Missing unique
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Incorrect conflict-free colorings and their fixes:



Applications

• Applications: wireless networks, satellite communication systems, RFID
networks.

• Cellular networks: consist of towers and clients.
• The problem: frequency assignment.
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• The problem: frequency assignment.
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Cellular Networks

Benson                Morris                Clontarf

• Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.
(2) Minimize the number of frequencies used.

10



Cellular Networks

Benson                Morris                Clontarf

• Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.
(2) Minimize the number of frequencies used.

10



Cellular Networks

Benson                Morris                Clontarf

• Our goal is to assign frequencies such that:

(1) Every client is served by a tower with a unique frequency.
(2) Minimize the number of frequencies used.

10



Cellular Networks

Benson                Morris                Clontarf

• Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.

(2) Minimize the number of frequencies used.

10



Cellular Networks

Benson                Morris                Clontarf

• Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.
(2) Minimize the number of frequencies used.
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Cellular Networks

Vertex coloring and conflict-free coloring of cellular towers, respectively

11



Guaranteeing Conflict-Free k-Colorability

We want to guarantee a graph can be colored with k colors.

Complete 3 vertex and complete 4 vertex graphs

• Complete graph: every pair of distinct vertices is connected by an edge.

• Tattered graph: complete graph with a triangle removed.
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Guaranteeing Conflict-Free k-Colorability

13

Let’s demonstrate meeting this criterion on a graph for the simplest case, 1 color.

1 2 3

4 5

6 7 8 9

A simple graph

A graph is a minor if it can be formed by deleting and/or contracting edges from
its parent graph.
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Guaranteeing Conflict-Free k-Colorability
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Let’s demonstrate meeting this criterion on a graph for the simplest case, 1 color.

1 2 3

4 5

6 7 8 9

A simple graph
Complete 3 vertex and tattered 4 vertex graphs

A graph is a minor if it can be formed by deleting and/or contracting edges from
its parent graph. G contains both graphs as a minor and thus cannot be
conflict-free colored with 1 color.



Guaranteeing Conflict-Free k-Colorability

13

Let’s demonstrate meeting this criterion on a graph for the simplest case, 1 color.

Theorem
A graph cannot be conflict-free colored with k colors if it contains a complete
graph of k+ 2 vertices or a tattered graph of k+ 3 vertices as a minor.

A graph is a minor if it can be formed by deleting and/or contracting edges from
its parent graph. G contains both graphs as a minor and thus cannot be
conflict-free colored with 1 color.



Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

1 2 3 4

5 6 7 8

Coloring of G so far

1 2 3 4

5 6 7 8

A simple graph G
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2: Remove all isolated paths from G
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4: D← ∅
5: for all components of G do
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

i = 1
P = {}
D = {8}

1 2 3 4

5 6 7 8

Coloring of G so far

1 2 3 4

5 6 7 8

A simple graph G



Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
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11: for all u ∈ D do
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17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

i = 1
P = {}
D = {8}

1 2 3 4

5 6 7 8

Coloring of G so far
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
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i = 1
P = {}
D = {8}
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5 6 7 8

Coloring of G so far
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
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Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

i = 2
P = {{5}, {7}}
D = {2, 8}

1 2 3 4

5 6 7 8

Coloring of G so far

G is now empty



Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

i = 2
P = {{5}, {7}}
D = {2, 8}

1 2 3 4

5 6 7 8

Coloring of G so far

Coloring removed isolated paths



Iterated Elimination of Distance-3-Sets

Algorithm IEDS
1: i← 1, P← ∅
2: Remove all isolated paths from G
3: while G is not empty do
4: D← ∅
5: for all components of G do
6: Pick any vertex v
7: D← D ∪ {v}
8: while ∃u at distance ≥ 3 ∀v ∈ D do
9: Pick u at distance 3 from some vertex in D
10: D← D ∪ {w}
11: for all u ∈ D do
12: Color u with color i
13: i← i+ 1
14: for all u ∈ D do
15: Remove N(u) from G
16: Remove all isolated paths from G
17: Color all removed isolated paths using color i

14Colors: {1 : red, 2 : blue}

i = 2
P = {{5}, {7}}
D = {2, 8}

1 2 3 4

5 6 7 8

Final coloring of G



Bounds on Planar Graphs

Theorem
Every loopless planar graph admits a proper vertex coloring with at most four
distinct colors.

Theorem
Every loopless planar graph admits a conflict-free coloring with at most three
distinct colors.
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Bounds on Planar Graphs

A vertex and conflict-free coloring, respectively

Theorem
Every loopless planar graph admits a proper vertex coloring with at most four
distinct colors.

Theorem
Every loopless planar graph admits a conflict-free coloring with at most three
distinct colors.

15



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

16

1 2 3 4

5 6 7 8

A simple, undirected graph G = (V, E)
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4: Contract the edge {u, v} towards u
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6: Color the original G with the found coloring
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D = {2, 6, 8}

1 2 3 4

5 6 7 8

A dominating set of G
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2: for all v ∈ V \ D do
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Pick v to be vertex 1



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring
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V \ D = {1, 3, 4, 5, 7}

v ∈ V \ D = 1
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1 2 3 4

5 6 7 8

Pick u to be vertex 2



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring
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D = {2, 6, 8}
V \ D = {3, 4, 5, 7}
v ∈ V \ D = 1

2 3 4

5 6 7 8

Contract {1, 2} towards 2
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Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring
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Pick v to be vertex 3



Conflict-Free Coloring via Dominating Set
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1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
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D = {2, 6, 8}
V \ D = {3, 4, 5, 7}
v ∈ V \ D = 3

u ∈ D = 2, {2, 3} ∈ E

2 3 4

5 6 7 8

Pick u to be vertex 2



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

16

D = {2, 6, 8}
V \ D = {4, 5, 7}

2 4

5 6 7 8

Contract {2, 3} towards 2



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

16

D = {2, 6, 8}
V \ D = {}

2 6 8

G after lines 2-4



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

16

D = {2, 6, 8}
V \ D = {}

2 6 8

A proper vertex coloring



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

16

D = {2, 6, 8}
V \ D = {}

1 2 3 4

5 6 7 8

Original G colored



Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all v ∈ V \ D do
3: Pick a vertex u ∈ D where {u, v} ∈ E
4: Contract the edge {u, v} towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

(1) Produces a valid conflict-free
coloring

(2) Tries to minimize the number of
colored vertices

16

D = {2, 6, 8}
V \ D = {}

1 2 3 4

5 6 7 8

Original G colored



Future Work

• Finding bounds and properties on specific graphs such as outerplanar
graphs, interval graphs, hypergraphs, and more.

• Allows for accurate estimates when applying conflict-free coloring to
real-world problems.

• Variations of conflict-free coloring such as requiring another vertex to have a
unique color within the neighborhood of a selected vertex.

• Guiding a robot (unique color 1) to a destination (unique color 2).
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Thanks to Peter Dolan, Elena Machkasova,
and Peh Ng for their advice and feedback.

github.com/devshawn/senior-seminar

cbna
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