Conflict-Free Vertex Coloring of Planar Graphs

Shawn Seymour
April 15, 2017

Overview

Background
Graph Theory
Vertex Coloring
Conflict-Free Coloring
Applications

Coloring for General Graphs Guaranteeing k-Colorability

Distance-3-Sets Algorithm
Coloring for Planar Graphs
Bounds for Planar Graphs
Dominating Set Algorithm

Graph Theory

- Simple graph: undirected graph with no loops.

Graph Theory

- Simple graph: undirected graph with no loops.
- Planar graph: no edges cross.

Graph Theory

- Neighborhood of a vertex: a set of all adjacent vertices and the vertex itself.

Graph Theory

- Neighborhood of a vertex: a set of all adjacent vertices and the vertex itself.
- Example: The neighborhood of vertex 1: $\{1,2,5\}$.

Graph Theory

- Neighborhood of a vertex: a set of all adjacent vertices and the vertex itself.
- Example: The neighborhood of vertex 5: $\{1,2,4,5,6\}$.

Graph Theory

- Distance: smallest number of edges to get from one vertex to another.

Graph Theory

- Distance: smallest number of edges to get from one vertex to another.
- Example: distance from vertex 1 to 6: 2.

Graph Theory

- Distance: smallest number of edges to get from one vertex to another.
- Example: distance from vertex 3 to 4: 3.

Graph Theory

- Distance-3-set: contains all vertices with exactly distance 3 from each other.

Graph Theory

- Distance-3-set: contains all vertices with exactly distance 3 from each other.
- Example: The only possible distance-3-set: $\{3,4\}$.

Graph Theory

- Dominating set: all vertices not in the set must have distance 1 to some vertex within the set.

Graph Theory

- Dominating set: all vertices not in the set must have distance 1 to some vertex within the set.
- Example: $\{2,5\}$

Graph Theory

- Dominating set: all vertices not in the set must have distance 1 to some vertex within the set.
- Example: $\{2,4\}$

Vertex Coloring

- A proper vertex coloring assigns colors to every vertex such that no two adjacent vertices share the same color.

Vertex Coloring

- A proper vertex coloring assigns colors to every vertex such that no two adjacent vertices share the same color.
- The chromatic number is the minimum number of colors needed to properly color a graph.

Conflict-Free Coloring

- A conflict-free coloring assigns colors to some vertices such that the neighborhood of every vertex contains at least one uniquely colored vertex.

Conflict-Free Coloring

- A conflict-free coloring assigns colors to some vertices such that the neighborhood of every vertex contains at least one uniquely colored vertex.
- Proper vertex colorings are also conflict-free colorings.

Conflict-Free Coloring

Conflict-Free Coloring

1: red

Conflict-Free Coloring

1: red
2: blue

Conflict-Free Coloring

1: red
2: blue
3: blue

Conflict-Free Coloring

1: red
4: red
2: blue
3: blue

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

Conflict-Free Coloring

1: red
2: blue
3: blue
4: red
5: red
6: red

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

1: blue
2: red

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

1: blue
2: red
3: blue

Conflict-Free Coloring

1: red
2: blue
3: blue
4: red
5: red
6: red

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red

4: red
5: yellow
3: blue

Conflict-Free Coloring

1: red
2: blue
3: blue

4: red
5: red
6: red
1: blue
2: red
3: blue
4: red
5: yellow
6: blue

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:
Isolated vertex

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:
Isolated vertex

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:
Isolated vertex

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:

Isolated vertex

Triangle

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:
Isolated vertex

Missing unique

Conflict-Free Coloring Examples

Incorrect conflict-free colorings and their fixes:
Isolated vertex

Missing unique

Applications

- Applications: wireless networks, satellite communication systems, RFID networks.

Applications

- Applications: wireless networks, satellite communication systems, RFID networks.

多)

- Cellular networks: consist of towers and clients.

Applications

- Applications: wireless networks, satellite communication systems, RFID networks.

多)

- Cellular networks: consist of towers and clients.
- The problem: frequency assignment.

Cellular Networks

Cellular Networks

Cellular Networks

- Our goal is to assign frequencies such that:

Cellular Networks

- Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.

Cellular Networks

- Our goal is to assign frequencies such that:
(1) Every client is served by a tower with a unique frequency.
(2) Minimize the number of frequencies used.

Cellular Networks

Vertex coloring and conflict-free coloring of cellular towers, respectively

Guaranteeing Conflict-Free k-Colorability

We want to guarantee a graph can be colored with k colors.

Guaranteeing Conflict-Free k-Colorability

We want to guarantee a graph can be colored with k colors.

Complete 3 vertex and complete 4 vertex graphs

- Complete graph: every pair of distinct vertices is connected by an edge.

Guaranteeing Conflict-Free k-Colorability

We want to guarantee a graph can be colored with k colors.

Complete 3 vertex and complete 4 vertex graphs

- Complete graph: every pair of distinct vertices is connected by an edge.
- Tattered graph: complete graph with a triangle removed.

Guaranteeing Conflict-Free k-Colorability

We want to guarantee a graph can be colored with k colors.

Complete 3 vertex and tattered 4 vertex graphs

- Complete graph: every pair of distinct vertices is connected by an edge.
- Tattered graph: complete graph with a triangle removed.

Guaranteeing Conflict-Free k-Colorability

Let's demonstrate meeting this criterion on a graph for the simplest case, 1 color.

A graph is a minor if it can be formed by deleting and/or contracting edges from its parent graph.

Guaranteeing Conflict-Free k-Colorability

Let's demonstrate meeting this criterion on a graph for the simplest case, 1 color.

Complete 3 vertex and tattered 4 vertex graphs

A graph is a minor if it can be formed by deleting and/or contracting edges from its parent graph.

Guaranteeing Conflict-Free k-Colorability

Let's demonstrate meeting this criterion on a graph for the simplest case, 1 color.

Complete 3 vertex and tattered 4 vertex graphs

A graph is a minor if it can be formed by deleting and/or contracting edges from its parent graph. G contains both graphs as a minor and thus cannot be conflict-free colored with 1 color.

Guaranteeing Conflict-Free k-Colorability

Let's demonstrate meeting this criterion on a graph for the simplest case, 1 color.

Theorem

A graph cannot be conflict-free colored with k colors if it contains a complete graph of $k+2$ vertices or a tattered graph of $k+3$ vertices as a minor.

A graph is a minor if it can be formed by deleting and/or contracting edges from its parent graph. G contains both graphs as a minor and thus cannot be conflict-free colored with 1 color.

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4: $\quad D \leftarrow \emptyset$	
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	Pick u at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	Color u with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

A simple graph G

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    Remove all isolated paths from \(G\)
    while \(G\) is not empty do
        \(D \leftarrow \emptyset\)
        for all components of \(G\) do
            Pick any vertex v
            \(D \leftarrow D \cup\{v\}\)
            while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
                    Pick \(u\) at distance 3 from some vertex in \(D\)
                    \(D \leftarrow D \cup\{w\}\)
            for all \(u \in D\) do
            Color u with color \(i\)
            \(i \leftarrow i+1\)
            for all \(u \in D\) do
            Remove \(N(u)\) from \(G\)
            Remove all isolated paths from G
            Color all removed isolated paths using color \(i\)
```


Coloring of G so far

A simple graph G

$$
\begin{aligned}
i & =1 \\
P & =\{ \}
\end{aligned}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4:	$D \leftarrow \emptyset$
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	Pick u at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	Color u with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

A simple graph G

$$
\begin{aligned}
i & =1 \\
P & =\{ \} \\
D & =\{ \}
\end{aligned}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4: $\quad D \leftarrow \emptyset$	
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	Pick u at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	Color u with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

$$
\begin{gathered}
i=1 \\
P=\{ \} \\
D=\{8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4: $\quad D \leftarrow \emptyset$	
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	$P i c k u$ at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	$C o l o r u$ with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

A simple graph G

$$
\begin{gathered}
i=1 \\
P=\{ \} \\
D=\{8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    2: Remove all isolated paths from \(G\)
    3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: for all components of \(G\) do
6: \(\quad\) Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
10: \(\quad D \leftarrow D \cup\{w\}\)
11: \(\quad\) for all \(u \in D\) do
12: \(\quad\) Color \(u\) with color \(i\)
13: \(\quad i \leftarrow i+1\)
14: \(\quad\) for all \(u \in D\) do
15: \(\quad\) Remove \(N(u)\) from \(G\)
16: \(\quad\) Remove all isolated paths from G
17: Color all removed isolated paths using color \(i\)
```


Coloring of G so far

A simple graph G

$$
\begin{gathered}
i=1 \\
P=\{ \} \\
D=\{8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    2: Remove all isolated paths from \(G\)
    3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: for all components of \(G\) do
6: \(\quad\) Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
        \(D \leftarrow D \cup\{w\}\)
    for all \(u \in D\) do
        Color \(u\) with color \(i\)
    \(i \leftarrow i+1\)
    for all \(u \in D\) do
        Remove \(N(u)\) from \(G\)
        Remove all isolated paths from G
    Color all removed isolated paths using color \(i\)
```


Coloring of G so far

$$
\begin{gathered}
i=1 \\
P=\{ \} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4: $\quad D \leftarrow \emptyset$	
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	$P i c k u$ at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	$C o l o r u$ with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

A simple graph G

$$
\begin{gathered}
i=1 \\
P=\{ \} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

Algorithm IEDS	
1: $i \leftarrow 1, P \leftarrow \emptyset$	
2:	Remove all isolated paths from G
3: while G is not empty do	
4: $\quad D \leftarrow \emptyset$	
5:	for all components of G do
6:	Pick any vertex v
7:	$D \leftarrow D \cup\{v\}$
8:	while $\exists u$ at distance $\geq 3 \forall v \in D$ do
9:	Pick u at distance 3 from some vertex in D
10:	$D \leftarrow D \cup\{w\}$
11:	for all $u \in D$ do
12:	$C o l o r u$ with color i
13:	$i \leftarrow i+1$
14:	for all $u \in D$ do
15:	Remove $N(u)$ from G
16:	Remove all isolated paths from G
17:	Color all removed isolated paths using color i

Coloring of G so far

A simple graph G

$$
\begin{gathered}
i=2 \\
P=\{ \} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    2: Remove all isolated paths from \(G\)
    3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: \(\quad\) for all components of \(G\) do
6: \(\quad\) Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
10: \(\quad D \leftarrow D \cup\{w\}\)
11: \(\quad\) for all \(u \in D\) do
12: \(\quad\) Color \(u\) with color \(i\)
13: \(\quad i \leftarrow i+1\)
14: \(\quad\) for all \(u \in D\) do
15: \(\quad\) Remove \(N(u)\) from \(G\)
16: \(\quad\) Remove all isolated paths from G
17: Color all removed isolated paths using color \(i\)
```


Coloring of G so far

A simple graph G

$$
\begin{gathered}
i=2 \\
P=\{ \} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
1: \(i \leftarrow 1, P \leftarrow \emptyset\)
2: Remove all isolated paths from \(G\)
3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: for all components of \(G\) do
6: Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
10: \(\quad D \leftarrow D \cup\{w\}\)
11: \(\quad\) for all \(u \in D\) do
12: \(\quad\) Color \(u\) with color \(i\)
13: \(\quad i \leftarrow i+1\)
14: \(\quad\) for all \(u \in D\) do
15: \(\quad\) Remove \(N(u)\) from \(G\)
16: \(\quad\) Remove all isolated paths from \(G\)
17: Color all removed isolated paths using color \(i\)
```


Coloring of G so far
G is now empty

$$
\begin{gathered}
i=2 \\
P=\{\{5\},\{7\}\} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    2: Remove all isolated paths from \(G\)
    3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: for all components of \(G\) do
6: \(\quad\) Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
10: \(\quad D \leftarrow D \cup\{w\}\)
11: \(\quad\) for all \(u \in D\) do
12: \(\quad\) Color \(u\) with color \(i\)
13: \(\quad i \leftarrow i+1\)
14: \(\quad\) for all \(u \in D\) do
15: \(\quad\) Remove \(N(u)\) from \(G\)
16: Remove all isolated paths from G
17: Color all removed isolated paths using color \(i\)
```


Coloring of G so far

Coloring removed isolated paths

$$
\begin{gathered}
i=2 \\
P=\{\{5\},\{7\}\} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Iterated Elimination of Distance-3-Sets

```
Algorithm IEDS
    1: \(i \leftarrow 1, P \leftarrow \emptyset\)
    2: Remove all isolated paths from \(G\)
    3: while \(G\) is not empty do
4: \(D \leftarrow \emptyset\)
5: \(\quad\) for all components of \(G\) do
6: \(\quad\) Pick any vertex \(v\)
7: \(\quad D \leftarrow D \cup\{v\}\)
8: \(\quad\) while \(\exists u\) at distance \(\geq 3 \forall v \in D\) do
9: \(\quad\) Pick \(u\) at distance 3 from some vertex in \(D\)
10: \(\quad D \leftarrow D \cup\{w\}\)
11: \(\quad\) for all \(u \in D\) do
12: \(\quad\) Color \(u\) with color \(i\)
13: \(\quad i \leftarrow i+1\)
14: \(\quad\) for all \(u \in D\) do
15: \(\quad\) Remove \(N(u)\) from \(G\)
16: \(\quad\) Remove all isolated paths from \(G\)
    17: Color all removed isolated paths using color \(i\)
```


Final coloring of G

$$
\begin{gathered}
i=2 \\
P=\{\{5\},\{7\}\} \\
D=\{2,8\}
\end{gathered}
$$

Colors: $\{1$: red, 2 : blue $\}$

Bounds on Planar Graphs

Theorem

Every loopless planar graph admits a proper vertex coloring with at most four distinct colors.

Bounds on Planar Graphs

Theorem

Every loopless planar graph admits a proper vertex coloring with at most four distinct colors.

Theorem

Every loopless planar graph admits a conflict-free coloring with at most three distinct colors.

Bounds on Planar Graphs

Theorem

Every loopless planar graph admits a proper vertex coloring with at most four distinct colors.

Theorem

Every loopless planar graph admits a conflict-free coloring with at most three distinct colors.

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Pick v to be vertex 1

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{1,3,4,5,7\} \\
V \in V \backslash D=1
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set

Pick u to be vertex 2
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{1,3,4,5,7\} \\
v \in V \backslash D=1 \\
u \in D=2,\{1,2\} \in E
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Contract $\{1,2\}$ towards 2

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{3,4,5,7\} \\
V \in V \backslash D=1
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Pick v to be vertex 3

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{3,4,5,7\} \\
V \in V \backslash D=3
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set

Pick u to be vertex 2
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{3,4,5,7\} \\
V \in V \backslash D=3 \\
u \in D=2,\{2,3\} \in E
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Contract $\{2,3\}$ towards 2

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{4,5,7\}
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set

2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

G after lines 2-4

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{ \}
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

```
Algorithm Dominating Set
    1: Find a dominating set, \(D\), of \(G\)
    2: for all \(v \in V \backslash D\) do
    3: \(\quad\) Pick a vertex \(u \in D\) where \(\{u, v\} \in E\)
    4: Contract the edge \(\{u, v\}\) towards \(u\)
    5: Find a proper vertex coloring of \(G\)
    6: Color the original \(G\) with the found coloring
```


A proper vertex coloring

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{ \}
\end{gathered}
$$

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set
1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring

Conflict-Free Coloring via Dominating Set

Algorithm Dominating Set

1: Find a dominating set, D, of G
2: for all $v \in V \backslash D$ do
3: \quad Pick a vertex $u \in D$ where $\{u, v\} \in E$
4: Contract the edge $\{u, v\}$ towards u
5: Find a proper vertex coloring of G
6: Color the original G with the found coloring
(1) Produces a valid conflict-free coloring
(2) Tries to minimize the number of colored vertices

Original G colored

$$
\begin{gathered}
D=\{2,6,8\} \\
V \backslash D=\{ \}
\end{gathered}
$$

Future Work

- Finding bounds and properties on specific graphs such as outerplanar graphs, interval graphs, hypergraphs, and more.

Future Work

- Finding bounds and properties on specific graphs such as outerplanar graphs, interval graphs, hypergraphs, and more.
- Allows for accurate estimates when applying conflict-free coloring to real-world problems.

Future Work

- Finding bounds and properties on specific graphs such as outerplanar graphs, interval graphs, hypergraphs, and more.
- Allows for accurate estimates when applying conflict-free coloring to real-world problems.
- Variations of conflict-free coloring such as requiring another vertex to have a unique color within the neighborhood of a selected vertex.

Future Work

- Finding bounds and properties on specific graphs such as outerplanar graphs, interval graphs, hypergraphs, and more.
- Allows for accurate estimates when applying conflict-free coloring to real-world problems.
- Variations of conflict-free coloring such as requiring another vertex to have a unique color within the neighborhood of a selected vertex.
- Guiding a robot (unique color 1) to a destination (unique color 2).

Thanks to Peter Dolan, Elena Machkasova, and Peh Ng for their advice and feedback.

github.com/devshawn/senior-seminar

References

[1] Z. Abel et al. "Three Colors Suffice: Conflict-Free Coloring of Planar Graphs". In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2017, pp. 1951-1963.
[2] B. S. Baker. "Approximation algorithms for NP-complete problems on planar graphs". In: Journal of the ACM (JACM) 41.1 (1994), pp. 153-180.
[3] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Vol. 290. Citeseer, 1976.
[4] P. Cheilaris et al. "Strong conflict-free coloring for intervals". In: Algorithmica 70.4 (2014), pp. 732-749.
[5] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 29. wh freeman New York, 2002.

References

[6] B. M. Moret. The theory of computation. Tech. rep. Addison-Wesley, Reading, Mass., 1998.
[7] N. Robertson et al. "The four-colour theorem". In: journal of combinatorial theory, Series B 70.1 (1997), pp. 2-44.
[8] P. C. Sharma and N. S. Chaudhari. "A new reduction from 3-SAT to graph k-colorability for frequency assignment problem". In: Int. J. Comp. Applic (2012), pp. 23-27.
[9] M. Sipser. Introduction to the Theory of Computation. Vol. 2. Thomson Course Technology Boston, 2006.
[10] S. Smorodinsky. "Conflict-free coloring and its applications". In: Geometry Intuitive, Discrete, and Convex. Springer, 2013, pp. 331-389.

References

[11] D. B. West et al. Introduction to graph theory. Vol. 2. Prentice hall Upper Saddle River, 2001.

