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ABSTRACT
Procedural Content Generation, or PCG, is an established
method of using algorithmic systems to create video game
assets and content ranging from simple image textures to
entire environments. There are nearly as many implemen-
tations of PCG as there are games that use it but attempts
have been made to create a general framework to allow a
PCG implementation to be reused for multiple games. Ad-
ditionally, evolutionary computation and genetic program-
ming are often central to modern PCG systems and can be
used to create game assets such as densely packed dungeon
maps.
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1. INTRODUCTION
Procedural Content Generation is a common, powerful

tool used by developers to both enhance their own efforts
during the development period of a game as well as a central
component of gameplay where it is used to create seemingly
endless game levels or even entire game worlds that stretch
as far as the player explores. Evolutionary computation and
genetic programming are often the backbone of these meth-
ods serving to both generate the variety of content needed
and to tailor the content to the developer’s goals. Two im-
plementations of PCG are described here to demonstrate
how these powerful algorithms can generate large portions
of a completed game.

2. BACKGROUND
Procedural Content Generation in Games defines PCG as

follows: “PCG is the algorithmic creation of game content
with limited or indirect user input.” [4] In practice, PCG
is the use of algorithms to generate one or more aspects of
a game. In experimental cases entire games can be built
from the ground using PCG to create everything from rules
and structure to content and assets. In their definition “con-
tent” refers to “most of what is contained in a game: levels,
maps, game rules, textures, stories, items, quests, music,
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weapons, vehicles, characters, etc.” Their definition specif-
ically excludes the game engine and non-player character
(NPC) artificial intelligence and behavior. In practice, PCG
methods are specific to each game they are designed for;
there has been little movement towards a more general PCG
method that could be reused for multiple games.

PCG was originally conceived as a method to overcome
storage limitations in the 1980s. Early games like Elite
(1984) and Rogue (1980) built PCG systems into the game
code that used seed numbers to generate game content.
However, once storage was no longer a limiting factor, game
designers began to use PCG as a method of creating unique
and/or endless content to enhance a gaming experience. Ex-
amples of popular games that utilize PCG range from those
that generate relatively simple content such as game levels
like Tiny Wings or Spelunky to those that base the whole
game experience around PCG such as Minecraft (2011) and
Dwarf Fortress (2006), where nearly all aspects of the game
are procedurally generated.

There are several reasons a game designer might decide
to use PCG. The first and perhaps most straightforward
reason is to reduce the amount of human effort required to
create a game. As major tentpole games continue to become
more elaborate and more expensive to produce PCG, can be
used as a method for cost saving. A similar reason to use
PCG occurs at the opposite end of the market spectrum.
Small independent developers may not have the experience
necessary to create certain aspects of a game manually or
may not have the resources to do so. PCG can supplement
a small team to create a more elaborate game than they
might have otherwise. Additionally, PCG can be used to
stimulate creativity. The automated, algorithmic process
often generates ideas that designers may never have come
up with on their own. PCG can also be used to create new
kinds of games such as games that generate content as it is
consumed to extend the length of a user experience. This is
comparable to the “endless runner” genre of mobile games
however on a much grander scale. PCG is also often used to
tailor game content for individual users, whether by taking
gamer input into account or by automatically adjusting a
game’s difficulty to take a user’s skill level into account. [3]

There are a few properties to take into account when de-
signing a PCG method as laid out in Procedural Content
Generation in Games. The first and perhaps most broad is
speed. PCG is often used either during the design process or
during gameplay itself and each situation has different con-
straints for the speed of the PCG method. During the design
process a PCG method may take days or months to reach



a solution without adversely affecting game development,
but content generation during gameplay must be nearly in-
stantaneous so as to not affect the gaming experience. A
PCG method must also have the reliability needed for the
given situation. A method that generates a complete level
design is not effective if the level is unwinnable. However,
if a method is used to generate vegetation for a game envi-
ronment it is less crucial that every tree look perfect. PCG
methods must often be controllable so a developer or user
can have some input in the type of content generated, e.g.
the length of a level or the number of enemies, etc. Expres-
sivity and diversity must also be taken into account. Gener-
ated content would hardly be worthwhile if it was repetitive
or boring. Additionally, content should be creative and be-
lievable. Content that is obviously algorithmically generated
may take users out of the gaming experience. [4] [1]

3. VIDEO GAME LEVEL GENERATION
At a high level, one goal of PCG is a system that generates

game levels for multiple games. This would allow developers
to reuse a PCG tool much like game engines or 3D models
are reused for similar games. However, there are two main
limiting factors to this approach. Firstly, it is simply un-
known how to create competent level generators for more
than one game with current approaches and methods. The
second factor is the sheer amount of work needed to create
a single level generator. The second factor is largely respon-
sible for the first; it has been impractical to develop level
generators that work for multiple games since these genera-
tors would necessarily need to be hybrids of major portions
of several individual game level generators and each individ-
ual generator requires significant resource investment. This
problem has been looked at from a theoretical or academic
perspective as general level generation much like how Gen-
eral Game Playing and General Video Game Playing have
been seen as theoretical artificial intelligence (AI) problems.
The definition of the problem of general level generation as
given by Khalifa et all is put as follows: “Construct a gen-
erator that, given a game described in a specific description
language and which can be played by some AI player, builds
any required number of different levels for that game which
are enjoyable for humans to play.” [2]

3.1 General Video Game Level Generation
One attempt at generic level generation is described in

General Video Game Level Generation (GVG-LG). The au-
thors describe a Java framework built on top of the Gen-
eral Video Game Artificial Intelligence (GVG-AI) framework
which they have named General Video Game Level Gener-
ation (GVG-LG). GVG-AI was built for the 2014 General
Video Game Playing Competition for developers to design
a generic game-playing AI. Games and controllers for the
competition can be reused for GVG-LG, which is why the
authors chose this framework to build on. Essentially, while
GVG-AI took a game player AI as an input for the compe-
tition, GVG-LG allows a developer to plug in various level
generators and test them within the framework. [2]

The game descriptions used in the GVG-AI are made up of
four elements: sprites, termination conditions, interactions,
and level mapping. Sprites are the main objects and come
in six varieties: Avatar, NPC, Resource, Portal, Static, and
Moving. Each is represented as a SpriteData data structure
containing its name and information. TerminationData are

similar in construction and contain information on the ter-
mination conditions: type, a limit, a win flag, and a list
of sprite names. InteractionData contain instructions on
what should happen in the case of a collision between two
objects. Level mapping is stored as a HashMap (LevelMap-
ping) which maps the sprites by name. The current gener-
ator can retrieve all this information and replace the level
map through the getLevelMapping function. Generated lev-
els must fulfill two basic conditions: the level may not have
more than one Avatar and cannot contain anything not in
the original or new LevelMapping.

3.2 Included Generators
The GVG-AI framework is built to take game level gen-

erators as an input for testing. The framework is meant
for testing user created generators by analyzing the levels
they generate, however the framework also includes sample
generators. These are described in the next section.

3.2.1 Random Level Generator
The first and simplest of the level generators in the GVG-

LG is a random level generator. It generates position on the
room map and type of object based on an adjustable proba-
bility. This generator will follow the basic conditions as well
as include at least one of each type of sprite. An example of
a small room generated by this process is pictured in Figure
2a. The squares around the perimeter of the room and the
three similar squares in the lower half of the room are static
sprites (walls and obstacles). There are three room exits in
this room and the sprite near the bottom two is the avatar
sprite. The remaining sprites are enemies and a key. The
sprites seem randomly placed apart from the perimeter wall
as would be expected of a random placement algorithm.

3.2.2 Constructive Level Generator
This generator analyzes the GameDescription object (which

contains all of the game objects) and first classifies all cur-
rent sprites into the following categories: Avatar Sprites,
Solid Sprites (obstacles/walls), Harmful Sprites, Collectible
Sprites (destroyed during interaction with player), and Other
Sprites. It then moves on to the main generation procedure,
which takes place over four main steps and pre- and post-
processing.

During the pre-processing step the generator calculates
how many tiles of the generated level should contain sprites
and at what percentage each type of sprite should be present.
If there is a large percentage of collectible sprites, the total
sprite count will go up, but will decrease if there is a large
percentage of harmful sprites.

The generator then moves on to the main event: sprite
placement. Figure 1 illustrates each of the four steps of
sprite placement. The first step is to build a level layout.
The level is first surrounded by solid sprites as a sort of
world boundary, then it is filled with the correct number of
solid sprites as walls or obstacles. The generator makes sure
to not block off any area of the map. An avatar sprite is
placed in a random open tile. Based on the attributes of
the avatar the location may be limited to certain areas. For
example, if the avatar can only move horizontally as in a
game like Space Invaders the avatar sprite will be placed at
either the top or bottom of the level. Harmful sprites are
added next. Mobile sprites will be placed at a distance from
the avatar while stationary sprites (such as spikes or thorns)



Figure 1: The four steps of sprite placement [2]

are placed in any open tile. The remaining sprites are added
at random locations based on the correct ratios defined in
the pre-processing step.

Finally, the generator moves on to post-processing which
consists of fixing goal sprites. The generator makes sure that
there are more goal sprites than the number specified for
game termination. More are added if needed. For instance,
if the goal is to defeat ten enemies, the generator would make
sure there are at least ten mobile hostile sprites. Figure
2b depicts a small example of a room generated via this
generator. There is more order and purpose in the placement
of sprites in this room but it lacks complexity.

3.2.3 Search-based Level Generator
The search-based level generator uses a genetic algorithm

called Feasible Infeasible 2 Population Genetic Algorithm
(FI2Pop) to evolve two populations, feasible and infeasible,
of initial game states. The feasible population focuses on
improving game states to fit the desired outcome, while the
infeasible population is meant to remove game levels that
violate the problem constraints. Genetic algorithms such as
FI2Pop are a form of evolutionary computation (EC), which
uses evolutionary principles to gradually shape a population
of programs or program objects to a desired outcome. In this
case the genetic algorithm is evolving game states. In EC a
beginning population that fits an initial condition is created.
Members of the population are then mutated by functions
that may add, delete, or modify portions of each member.
Often two members (or parents) are combined in some way
to create a new population member (or child). The result-
ing population is then evaluated by a heuristic function. A
heuristic function could be described as a filter that selects
among the children of a genetic population for those with
outcomes that move the problem closer to the solution. This

process is repeated until a child matches a desired outcome
or, in the case of an unsuccessful attempt, until the process
is repeated more times than allowed by the programmer.
Each initial game state is generated using the constructive
level generator, and each successive population is created by
mutating members of the parent generation. These muta-
tions either add a random sprite to a random tile, remove
sprites from a random tile, or swap sprites between two ran-
dom tiles. Child initial game states can transfer between
the two populations, but each population evolves separately.
Child initial game states are evaluated using three player
AI that were developed for the gameplay competition. The
first and standard controller (the term used for these AI) is
a modified version of the winner of the 2014 competition,
Adrienctx. The controller was modified to increase reaction
time to make it more human-like. The results of the Adri-
enctx playthrough are compared to two simple controllers,
OneStepLookAhead, in which the controller chooses a ben-
eficial next step from the available options, and DoNothing,
in which the controller does nothing each step.

There are two methods of evaluating the feasible popula-
tion children using the three controllers. Each is part of a
heuristic function that selects the best candidates for muta-
tion. The Score Difference Fitness is the difference between
the Adrienctx score and the best score by OneStepLookA-
head after 50 runs. This method is designed to generate lev-
els that require skill for a higher score. The OneStepLookA-
head controller is meant to simulate a poor player so the
greater the difference the greater the skill differential. The
second method generates a score based on the number of
unique events that happened over the level playthrough in
order to favor levels that require the player to use more of
the game rules in the assumption that a good level doesn’t
rely on only one or two game mechanics. The final score
used in the heuristic function is an average of the scores
from the two methods in an effort to balance difficulty level
against novelty and variety in the game levels.

The infeasible population is simply constrained by seven
factors. Each game level must have one avatar and must
have one or more of each type of sprite (not including sprites
that spawn from other sprites such as arrows). There must
be more goal sprites than the terminating factor requires,
i.e. if the game should have more than zero enemies at any
time there must always be at least one enemy. Between 5-
30% of the game tiles must have sprites on them. Game
levels must not be solved by any controller in less than 200
steps and the Adrienctx controller must win the game level
during the evaluation by the heuristic function. Also, the
DoNothing controller must not be killed in the first 40 steps
in 50 different runs and it cannot win in the same number
of steps as Adrienctx. These last rules are to guarantee that
the game is not too hard in the beginning and is not so
easy that it is beatable early in the game. Figure 2c shows
a search-based level generated room. There is even more
structure and appearance of design intent than was present
in the constructive level generated room.

4. RESULTS
A small study was done using human players to gauge

preference between the three generators. Each generator
was used to create five levels for each of three different sim-
ple games. These games were based on Frogger, Pac-Man,
and The Legend of Zelda. While the authors expected the



Figure 2: Levels generated using a) random level generation, b) constructive level generation, and c) search-
based level generator. [2]

Figure 3: The translation of a tree structure to a
room layout [5]

players to prefer the search-based generated levels to the
constructive levels and to prefer both to the randomly gen-
erated levels, the players were unable to distinguish between
the constructive and randomly generated levels but a clear
preference was shown for the search-based generated levels.

5. VIDEO GAME LEVEL EVOLUTION
Section 3.2.3 discussed a procedural content generator

that used a simple genetic algorithm to improve level design.
This section will discuss a PCG that uses a more advanced
genetic program as described in Evolving Dungeon Crawler
Levels With Relative Placement. Instead of placing sprites
on tiles, this map generation creates a series of connected
rooms.

5.1 Element Representation
Each member of the evolutionary population is represented

by a tree structure as depicted in Figure 3. Every node
represents a room and is connected to both its parent and
its children by a door. The tree is processed breadth-first
(top to bottom) meaning that the root node becomes the
first room and its children are adjoining rooms. Each node
has a tile property that sets the location or absence of the
doors and the size and shape of the room. The tile property
also stores the room’s type, which can either be “hallway,”
“event,” or none/regular. After placing the parent room, the
translation process attempts to connect each of its children

to the parent room in order left to right. If a child cannot
fit in the space provided based on the dimensions of nearby
rooms or there are no more doors available that child and
all its child nodes are deleted. After each of these children
are processed the algorithm moves to the next node (top to
bottom, left to right). If a new room is placed that happens
to lie next to a previous room and both rooms have avail-
able doors, the two rooms are connected. After the tree has
been traversed completely a shortest weighted path is gen-
erated from the root room to each child room. If a room’s
shortest path exceeds the allowed distance, that room and
its children are removed. This culling prevents further de-
velopment along that node path which prevents inefficiency
by removing distant rooms.

5.2 Operators
There are three main operators that are used to evolve

each tree. The first is the crossover operator which copies
a random sub-tree and connects it to another parent node.
This process allows for a subtree to possibly find a better
location on the tree. It also generates a certain amount of
symmetry across the tree which gives the illusion of human
design intent.

The second operator is the mutation operator which is
made up of three subroutines: mutation Grow, mutation Trim,
and mutation Change. mutation Grow selects x random
rooms with an unused door (doors only exist on the map
if they connect two rooms) and adds y new nodes to them.
The new rooms are given random attributes. mutation Trim
works largely in reverse. It finds a random room and removes
a leaf node or, if the room has no leaves, deletes the room.
mutation Change picks x random rooms and gives them new
shapes and numbers of doors.

The last operator divides the population into a sort of
tournament. This algorithm sorts the rooms using the fit-
ness function described later. The rooms are sorted by score
and the bottom half of the population is replaced with chil-
dren of the top half. These new rooms are created by using
the other two operators on the higher scoring rooms.

5.3 Fitness Heuristic
The heuristic used in this generator takes two factors into

account: it prefers rooms made up of tightly packed clusters



Figure 4: Maps generated for Fitness Impact Experiment (left) and On-Demand Generation Experiment
(right) [5]

of rooms connected to efficient hallways and rejects maps
that contain more than three large, special rooms meant
for certain game events. Hallways and the special event
rooms are regular rooms generated by the tree that are given
these special attributes during creation. The event rooms
are much larger than other rooms and the heuristic prefers
them to be near the outside edges of the map. Two examples
of ideal map layouts are shown in Figure 4.

To begin evaluation, all hallway rooms that are connected
to each other are combined into one hallway. Each new
hallway is awarded a score based on how many non-hallway
rooms are connected to each other via the hallway. Hallways
that connect no rooms together, i.e. those that resemble or-
dinary rooms, are not given a score. A small penalty is given
to each new hallway based on the number of original hallway
rooms make them up. This penalty is meant to encourage
efficient hallways. Additionally, the fitness heuristic rewards
normal rooms that are connected to both a hallway and at
least one other regular room in order to favor tight clusters
of rooms centered around the hallways.

The process for favoring maps that contain between one
and three event rooms is relatively simple. Maps are awarded
a high score for each event room it contains but the score
is reset to zero if a map contains more than three event
rooms. Maps that have event rooms on the outer edges are
favored by only awarding maps event room bonuses if the
event rooms are more than a required minimum distance
from the origin room.

5.4 Evaluation
Valtchanov and Brown [5] set up several experiments to

test the effectiveness of the fitness heuristic. Two methods
used are detailed here. Figure 4 depicts a resulting map
from each of these methods of evaluation.

5.4.1 Fitness Impact Experiment
This experiment was designed to test how much the gen-

eral structure of the map is determined by the fitness heuris-
tic. The generator was allowed to run for a excessively long
time (2000 generations) and a limit on rooms that exceeded
what it would ever want to create (500 rooms). There was

no significant increase in score beyond 1500 generations and
the room limit was never reached.

The resulting maps were found to greatly resemble the
types of maps the heuristic was designed to favor. Every
map contained three event rooms and long hallways with
many room connections were common. There were also
many rooms that were connected to both hallways and reg-
ular rooms. The maps were also tightly packed and made
good use of space. Additionally, the rooms varied greatly
in structure, showing that the heuristic did not guide de-
velopment towards a single type of map. In other words,
running the generator for an excessive number of genera-
tions only encouraged maps to better fit the heuristic rather
than pushing them towards a specific map that happened to
fit the heuristic.

5.4.2 On-Demand Generation Experiment
The second experiment tested how well the generator per-

formed under constrained situations. If the generator per-
formed well it would be suited to generate maps as required
by a player. This type of generator could be used for games
that create content dynamically rather than just included
only pre-generated maps. The generator was only allowed
to run for 500 generations and the maps were capped at only
100 rooms. The resulting maps took 30 seconds to generate
using a single core of a 2.4 GHz processor. These maps were
impressively similar to the maps created under the ideal sit-
uations in the Fitness Impact Experiment which supports
the idea that the fitness heuristic can help the generator
create nearly ideal maps in less than ideal conditions. This
similarity can be seen by comparing the maps in Figure 4.

6. CONCLUSIONS
The results of the two procedural content generators de-

scribed here illustrate the promising future this game devel-
opment tool has in the game industry. A game generator
made up of a hybrid of these two PCG implementations,
where GVG-LG is used to create the layout of sprites in each
of the rooms in a map created by Valtchanov and Brown’s
generator, could be used to create a large percentage of a
completed game with minimal effort on the developer’s part.



The game industry is largely bifurcating either into tent-
pole games that require teams of developers and months of
work or small indie games made by just a few developers.
Tentpole games such as No Man’s Sky and indie games like
Minecraft have gameplay elements that are largely based
around PCG. In both game design environments PCG can
be used to improve the output of both these groups, and
that outcome is good for developers and gamers alike.
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