Protein Threading Algorithms Used in Protein Structure Prediction

Yuting Xiao

Division of Science and Mathematics
University of Minnesota, Morris
April 15, 2017

Outline

Background

Introduction

Sequence Profile-Profile Alignment(PPAs)

Profile-Hidden Markov Models(HMMs)

Summary

Background

Amino Acids

- Amino acids, also called residues.
- 20 different amino acids
- Unique single letter
- Primary Structure, linear combination of amino acids
- Secondary Structure, natural folds
- Tertiary Structure, 3-D structure

Background

Protein Structure

Figure: Protein Structure

Introduction

- Why predicting protein structure?
- Basic Strategy
- Template-Based Modeling

Introduction

Why predicting protein structure?

- One important topic
- Functionality is closely related to structures
- Discovering novel drugs for diseases

Introduction

Basic Strategy

- Unknown protein's primary structure (target)
- Currently known protein structures (templates).
- Constructing target's structure based on templates' structures

Introduction

Basic Strategy

- Protein Data Bank (PDB):
- Templates
- Coordinate Files
- Atoms in each protein, and their 3D location in space
- Modeling Method
- Template-Based Modeling
- Free Modeling

Introduction

Template-Based Modeling

Figure: Protein Threading

Introduction

Template-Based Modeling

- Aligned Regions
- Unaligned Regions

Sequence Profile-Profile Alignment(PPAs)

- Sequence
- Pairwise Sequence Alignment
- Multiple Sequence Alignment and Profile
- PPA Program
- Improvement

Sequence Profile-Profile Alignment(PPAs)

Sequence

Sequence 1: L E V K Sequence 2: LDIR Sequence 3: L E I K Sequence 4: L D V E

L --- Leucine
E --- Glutamic Acid
D --- Aspartic Acid
V --- Valine
| --- Isoleucine
K --- Lysine
R --- Arginine

Sequence Profile-Profile Alignment(PPAs)

Pairwise Sequence Alignment

- There are many ways to align two protein sequences, and for each amino acid pair, we can find either a match (blue), a mismatch (red) or an insertion or deletion ("-" represents a gap)

Sequence 1: L E V - K
Sequence 2: L D - I K

Figure: Pairwise Sequence Alignment

Sequence Profile-Profile Alignment(PPAs)

Pairwise Sequence Alignment

- If we adopt a scoring method for each possible alignment, the best alignment is therefore the one with the highest score.

```
                                    Match +2
                                    Mismatch 0
                                    Gap -1
Index: 0 1 2 3 4
Sequence 1: L E V - K
Sequence 2: L D - I K
        +2+0-1-1 +2 =2
```

Figure: Pairwise Sequence Alignment

Sequence Profile-Profile Alignment(PPAs)

Multiple Sequence Alignment

- A profile is a 20 by L table of frequencies for a multiple sequence alignment with length L. Each entry $p_{i, j}$ represents the probability of amino acid type i occur in the j th column.
- Profile is a better representation for multiple sequence alignment.

Sequence Profile-Profile Alignment(PPAs)

Profile

L --- Leucine
E --- Glutamic Acid
D --- Aspartic Acid
V --- Valine
I --- Isoleucine
K --- Lysine
Sequence 1: L E V K Sequence 2: L D I R Sequence 3: LEIK Sequence 4 : L D V E

Figure: Protein Sequence Examples

Sequence Profile-Profile Alignment(PPAs)

Profile

	Index 0	Index 1	Index 2	Index 3
D	-	0.5	-	-
E	-	0.5	-	0.25
L	1	-	-	-
I	-	-	0.5	-
V	-	-	0.5	-
R	-	-	-	0.25
K	-	-	-	0.5
\ldots	\ldots	\ldots	\ldots	\ldots

Sequence Profile-Profile Alignment(PPAs)

PPA program

- I-TASSER
- PPA program reduces multiple sequence alignments to pairwise alignment between profiles

Sequence Profile-Profile Alignment(PPAs)

PPA program

- Use target sequence as input, and search through PDB using PSI-BLAST
>NP_002583.1 proliferating cell nuclear antigen [Homo sapiens] MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQL TLRSEGFDTYRCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLA LVFEAPNQEKVSDYEMKLMDLDVEQLGIPEQEYSCVVKMPSGEFARICRD LSHIGDAVVISCAKDGVKFSASGELGNGNIKLSQTSNVDKEEEAVTIEMN EPVQLTFALRYLNFFTKATPLSSTVTLSMSADVPLVVEYKIADMGHLKYYLA PKIEDEEGS

Sequence Profile-Profile Alignment(PPAs)

PPA program

Sequence Profile-Profile Alignment(PPAs)

PPA program

- Construct target profiles
- Align target profiles against all pre-calculated profiles in database, where each profile represents a specific set of protein families

Sequence Profile-Profile Alignment(PPAs)

PPA program Scoring function

- Use dynamic programming to find the overall best alignment

Sequence Profile-Profile Alignment(PPAs)

New Improvement in I-TASSER Suite

- Added structural environment fitness score, $E\left(j, A A_{q}(i)\right)$
- torsion angle
- solvent accessibility
- secondary structure

$$
S_{\mathrm{Env}-\mathrm{PPA}}(i, j)=S(i, j)+c_{2} E\left(j, A A_{q}(i)\right)
$$

Profile-Hidden Markov Models(HMMs)

- Structures
- Coin Toss Example
- Profile-HMM
- Pairwise Profile-HMM Alignment
- Scoring function
- Improvements

Profile-Hidden Markov Models(HMMs)

Structures

- Two layers structure:
- Visible layer
- Invisible layer
- Markov chain

Profile-Hidden Markov Models(HMMs)

Coin Toss Example

- Given two coins that has different probability of heads and tails:

	Coin A	Coin B
Head (H)	0.5	0.3
Tail (T)	0.5	0.7

- Suppose we are given an observation sequence of HHTHTH
- Without knowing which coin was used for each toss
- What would the best explanation for an observations of such sequence?

Profile-Hidden Markov Models(HMMs)

Coin Toss Example

- Transition probabilities are given as below:

	Coin A	Coin B
Coin A	0.9	0.2
Coin B	0.1	0.8

Figure: Hidden Markov Model for Coin Toss Example

Profile-Hidden Markov Models(HMMs)

Coin Toss Example

- If the coin sequence is $A A B A A B$
- The probability for observations HHTHTH is:

$$
\begin{aligned}
P & =\mathbf{0 . 5} * 0.9 * \mathbf{0 . 5} * 0.1 * \mathbf{0 . 7} * 0.2 * \mathbf{0 . 5} * 0.9 * \mathbf{0 . 5} * 0.1 * \mathbf{0 . 3} \\
& =2.12625 * 10^{-5}
\end{aligned}
$$

Profile-Hidden Markov Models(HMMs)

Profile-HMM

- HHpred

Figure: Example of a Profile-Hidden Markov Model

Profile-Hidden Markov Models(HMMs)

Profile

	Index 0	Index 1	Index 2	Index 3
D	-	0.4	-	-
E	-	0.4	-	0.2
L	0.8	-	-	-
I	-	-	0.4	-
V	-	-	0.4	-
R	-	-	-	0.2
K	-	-	-	0.4
Insert	0.1	0.1	0.1	0.1
Delete	0.1	0.1	0.1	0.1

Profile-Hidden Markov Models(HMMs)

Profile-HMM

Profile-Hidden Markov Models(HMMs)

Pairwise Profile-HMM Alignment

- Example of a pairwise profile-HMM alignment:

Profile-Hidden Markov Models(HMMs)

Profile-HMMs Scoring Function

- Five possible pair states can co-emit amino acids or gaps: MM, MI, IM, DG and GD
- Log-sum-of-odds Score:

$$
S_{L S O}=\log \sum_{x_{1}, \ldots, x_{L}} \frac{P\left(x_{1}, \ldots, x_{L} \mid \text { co-emission on path }\right)}{P\left(x_{1}, \ldots, x_{L} \mid \text { Null }\right)}
$$

Profile-Hidden Markov Models(HMMs)

Profile-HMMs Scoring Function

- Log-sum-of-odds Score:

$$
S_{L S O}=\sum_{k: X_{k} Y_{k}=M M} S_{a a}\left(q_{i(k)}, p_{j(k)}\right)+\log \mathcal{P}_{t r}
$$

- Column Score:

$$
S_{a a}\left(q_{i}, p_{j}\right)=\log \sum_{a=1}^{20} \frac{q_{i}(a) p_{j}(a)}{f(a)}
$$

- Also use dynamic programming, with a dynamic matrix for each co-emit state pair, to determine the best alignment

Profile-Hidden Markov Models(HMMs)

New Improvement

- Reaserchers Xin Deng and Jianlin Cheng from University of Missouri-Columbiacan
- Additional structural information
- protein solvent accessibility
- torsion angles
- Improved alignment accuracy

Summary

- Critical Assessment of protein Structure Prediction (CASP)
- The I-TASSER server (zhang-server) - top 3 places
- The HHpred server - top 10 places

Summary

- We looked at two different and popular approaches used in protein threading process
- Many different improvements have been proposed for both methods
- However, there is no single method outperforms all others on every target yet, which leaves room for improvement

References I

击 S．F．Altschul，J．C．Wootton，E．Zaslavsky，and Y．－K．Yu． The construction and use of log－odds substitution scores for multiple sequence alignment．
Computational Biology， 2010.
國 X．Deng and J．Cheng．
Enhancing hmm－based protein profile－profile alignment with structural features and evolutionary coupling information．
BMC Bioinformatics， 2014.
（R．A．Roy，A．Kucukural，and Y．Zhang．
I－tasser：a unified platform for automated protein structure and function prediction．
Nature protocols，5（4）：725738， 2010.
嗇 J．Söding．
Protein homology detection by HMMHMM comparison．
Bioinformatics，21（7）：951960， 2005.

References II

國 J．Yang，R．Yan，A．Roy，D．Xu，J．Poisson，and Y．Zhang． The I－TASSER suite：protein structure and function prediction．
Nature methods，12（1）：78， 2015.
圊 J．Yang and Y．Zhang．
Protein structure and function prediction using I－TASSER．
Current protocols in bioinformatics，pages 58， 2015.
围 B．－J．Yoon．
Hidden markov models and their applications in biological sequence analysis．
Current genomics，10（6）：402415， 2009.
圊 Y．Zhang．
Progress and challenges in protein structure prediction．
Current opinion in structural biology，18（3）：342348， 2008.

Questions?

Thank You!

