
Coordination Schemes for Autonomous Vehicle Networks

Jack Ziegler
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
ziegl210@morris.umn.edu

ABSTRACT
In this paper, we provide an overview of the potential ben-
efits of an Intelligent Transportation System, a network of
communicating and cooperating autonomous vehicles. We
also discuss the pitfalls and limitations that such a system
faces. We then look at the results of several research at-
tempts to address these issues through multi-agent commu-
nication and coordination, which can be used to improve the
safety and efficiency of individual vehicles and the network
as a whole.

Keywords
Autonomous Vehicles, vehicular ad-hoc networks (VANET),
vehicle-to-vehicle (V2V) communications, Intelligent Trans-
portation System (ITS)

1. INTRODUCTION
Over the last few years, autonomous vehicles have quickly

moved from a feature of fiction and television to an imminent
reality. In order to safely and effectively navigate the mod-
ern transit system, an autonomous vehicle must be able to
accurately and efficiently analyze and react to its surround-
ings. While the sensors available to current autonomous
vehicles are sophisticated, the technology does have limita-
tions that must be recognized. Research efforts have been
made to improve the efficiency and safety of these devices
through communication and coordination schemes [7, 6, 1,
4]. In this paper, we will discuss how an Intelligent Trans-
portation System (ITS) can allow networks of vehicles to
communicate with one another, and improve the effective-
ness of our system. We will begin by providing relevant
background details on autonomous vehicles and the ITS in
the next section. Then, we will investigate three coordina-
tion approaches. In Section 3, we will investigate a commu-
nications system called CarSpeak, which allows vehicles to
share sensor information. Then in Section 4, we discuss how
a remote cloud can be used to offload data and computa-
tion from the vehicle. Finally, in Section 5 we explore traffic
aware routing and how real-time information can improve
navigation.

2. BACKGROUND

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2017 Morris, MN.

Figure 1: Sensors overlap at varying ranges. Here
is a simplified graphic for Tesla vehicles. The long-
range sensors are radar and narrow cameras.

2.1 Autonomous Vehicles
Autonomous vehicles are simply vehicles which do not re-

quire human operation. There are various competing de-
signs, but at a high level all autonomous vehicles consist of
a set of sensors and a computer for control. The sensors
found on a vehicle vary based on manufacturer, but usually
include some combination of cameras, sonar devices, radar,
and LIDAR. In existing vehicles, auto manufacturer Tesla
includes sonar sensors for distances under 10 meters, and
a combination of radar and cameras for distances between
50-250 meters [10].

However, outside this range a vehicle is unable to gain use-
ful information about the environment. This can lead to less
effective responses to events such as accidents or lane clo-
sures, where advanced notice can be used to mitigate traffic
interruptions. In addition to range concerns, the on-board
sensors generate large amounts of data for processing and so
the on-board computer must be quite powerful, and capable
of tasks such as vision processing. These limitations make a
coordination strategy appealing.

2.2 VANETs and Communication
For local communications, A VANET, or Vehicular Ad-

Hoc Network, is a dynamic network of connected vehicles.
These networks are often supported by road-side units, which
are static objects that can be used for data storage, compu-
tation, or network management. A VANET allow vehicle-
to-vehicle and vehicle-to-roadside communications for the
purpose of sharing information between devices without re-
quiring a central network authority. VANETs communicate
through Dedicated Short Range Communications (DSRC).



Figure 2: A visualized octree. Here, the largest
cube (blue) is the parent for 8 child nodes (one
colored red) which each contain their own children
(the green cube.) A partially-expanded tree is also
shown.

The specific technology for the wireless communications used
for DSRC is largely unimportant and interchangeable, but is
often described as using a variant of the IEEE 802.11 wireless
standard, which is the standard on which WiFi technology
is built [7].

For non-local (further than 1km or the maximum VANET
range) communications or where a VANET is undesirable, it
is possible that vehicles could access a remote network over
existing cellular networks [1]. In such a system, vehicles
would communicate with a remote server, and vehicle-to-
vehicle communications are indirect. A few uses for remote
communications schemes are discussed in Section 4.

2.3 Considerations
We believe there are a few points that need to be consid-

ered in the creation of an Intelligent Transportation System
(ITS). First, vehicles must be able to act independently, as
there will inevitably be periods when not all vehicles will be
autonomous or when the vehicle is in a remote location and
unable to communicate with other vehicles. Second, the sys-
tem should be able to perform in multiple environments such
as rural highways and busy urban roadways. This means the
system must scale well, but should not require communica-
tion. Third, vehicles are often expected to have lifetimes far
greater than other digital devices, as the high cost prohibits
frequent replacement. This combined with the number of
manufacturers means an ITS will need to be able to support
a wide range of hardware and software platforms.

3. CARSPEAK
The first system we investigate is called CarSpeak, and is

the product of a research project at MIT by Kumar, et al. [7].
CarSpeak is VANET communication system, implemented
by the MIT group as an adaptation of the IEEE 802.11
specification for wireless transmissions. The core concept is
that by improving the method in which data is transmit-
ted between VANET members, CarSpeak allows a member
vehicle to efficiently gain access to sensor data obtained by
other cars in the vicinity of the vehicle as well as data from
static supporting infrastructure. The vehicle can then use
this additional data to alter its route and/or react to hazards
outside of the vehicle’s own sensor range, improving safety
and responsiveness [7].

3.1 Octree Representation of 3D Space
In order to share their sensor information with other clients

on the network, all vehicles using the system must have

an agreed-upon naming scheme for their local region of 3-
dimensional space. In the CarSpeak system, this is done
using a globally defined set of octrees [7]. An octree is a
data structure that uses a tree with a branching factor of
8 to reference a 3-D space. A given node N in the tree
corresponds to a cube in 3-D space. The children then re-
cursively represent 8 cubes which together form N . This
process repeats until the desired level of detail is obtained;
in CarSpeak, the smallest level of detail is a cubic meter.
An octree node can also describe itself as complete, mean-
ing that all sub-nodes contain identical values. This allows
for more efficient data representation, detail is only as fine-
grained as is needed. For example, a building occupies a
large amount of space, but the details of the interior are not
important for the vehicle. This combined with the shallow
branching factor allows the CarSpeak system to significantly
reduce the amount of sensor information being transmitted
on the network, a necessity when the data generated by a
sensor is large [7].

Suppose we are traveling on a highway. The cube from
Figure 2 represents the downslope of a bridge ahead, where
the left and right halves describe two lanes. We want to
make sure the road is clear, so we make a request for the
data from across the bridge. A car further up the bridge
responds with the octree we see in Figure 2, and our vehicle
determines that the blue cube (the left lane) is clear, but
there appears to be an object in the road on the right. Our
vehicle uses this information to preemptively change lanes
without disturbing traffic.

3.2 Content-Centric MAC
CarSpeak’s communication system is a modification to the

802.11 specification [7]. This technology is sufficient for the
experimental work of the research group, though we note
that 802.11 may not be an ideal candidate for a real-world
implementation due to range limitations. However, the Car-
Speak MAC could theoretically be implemented using an
alternative communications protocol [2, 7].

CarSpeak differs the 802.11 standard through the use of
a custom Medium Access Control (MAC) protocol, which
allows for vehicle-to-vehicle communications without a cen-
tral server or authority. The MAC also allows for improved
data efficiency. An important requirement for CarSpeak is
the ability for it to scale appropriately into situations where
many vehicles are searching for data. In the 802.11 standard,
connected devices compete with each other for network re-
sources, and bandwidth is given proportionally based on the
number of members on the network. For an autonomous ve-
hicle system, this is an undesirable property since there are
inevitably vehicles which provide redundant or unhelpful in-
formation. To improve upon this issue, the CarSpeak MAC
makes the 3-D regions from the octrees the first-class citizen
on the network, meaning that regions compete for network
resources, rather than senders. Instead of all vehicles broad-
casting all their data, vehicles send out requests for the data
about the regions they care about, and the MAC assigns
network resources and a designated sender to provide the
information. The MAC monitors the number of requests for
a particular region, and adjusts the transmission schedule
based on demand [7]. So regions of “importance” to many
vehicles are updated more frequently.

In addition to transmitting region data, the CarSpeak
MAC can be used to transmit other types of information



on the same medium, by assigning the data to a “region”
which doesn’t exist. This makes the technology extensi-
ble, and allows vehicles to share additional data with the
resource balancing and scaling [7]. Vehicles might, for ex-
ample, share localization information [5] or a vehicle’s intent
to change lanes in a congested environment. However, vehi-
cles would need to know ahead of time that the fake regions
exist.

3.3 Experimental Results
The MIT group implemented CarSpeak in two testing en-

vironments. The first was an indoor course, using small
robots with laptops and infrared sensors placed in a densely
populated environment. The second was an outdoor envi-
ronment with an automated golf cart supported by robots
strategically placed to provide information about obscured
regions. For the tests, the researchers compared results un-
der 3 communication schemes. First, a standard 802.11 im-
plementation was used, where the raw 3-D point data was
transmitted from all robots. Second, a hybrid 802.11 using
the Octree region system, but without the content-centric
network changes. And finally, a full implementation of the
CarSpeak features [7]. For all experiments, the core pro-
gramming for the robots was done using the Robot Operat-
ing System [9] and an existing path-finding solution outside
the scope of this paper [7].

In the indoor testbed, experiments were performed to
evaluate region contention, requests, resolution, path plan-
ning, and scaling of the three implementations. During eval-
uation, the robots were randomly placed throughout the
testbed, and navigated to other random locations. Using
the CarSpeak method, transmission rates for regions were
more consistent than the other two communication meth-
ods, which is the region-contention at work. This means
regions that are important will more reliably be available.
Overall, the hybrid performed better than 802.11, but only
“slightly” [7]. For region requests and scaling of robots, an
expected increase in region data transmission was verified
by experimental data. Similarly, they showed that the Car-
Speak system was able to provide high levels of region detail
without where the hybrid and standard 802.11 systems were
overloaded with information. Finally, with increased num-
bers of transmitters (over 6) the path planning times were
more than halved for CarSpeak.

Figure 3: A hypothetical layout for the indoor
testbed. Robots are placed throughout, and move
to random destinations. Here, the purple robot can
“help” the red and green robots avoid a collision [7].

The CarSpeak experiments also showed a significant in-
crease in safety. On the outdoor course, the automated golf
cart was given the task of avoiding a pedestrian entering
the roadway from an obstructed location. The golf cart is
supported by sensors placed near the entry point to provide
remote data. When utilizing the remote sensors and the
CarSpeak system, the golf cart was able to stop over 4 times
faster than robot operating with only its own sensors [7].

3.4 Discussion
The CarSpeak experiments show the system is good at

what it does, though the scale of the experiments is limited.
Though the paper proposes that it is intended for low-speed
urban environments where the vehicle has plenty of time to
react/plan, if the wireless medium allowed enough range and
throughput there is little reason the system should not per-
form adequately in rural or highway environments as well.
However, we observe that the robot speeds in the experi-
ments were slow (less than 5 miles/hour for the golf cart)
and reaction times were not significantly faster than an av-
erage human’s reaction speed, which may indicate that im-
provements would be required to ensure that the system is
viable in higher speed environments.

4. OFFLOADING TO THE CLOUD
The next coordination scheme we will discuss is the use of

computational and data offloading to remote cloud servers in
order to allow for complex and platform-agnostic tasks. We
will discuss the efforts of Kumar, Gollakota, and Katabi1 [6]
in using the cloud to store and communicate data, Ashok, et
al. [1] in performing computation on the cloud, and Dressler,
et al. [4] in using parked vehicles as a cloud.

4.1 Arguments for off-board computation
Modern vehicles contain various computers to assist in

their function, controlling a range of components from the
brakes to the radio. However, these on-board units (OBUs)
are frequently limited in storage capacity or computational
power, which will be necessary for an effective autonomous
vehicle to be able to analyze the large data-streams gener-
ated by the sensors and from communication with other ve-
hicles. Because the hardware available to a vehicle remains
the same for its long (for computers, certainly) lifespan, it is
advantageous to ensure that vehicles are adequately future-
proofed [1]. We submit that this is especially relevant in the
period of partial integration for autonomous vehicles where
technologies are likely to rapidly change through research or
government regulation. If we allow vehicles to offload com-
putation to the more easily upgraded cloud, we can mitigate
these limits to longevity.

Another argument for the use of cloud-based computing
is the potential for persistent information. That is, the pos-
sibility that non-current data may be of use to a vehicle. A
paper by Golestan, et al. [5] mentions the possibility that
a vehicle could be able to improve localization by referenc-
ing its position relative to a known landmark. While it is
possible that a car could store a private history of known
landmarks, the flexibility provided by a shared knowledge
base that multiple agents contribute to is likely more ben-
eficial because it allows vehicles that are infrequent visitors

1This has multiple shared authors with the CarSpeak pa-
per [7], and is the product of similar research.



to the area to benefit as well.

4.2 Offloading positional data
We will first take a look at moving data into the cloud.

In [6], the MIT research group investigates using a cloud-
based system called Carcel. Carcel was developed prior to
the CarSpeak system, and the two share a few similarities.
Primarily, Carcel utilizes the same Octree region naming
scheme as CarSpeak. The researchers also used similar in-
door and outdoor testing environments. Instead of CarS-
peak’s custom MAC, vehicles using Carcel randomly send
region packets to the cloud server. The system assumes that
through this randomness, regions are not likely to overlap
and the server can create an approximately complete picture
for a local region without requesting specific areas.

When tested, the Carcel system was able to decrease the
robot response times by roughly 80% compared to the tests
where vehicles operated independently. However, the re-
sponse times for the robot are larger than those of the Car-
Speak experiments [7, 6], which we attribute to the latency
of communicating with the remote cloud server. Latency
is an obvious drawback of offloading to the cloud, but does
not entirely disqualify it from use. A cloud-based approach
still allows access to more permanent data, as well as infor-
mation about the world outside of the range of a VANET.
While we hesitate to directly compare the performance of
two separate experiments as we have done above, the exper-
imental procedures for the CarSpeak and Carcel tests were
identical [7, 6] other than the communication method.

4.3 Remote Application Services
Now we move on to the idea of offloading computation.

The Carnegie Mellon group [1] proposes that the OBU in
a vehicle will eventually cause a bottleneck in computation.
The group draws a parallel to similar computational lim-
its of mobile phones, laptops, and tablets, and emphasizes
that the lifespan for those devices allows upgrades every few
years. Slower mobile devices are quickly aged out as ap-
plications expand to consume the resource pool available in
newer devices. Because vehicles have a much longer lifes-
pan, it is important that the cloud services be designed in a
way that allows them to be flexible in supporting a variety
of platforms.

4.3.1 Task Offloading
The implementation of the remote execution server is rel-

atively straightforward. The computation tasks performed
by the vehicle are grouped into independent modules. The
modules are then added to the server, and an API is cre-
ated with which the vehicle can call the services as remote
procedures. The system manages offloading using a software
controller, which controls which (if any) tasks are performed
on the server. The controller uses the abilities of the OBU
and considers current task load and task priorities in order
to determine which tasks are offloaded to the cloud [1]. If
the OBU is not busy, there may not be an advantage to of-
floading. Or, newer software could be more intensive, and
might be more likely to be run remotely.

To demonstrate their cloud offloading system, the authors
created a prototype. In place of an vehicle’s OBU, they sub-
stituted an Android smartphone, and an existing (non-local)
remote server was used for the cloud. For the applications,
the authors implemented a set of Java libraries for two vi-

sion processing applications, one to recognize user hand ges-
tures and another for traffic signal recognition. They then
brought the phone into a car and drove around while us-
ing their device, to determine the effects of the driving on
latency and performance. While there was an increase in
response time while moving, the times for the cloud compu-
tation were about 3x faster than the local execution. These
times for the cloud execution included the network latency,
and all responses were made within 250ms. While this may
be a bottleneck considering that latency times cannot often
be significantly improved, the authors note “At 60 mph a
car displaces only about 5m in 250ms. Such response times
seem practically reasonable for maintaining the interactiv-
ity requirement of these applications” [1]. Alternatively, we
suggest that the cloud could be used to conduct less time-
sensitive tasks.

4.4 Offloading onto Parked Cars
Dressler, et al. [4] examined the possibility of utilizing the

large number of parked cars commonly found in urban and
congested environments as a source of additional storage.
While not exactly a cloud, the offloading aspect is present.
The researchers explore offloading of data, but computation
is performed by the vehicles during storage and communi-
cation, implying that computation could also be performed
by the network. The parked vehicles could serve as an alter-
native to an expensive roadside support infrastructure that
is likely to be needed in these urban areas. The researchers
created a system that networks these parked vehicles, then
used a simulation tool to evaulate the performance of their
network.

4.4.1 Virtual Cords
To create the virtual cloud, the parked vehicles form vir-

tual cords. Cords are a way for vehicles to pool their re-
sources, which can then be used by nearby vehicles on the
road. Members of a cord appear as a single unit for storage
and computation to non-members. In order to establish a
cord, nodes (parked vehicles) use virtual coordinates to ob-
tain a “location” for themselves with respect to other parked
vehicles. A vehicle’s virtual coordinates are not based on
geographical location, but rather describes the relation to
neighbors that the vehicle has. A node establishes a connec-
tion to nearby vehicles by listening and populating a neigh-

Figure 4: A visualization of a virtual cord [4]. Nodes
are numbered based on an order within the cord,
used in coordinating storage locations.



borhood table by receiving hello messages which are broad-
casted from any nearby vehicles that are already members of
a cord. The node will then attempt to join a cord, inserting
itself into the cord based on its virtual coordinates. Using
Figure 4 as an example, we can pretend that node 0.82 is not
yet a member, and has no number. It’s neighborhood table
consists of 0.75 and 0.88. When it requests to join, it inserts
as 0.82 This insertion works similarly to how a node would
be added to the middle of a linked list.However, the virtual
cord is actually a directed graph, and there is an internal
path from node 0 to node 1. The graph structure allows
vehicles that can only see one other cord member to join the
network, such as node 0.44. This also means that the join
process is lightweight, and does not require authorization
from the entire cord. The virtual cord protocol also allows
for cords to acknowledge the existence of other cords, allow-
ing for communication through designated gateway nodes
without combining the cords [4].

4.4.2 The Vehicular Cloud
The virtual cord allows for both a decentralized network

similar to that of a VANET, and off-board data storage.
Non-parked vehicles can interact with the nearby vehicular
cloud using simple publish and lookup commands, which are
handled by the vehicles in the virtual cord. Data is either
routed to a node which can store it, at which point the cord
acknowledges the submission, or the request is dropped.

The data stored in the vehicles is abstract, and addressed
by an identifier hash. A moving vehicle can store any data,
and is not limited by the software in the parked cars [4].
Unfortunately, the authors do not give specific examples for
the kinds of data stored in the vehicular cloud. However, we
speculate that this could include information about potential
parking locations or data regarding nearby (but out of sight
or VANET range) traffic conditions or road closings.

4.4.3 Simulation Results
Due to the scale required to adequately evaluate the au-

thor’s protocol, a simulation was used to investigate the
performance of the vehicular cloud. The first area the re-
searchers investigated was whether or not the system would
create useful cords, rather than dozens of small/singleton
cords, which would each provide very limited capacity and
thus be ineffective. Because the vehicles are parked, a vehicle
is able to take its time when joining a cord, which allows for
a vehicle to consider multiple cords, rather than joining the
first available. Through their experiments, they found that
the virtual cords protocol was able to connect 90% of the
vehicles in the simulation to a cord within 2 minutes, which
was deemed acceptable. They also found that the system
scales with larger number of nodes, with cords increasing in
average size (and thus effective capacity) rather than only
the number of cords increasing. It was also demonstrated
that the storage of data is viable in the system. Specif-
ically, they found that data insertions and retrievals were
completed within 1 second.

5. VANET SUPPORTED ROUTING
Darwish and Abu Bakar [3] have proposed a Lightweight

Intersection-based Traffic Aware Routing (LITAR) proto-
col for use in urban environments. Traffic Aware Routing
(TAR) protocols can take advantage of the real-time traf-
fic information available through a VANET when making

routing decisions. However, these protocols have limitations
imposed by the network capabilities, or design decisions in
existing systems. The protocol proposed by the authors aims
to decrease network overhead and improve routing efficiency.
We will first discuss types of TAR protocols, and then will
move on to the LITAR proposal and simulation.

We would like to note that the Darwish and Bakar paper
does not specifically discuss autonomous vehicles, though it
does state that the protocol is intended for VANET com-
munications [3]. However, we do not believe that there is a
meaningful difference to be found in routing techniques used
by human drivers or an autonomous vehicle. Frequently, hu-
man drivers already rely on computer-generated routes, and
simply follow the instructions given by a GPS or mobile de-
vice.

5.1 Traffic Aware Routing Protocols

5.1.1 Full Path TAR
Full path TAR is a routing method that constructs a full

navigation path from origin to destination. This full path
is not dynamic, and once set the route is rarely modified.
Additionally, most existing full path protocols do not ad-
equately consider the current vehicle density for a stretch
of road when making routing decisions, opting instead to
evaluate the speed and throughput of vehicles. Because of
this, they are sensitive to emergent traffic congestion found
in high-density areas. The resulting lack of flexibility makes
these protocols a poor choice for VANET routing, as they
fail to take advantage of the information a real-time VANET
can provide even if they can use real-time information in cre-
ating the initial route.

5.1.2 Intersection-Based TAR
Compared to full path TAR protocols, an intersection-

based routing approach is more adaptable to real-time road
environments. In these protocols, the route is calculated at
each intersection based on the current traffic conditions, and
only the information regarding the next step in a vehicle’s
route is shared with other vehicles. This makes it more suit-
able for use in a VANET environment. Unfortunately, there
is a significant network overhead created by these protocols,
as road metrics must be frequently collected and shared by
a central leader vehicle (which will be discussed shortly) to
ensure that the local information remains up to date.

5.2 LITAR Protocol
The LITAR protocol is (as the name implies) an adapta-

tion of the intersection-based TAR format. The LITAR pro-
tocol uses two concurrent processes to manage routing. The
first is an RTNSM (Real-time Traffic and Network Status
Measurement) process, which uses the information provided
by the VANET to determine the fitness of adjacent roads.
The second is a packet routing process, which controls how
data travels through the network. Data is transmitted across
multiple hops, meaning a path is created from source to des-
tination using cars in between to “forward” information as
necessary.

In order to make informed decisions about routing, ve-
hicles need to know what the traffic conditions are in the
roads stemming of from the next intersection. However, due
to range and bandwidth limitations, it is undesirable to have
all vehicles share their location with all other vehicles. In-



stead, traffic metrics are aggregated for a stretch of road,
and then transmitted to the vehicles in adjacent stretches.
To create a complete picture of a given stretch, the LITAR
protocol selects a collector vehicle near the geographic cen-
ter. The collector is sent “collection packets” from other
vehicles on the stretch, and creates a status packet contain-
ing the aggregate information describing the state of traffic
in its section. This status packet is then forwarded to vehi-
cles in adjacent stretches, which can use the information to
reevaluate their path before arriving at the intersection.

However, this does not alleviated the network congestion
concerns found in intersection based approaches. In or-
der to combat this and improve the scaling of the system,
the LITAR protocol implements a validity period algorithm.
Collection packets are given a validity period based on the
total number of vehicles on the road, the speed and direction
of travel, and the volatility of traffic. In stable traffic envi-
ronments, the collector vehicle receives fewer updates, and
the data is considered to be valid for longer periods of time.
In areas with lots of congestion or inconsistent numbers of
vehicles, updates are calculated more frequently.

6. CONCLUSIONS
We believe that all the coordination schemes we have dis-

cussed here have their pros and cons. It is likely that an
Intelligent Transport System will not be limited to a sin-
gle coordination scheme, and we believe there is little rea-
son that it should be. If the goals of coordination are to
improve safety and efficiency, then it seems reasonable to
continue improvements as long as is possible.

In Section 3, we saw how the use of a VANET to share re-
gion information between vehicles and roadside units can im-
prove the safety of an autonomous vehicle. We also observed
that the system can be used to improve vehicular routing in
an urban environment. However, we found that there were
limitations to the VANET in terms of range, which limit it
in the macro scale.

In Section 5, we again see the use of a VANET for in-
creasing efficiency. By analyzing the density of vehicles on
the road, an autonomous vehicle can adapt its route during
transit, which can allow for faster travel times. If combined
with a system like CarSpeak, we propose that these benefits
could be provided even if not all vehicles are autonomous,
as sensors could allow a vehicle to estimate density for its
stretch of road. Because the VANET itself is simply a com-
munications platform, multiple systems can be created to
run cooperatively, and there is not necessarily a need to se-
lect a system as the “winner.”

The results of the Carnegie Mellon group [1] show that the
use of a cloud system to offload computing is viable, even
if the exact use cases may need to be carefully considered.
The issue of latency is not insignificant, but for tasks that
require large amounts of computational effort, the benefits
may outweigh the potential issues. In Carcel [6] and the
work of Dressler, et al. on the vehicular cloud, we see that
a cloud-based communication scheme allow for vehicles to
share data over longer distances than a VANET such as
CarSpeak provides, but adds the requirement of a dedicated
network and suffers from higher latency.

While not covered in this paper, we find it important to
note that most of the coordination schemes we discuss are
vulnerable to various attacks. We suggest [8] as additional
reading on the topic for any interested parties.

Acknowledgements
I would like to extend many thanks to my advisor Nic McPhee,
instructor Elena Machkasova, and external reviewer Scott
Steffes for their time and helpful feedback.

7. REFERENCES
[1] A. Ashok, P. Steenkiste, and F. Bai. Enabling

vehicular applications using cloud services through
adaptive computation offloading. In Proceedings of the
6th International Workshop on Mobile Cloud
Computing and Services, MCS ’15, pages 1–7, New
York, NY, USA, 2015. ACM.

[2] S. Aust, R. V. Prasad, and I. Niemegeers. Outdoor
long-range WLANs: A lesson for ieee 802.11ah. IEEE
Communications Surveys & Tutorials, July 2016.

[3] T. Darwish and K. Abu Bakar. Lightweight
intersection-based traffic aware routing in urban
vehicular networks. Comput. Commun., 87(C):60–75,
Aug. 2016.

[4] F. Dressler, P. Handle, and C. Sommer. Towards a
vehicular cloud - using parked vehicles as a temporary
network and storage infrastructure. In Proceedings of
the 2014 ACM International Workshop on Wireless
and Mobile Technologies for Smart Cities, WiMobCity
’14, pages 11–18, New York, NY, USA, 2014. ACM.

[5] K. Golestan, F. Sattar, F. Karray, M. Kamel, and
S. Seifzadeh. Localization in Vehicular Ad Hoc
Networks Using Data Fusion and V2V
Communication. Comput. Commun., 71(C):61–72,
Nov. 2015.

[6] S. Kumar, S. Gollakota, and D. Katabi. A
cloud-assisted design for autonomous driving. In
Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pages 41–46,
New York, NY, USA, 2012. ACM.

[7] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and
D. Rus. Carspeak: A content-centric network for
autonomous driving. SIGCOMM Comput. Commun.
Rev., 42(4):259–270, Aug. 2012.

[8] A. Lima, F. Rocha, M. Völp, and
P. Esteves-Veŕıssimo. Towards safe and secure
autonomous and cooperative vehicle ecosystems. In
Proceedings of the 2Nd ACM Workshop on
Cyber-Physical Systems Security and Privacy,
CPS-SPC ’16, pages 59–70, New York, NY, USA,
2016. ACM.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS:
an open-source robot operating system. In ICRA
Workshop on Open Source Software, 2009.

[10] Tesla. Tesla - autopilot.
https://www.tesla.com/autopilot/.


