
Querying Large Databases

Mica Beneke
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

benek020@morris.umn.edu

ABSTRACT
This paper investigates two approaches to improving query
times on large relational databases. The first technique cap-
italizes on the knowledge of a database’s structures and
properties one typically has. This technique can execute
some queries exactly in a constant, bounded amount of time.
When this technique cannot be used to exactly execute a
query we show how it can still be used to drastically lower
the run-time on the query while getting a good approxi-
mation of the exact result. We also discuss the complexity
of deciding whether a query is evaluable in this way, both
theoretically and practically. The second approach approx-
imates aggregate queries by incorporating only part of the
data, rather than all of the data the query pertains to. We
briefly investigate an established method of sampling a ran-
dom subset of the data, and then a newer method which par-
tially reads every tuple and puts deterministic error bounds
on the results.

Keywords
Big Data, Relational Database, Approximate Query Pro-
cessing, Scale Independent Queries

1. INTRODUCTION
All around us, we hear that we are living in the world of

“big data.”What challenges does the world of big data bring?
In the modern world, we all rely on vast databases to quickly
and accurately retrieve our data for us in many areas. As
datasets grow in size, querying these datasets quickly be-
comes cost-prohibitive. There is a trade-off between hard-
ware cost and time it takes to complete a query, and even
if we assume an infinite budget for hardware, modern tech-
nology has its limits. A linear search through a dataset–a
search which takes a linear amount of time relative to how
large the dataset is–that’s a petabyte in size would take days
with a modern solid state drive [3]. It’s this challenge that
this paper addresses: how does one query a large database
in a reasonable amount of time given limited resources?

The need for efficient methods to query large databases
is evident, and techniques can be split into two categories:
those that execute queries exactly, and those that only ap-
proximate queries. These techniques, while powerful, have

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

their own limitations and drawbacks. They don’t always
work in the general case of all queries for all databases.
When a technique is universally applicable, it isn’t always
ideal for all data distributions or all types of queries. All
techniques are subject to properties of the database, such
as structure and data distribution, or even the data type.
When approximating a query, it is not always possible to
guarantee error bounds before it is made, and they often
require a lot of precomputation [2].

It’s also important to note the difference between a database
and a dataset. While a dataset is simply a set where each
element is a single data point, it is not structured like a rela-
tional database. A database is a way of structuring datasets
in a more useful way. For this paper, when we talk about a
dataset we assume that it can be represented by a relational
database.

In this paper, we define terms and notations for relational
databases, as well as for specific methods discussed in the
paper, in section 2; discuss a method that can evaluate some
queries exactly in constant time, and how the same method
can be used to approximate other queries in constant time
in section 3; give an overview of an iterative algorithm that
can approximate aggregate queries with arbitrary precision
in section 4; and conclude in section 5.

2. RELATIONAL DATABASES
This section addresses concepts, definitions, and notations

necessary to understanding relational databases that is rel-
evant in all sections.

A relational database consists of tables, also called rela-
tions, in which each row, or tuple, contains one entry in the
database. Two tuples in the same table will always be com-
prised of the same attributes, corresponding to columns in
the table.

Two tables can relate to each other by referencing an-
other table’s primary key, a set of columns that can be used
to uniquely identify any row in the table. In all of the ex-
amples in this paper the primary key is a single column,
titled ID, that has the express purpose of being a unique
number that can be used as a key, however there is no rea-
son it has to be only one column [6]. For example consider a
database that aims to store data about people and their pets.
This database consists of just two tables, a petOwners ta-
ble with attributes {ID, name, address}, and a pets table
with attributes {ID, ownerID, species, name}. In these
tables ID is the primary key for each respective table, and
is guaranteed to be unique within that table, while ownerID

is a foreign key that references the petOwners table. These

Figure 1: petOwners
ID name address
1 Jane 600 E 4th St
2 John 1234 Imagination St

Figure 2: pets
ID ownerID species name
1 1 dog Max
2 1 dog Tucker
3 1 cat Athena
4 2 dog Goldie

tables represent a one-to-many relationship, as one person
may have many pets, but each pet may only have 1 owner.
See figures 1 and 2 for some example entries in this database.

A query, informally, is a question about the data in a
database. More formally, a query is a function that maps
from a database to a set of tuples, whose fields are dependent
on the query itself, matching certain constraints [6]. For ex-
ample, one could query the example database above as such:
"what are the names of all dogs and their correspond-

ing owners’ names". The query would then return a set of
tuples with fields {dogName, ownerName}, with one tuple for
each dog in the pets table, as in figure 4 shown below. For
the purpose of this paper we will assume that queries do not
alter any data.

The result of a query involving multiple tables is a subset
of the cartesian product of those tables. A cartesian prod-
uct of two tables lists every possible combination of tuples in
those two tables, and most entries are meaningless, slowing
down searches considerably. See figure 3 for the cartesian
product of figures 1 and 2. In figure 3 only those tuples
where petOwners.ID = pets.ownerID are meaningful, and
it also still lists cats even though we are only interested
in dogs for our query. The relation formed by taking the
cartesian product of two or more tables is a join. For large
databases joins present a problem because if table 1 con-
tains n tuples and table 2 contains m tuples, then their
cartesian product contains n ∗ m tuples. As n and m can
grow to be quite large in practical applications, this can eas-
ily become unmanageable. This difficulty can be even more
difficult in practice as many queries are performed on more
than two tables.

An index is a copy of specific fields in a database as a data
structure that allows for lookups faster than a linear search
through a table. Typically these fields are in the same table,
although they do not have to be. Some indexes can even be
functions mapping tuples in one table to tuples in another
table. Indexes are usually mapped to actual memory or disk
locations as well, and are used to decrease query times. This
is aided by the use of data-structures that can be searched
in O(log(n)) or sometimes even O(1) time, such as binary
trees and hash-maps.[6] For example, if there is an index
on the names of pet owners stored as a hash table, then we
would be able to query the database for pet owners with
specific names in constant time, rather than linear time,
with respect to the number of pet owners. You can also use
indexes to avoid searching through the cartesian product of
two tables for queries involving joins. As another example,
if there were an index on petOwners.ID to pets.name and
pets.species, we could look up the names of any individual’s

pets using this index rather than by doing a linear search
through the cartesian product pictured in figure 3.

3. SCALE INDEPENDENT QUERIES

3.1 Notation
Because some tables have fields with identical names we

use a dot notation to distinguish them. We write [ta-

ble].[field] to denote a specific field in a specific table.
The ID field in the petOwners table is petOwners.ID and is
distinct from pets.ID. To avoid spacial clutter, we only use
this notation when it is necessary for clarity.

In this section, we use a notation similar to functional
notation to describe queries: Q(D) would denote the results
of query Q on the dataset D. Note that D and Q(D) are
considered as sets, while Q is mathematically thought of as
a relation from some space of possible tuples to a different
space of tuples.

We also assume that a subset of any dataset, when rep-
resented as a relational database, shares the same structure
as the original set in terms of what tables it is comprised of
and what fields those tables are comprised of.

We also use a notation to describe relationships between
tables. For example, if there is nobody who owns more
than 20 pets we could write the relationship between the pet
owners table and the pets table as R({petOwners.ID} →
{petOwners.name, address}, 20). If somebody adopted a
21st pet we could write R({petOwners.ID} →
{petOwners.name, address}, 21). R(X → Y,N) denotes a
relationship between a set, X, of fields in a database, to the
set of fields, Y , where this is a one to many relationship with
one tuple of fields X related to at most N tuples of fields Y .
Note that N is a property of the specific set of data, while
X and Y are properties of any relational database with the
same architecture. This allows us to put a bound on re-
lationships between tuples in different tables, so that for a
simple query it is easy to put a bound on how many results
there are. With the second relationship we know the query
”what are the names of all the pets belonging to a partic-
ular person” would have at most 21 results. We call these
relationships access constraints and the entire set of access
constraints that apply to a database an access schema.

3.2 Boundedly Evaluable Queries
We call a query Q scale independent in a dataset D if

Q(D) can be executed with the same amount of work, re-
gardless of how large D is. More formally, Q is scale inde-
pendent in D if there exists an M ≥ 0 such that:

1. M is independent of |D|.

2. There exists a D0 ⊆ D such that |D0| ≤ M and
Q(D0) = Q(D).

This ensures that if you can identify D0 you only have to
search through at most M tuples to execute Q(D). [3]

A query Q is said to be boundedly evaluable in D with re-
spect to an access schema A if Q(D) can be evaluated using
only the access constraints in A and it is scale independent.
Note that we can be sure Q(D) is scale independent when
using only access constraints in A to be executed if all re-
lationships in A have a finite N . We use A to identify D0

and execute Q(D0) in constant time. [3]

Figure 3: Cartesian Product of petOwners and pets
petOwners.ID petOwners.name petOwners.address pets.ID pets.ownerID pets.species pets.name

1 Jane 600 E 4th St 1 1 dog Max
1 Jane 600 E 4th St 2 1 dog Tucker
1 Jane 600 E 4th St 3 1 cat Athena
1 Jane 600 E 4th St 4 2 dog Goldie
2 John 1234 Imagination St 1 1 dog Max
2 John 1234 Imagination St 2 1 dog Tucker
2 John 1234 Imagination St 3 1 cat Athena
2 John 1234 Imagination St 4 2 dog Goldie

Figure 4: Pets and Owners
dogName ownerName

Rex Jane
Tucker Jane
Goldie John

For example, consider the same database as in previous
examples, now with an additional table, petNicknames, con-
sisting of columns {ID, petID, nickname}, listing nicknames
for the pets where pets.ID = petNicknames.petID. We call
this database D. Let Q be the following query: Find the

nicknames of all dogs Jane owns. If D satisfies the fol-
lowing access constraints, then Q is boundedly evaluable in
D. The access constraints are:1

(a) R({petOwners.name} → {petOwners.ID}, 5)

(b) R({petOwners.ID} → {pets.ID, species, pets.name}, 20)

(c) R({pets.ID} → {petNicknames.ID, nickname}, 7)

Then if there are indexes matching these constraints Q can
be evaluated on D by accessing only 5 ∗ 20 ∗ 7 = 700 tuples
and in constant time. Otherwise there would need to be
a linear search through the cartesian product of the three
tables, accessing n ∗ m ∗ p tuples, where n is the number
of tuples in the petOwners table and m is the number of
tuples in the pets table and p is the number of tuples in the
petNicknames table.

In order to do the lookup in constant time one uses con-
straint (a) to find up to five IDs for pet owners named Jane,
in this case finding only petOwners.ID = 2, then use that
and access constraint (b) to find at most 20 IDs for the
pets, and finally use access constraint (c) to match those
pets to their nicknames (see figure 5 for a diagram). Now
that we have all the pets Jane owns, we can filter that list
to only be dogs. Evaluating the query in this way accesses
at most 700 tuples, and what’s more, no matter how many
pet owners and pets are in D, this number will remain 700.
The tuples the execution accesses comprise D0 ⊆ D and
M = 700 ≥ |D0| in this case, making Q scale independent
in D.

Not all queries are boundedly evaluable, even when they
have similar structure to queries known to be boundedly
evaluable. For example, ”Find all owners’ names and pair
them with all the nicknames of their dogs” is not boundedly

1Note that the numbers could be any finite positive integers,
these were chosen arbitrarily, and that this is just one ex-
ample of a set of access constraints that makes Q boundedly
evaluable in D.

evaluable under the given access constraints. This is because
you can’t start with any specific owners’ names like you can
in the previous example. In order to use the indexes built
with the access constraints, you would first have to iterate
over the names of all pet owners, which is linear with regard
to the number of tuples in the petOwners table. So if we
were to insert another pet owner into the table, the number
of tuples we access would increase. Thus this query is not
scale independent or boundedly evaluable.

Not all queries are boundedly evaluable and further, it
is undecidable in the general case whether a given query is
boundedly evaluable. However, there are important classes
of queries where this problem is decidable. This is expanded
on in section 3.5.

Note that for any scale independent query Q in D there
exists some access schema with which Q is boundedly evalu-
able. Any boundedly evaluable query is also scale indepen-
dent. However, the definitions are still significantly different
as scale independence is a general desirable property of a
query which is very difficult to practically draw conclusions
about, while with bounded evaluability we can achieve scale
independence through indexes hinted at by the definition.

3.3 Boundedly Evaluable Envelopes
When a query Q is not boundedly evaluable in a dataset

D it is still desirable to reduce the amount of work needed to
evaluate it. It is often possible to find boundedly evaluable
queries Ql and Qu such that Ql(D) ⊆ Q(D) ⊆ Qu(D).
Ql(D) and Qu(D) are lower and upper envelopes of Q(D),
respectively. We can also find constants Nl and Nu such
that |Q(D) − Ql(D)| ≤ Nl and |Qu(D) − Q(D)| ≤ Nu, we
call these approximation bounds for Ql and Qu with respect
to Q.

Informally, we return a set that is too small, and a set
that is too large. We then search through the set difference
to obtain the exact result of the query.

Not all queries have upper and lower envelopes, and in
general it is undecidable whether a query has an upper en-
velope. This is expanded on in section 3.5

3.4 An Implementation of Bounded Evalua-
bility

BEAS (Bounded Evaluation of SQL) [1] is a demonstra-
tion of the feasibility of bounded evaluability, written as
a database management system for PostgreSQL 9.4.6 and
tested with an anonymous telecommunications company on
datasets up to 200GB in size.

The architecture of BEAS consists of three modules:
AS Catalog, BE Query Planner, and BE Plan Executor.
AS Catalog is the module responsible for maintaining the

Figure 5: A flow diagram of an evaluation plan for a boundedly evaluable query. Here the tuples outlined in
red comprise D0.

indexes, metadata, and access schema. It also automati-
cally discovers a set of access constraints from the database’s
contents and structure and then builds hash indexes of those
constraints. BE Query Planner checks whether queries are
boundedly evaluable in the given dataset and access schema,
then constructs an evaluation plan for all queries. If a query
is boundedly evaluable, it constructs a plan utilizing that,
otherwise it identifies sub-queries that are boundedly evalu-
able and uses indexes from the access constraints to optimize
a conventional query plan. BE Plan Executor executes these
plans through the use of the fetch operator, which uses the
indexes to fetch values in constant time rather than through
joins. Because a boundedly evaluable query has an upper
bound on the amount of data accessed in its evaluation,
BEAS allows the user to inquire whether it is possible to
evaluate a query with a given limit on resources, without
actually executing the query.

The database BEAS was tested on has 12 relations with
285 total fields, obtained and used by an anonymous telecom-
munications company. BEAS took 0.1, 0.4, 0.7, 0.9, and
1.1 seconds on the same query in datasets the size of 1,
10, 50, 100, and 200 gigabytes respectively. This was com-
pared to conventional Database Management Systems with
the same query, the fastest was PostgreSQL which took 8.8,
91.5, 459.7, 933.6, and 1932.5 seconds on the same datasets
respectively. With this testing data the scalability and ef-
fectiveness of BEAS and bounded evaluation in general is
clearly shown.

3.5 Decidability and Complexity
In general, the question of whether a query Q is boundedly

evaluable or scale independent on any dataset that conforms
to a set of access constraints, A, is undecidable2. In prac-
tice, however, we typically only need to know whether Q is
boundedly evaluable in a specific dataset, D. This second

2i.e. There is no possible algorithm which can answer this
question for all cases in a finite amount of time.

question is still NP-complete3, however. Fortunately, the
practical problem is even more specific, that is whether Q is
scale independent in D with respect to a bound M . When
M is specified, the complexity is still NP-complete for all
queries.

Although it would be nice for this problem to be decid-
able in general, or even in polynomial time for a given M ,
there are still desirable cases which can be computed effi-
ciently. Conjunctive queries are queries that are built from
simple atomic logical statements such as x = y or x ≤ y.
These atoms are connected with logical conjunction(s) and
existential quantifiers. This class of queries covers most non-
aggregate queries that one might ask of a database and are
much easier to investigate the scale independence of. Al-
though it is still undecidable whether a conjunctive query
is scale-independent in any dataset that conforms to A, and
NP-complete for any specific D, it is in polynomial time with
regards to a specific M .

There are also many other classes of queries and common
cases where it is in polynomial time to decide whether the
query is boundedly evaluable. In fact, for most practical
applications this problem is in polynomial time. [4]

4. APPROXIMATE AGGREGATE QUERIES
Often the goal of a query is not to produce a list of some

tuples. An aggregate value is based on multiple tuples such
as average, sum, or maximum of a given field. With our
example of pets and pet owners, one might query “find the
average age of the pets for every pet owner.” Queries like
these are known as aggregate queries.

The results of aggregate queries are not always needed ex-
actly, and so it is desirable to approximate them when possi-
ble. For example, if you wanted to know the average income

3Informally, an NP-complete problem can be thought of as
one for which no computationally reasonable algorithm has
been discovered, and for which we have good reason to be-
lieve that no ’fast’ algorithm exists. For a formal definition
see [7].

of people in a city, you probably wouldn’t need the exact
figure, only an estimation with narrow error-bounds. First,
in subsection 4.1 there will be a brief overview of sampling-
based aggregate querying (SAQ), and its limitations. Then,
in subsection 4.2 we will describe a newer approach called
deterministic approximate querying.

4.1 SAQ - The Established Approach
Sampling-based Approximate Querying (SAQ) is approxi-

mating a query by performing it on a random subset of the
dataset. This typically works well for some aggregate func-
tions, such as average, but fails to accurately approximate
other functions such as maximum, which are very sensitive
to extremes.

All aggregate functions, including average, are somewhat
sensitive to outliers. Outliers are unlikely to be in a small
random sample of data, and using a large subset reduces
efficiency gains for this method. Thus if our dataset has
an extreme outlier estimates of aggregate functions on that
data are unlikely to be very accurate. Some aggregate func-
tions are more sensitive to outliers than others. For example
maximum is very affected by outliers, while average is less
affected by outliers. We could, for instance, survey 5% of
a city’s population to approximate the income distribution
of the entire city. If we took the average of this sample, it
would probably be very close to the true average. However,
if we took the maximum income of our sample, it would
probably not be very close to the actual maximum income
in the city.

Compounding this issue is that confidence intervals are
difficult to determine exactly, and even to approximate them-
selves. This is especially true for the functions that are
already difficult to accurately estimate with SAQ such as
maximum. SAQ can also make it difficult to reason about
confidence intervals. If you seek the average of some field,
and get a result with 95% confidence, this tells you nothing
about the distribution in the tails. [5]

4.2 DAQ - A Deterministic Approach
Deterministic approximate Querying (DAQ) is an approach

to query approximation that deterministically evaluates the
upper and lower bounds of its estimates. When using DAQ,
one can choose a number of iterations to apply the scheme.
Each iteration of a DAQ scheme makes the estimate more
accurate, and there is a finite number of iterations such that
the estimate is the exact result of the query and the upper
bound equals the lower bound [5]. DAQ can be implemented
in different ways. We will specifically cover a bitwise DAQ
scheme.

In a bitwise DAQ scheme, to evaluate a query for a given
field, we evaluate the nth most significant bit of the field
for each tuple in the nth iteration. For example, to find the
maximum of an 8-bit field, on the first iteration you would
only look at the most significant bit for each tuple. Suppose
there is at least one tuple where the most significant bit is
a 1. Then the maximum of the field is at least 27, and at
most 28−1. Then if we do another iteration, only looking at
tuples already known to have the most significant bit 1, we
look at the second bit and no tuples have a 1, but at least
one tuple has a 0. Now we know the maximum for the field
is at least 27, but is not larger than 27 + 26.

Notice in the above example our error decreased exponen-
tially in the 2nd iteration, and will continue to do so every

Figure 6: How a column is indexed using bitslices.
[5]

iteration until the exact answer is obtained. Additionally,
by performing bitwise comparisons, we are able to ignore a
certain number of bits, and for aggregation functions based
on comparison–such as maximum, it is often possible to ob-
tain the exact answer before examining all of the bits if the
tuple containing the maximum is identified before doing so.
It is also worth noting here that in this scheme, the error
bounds function mathematically as rounding errors, rather
than statistical uncertainty.

This method is not as suitable for all aggregation func-
tions, however. In a table with N tuples, and while we are
ignoring b bits, the error for maximum is 2b − 1 while for a
function such as sum that error must be taken into account
for every tuple and thus the error is N ∗ (2b − 1). When
averaging with bitwise DAQ, it is also impossible to obtain
the exact answer before examining all of the bits unlike with
maximum.

In order to make this approach computationally benefi-
cial, the use of a bitsliced index is necessary. Each field in
the database that we wish to be able to use bitwise DAQ
on is indexed with an array of bitslices (also called bitvec-
tors). The first bitslice contains the most significant bit of
every row in the table, the second bitslice contains the sec-
ond most significant, and so on. See figure 6 for a graphical
representation of this data structure. Then in order to per-
form an iteration of any aggregate function using bitwise
DAQ we simply use the array of bitslices for that bit and
perform the necessary bitwise operations. Building these in-
dexes is very expensive, in terms of computation time, so it
should be decided upon in advance what fields they will be
necessary for and then constantly maintained rather than
building the index as part of the query. It would also be
possible to use a similar index scheme but slice by bytes, or
some other delimiter, but this has yet to be explored. [5]

4.3 DAQ compared to SAQ and to Exact Eval-
uation

How well bitwise DAQ does compared to SAQ and to an
exact typical evaluation scheme depends on the data dis-
tribution and the aggregation function these methods are
used on. There are distributions and functions that SAQ is
clearly superior to DAQ, and vice versa.

On a uniform data distribution, taking a 5% random sam-
ple to compute the average of a field, SAQ yields a 1% error,
and is about 20 times faster than an exact evaluation. Using
bitwise DAQ is only 5 times faster than an exact evaluation
when yielding a 1% error. However when applied to the
function “top 100”, which asks for the 100 largest values in
the table, DAQ easily outperforms SAQ on uniform distri-

butions. On a Zipf4 distribution with parameter s = 1.5
distribution, SAQ requires nearly 100% sampling to accu-
rately approximate top 100, while bitwise DAQ needs only
the first 6 bits of 32 bit unsigned integers to achieve 1%
accuracy, while being about 4 times faster than an exact
evaluation. In the experiment DAQ even converged to the
exact answer after examining only the most significant 12
bits. [5]

A method of compressing the bitslice index was also im-
plemented, which improved performance times considerably.
Bitslicing also lends itself easily to parallelization, as you can
divide up the columns into ranges, each range to be pro-
cessed in a different thread, and then collate the data once
all threads are finished. This requires very little overhead as
in most cases almost no shared data is required.

These experiments indicate that, while DAQ is not about
to revolutionize data processing, in many circumstances it
outperforms the established SAQ. If an exact answer isn’t
required, DAQ in all test cases outperformed the baseline of
a traditional evaluation. [5]

5. CONCLUSION
There is still a lot of room for improvement in evaluating

queries quickly, both exactly and approximately. Although
a lot of promising work has been done, including real-life
implementation and use in the case of bounded queries, all
approaches have their limitations.

Boundedly evaluable queries work very well when they
can be used, however it is undecidable in general to know
whether a query is boundedly evaluable, and many impor-
tant sub-classes of queries and sub-problems remain NP-
complete. The authors (W. Fan and others) have inves-
tigated the decidability and complexity of many other re-
lated problems and classes of queries as well. This approach
works very well for queries that are known to be bound-
edly evaluable and need to be executed frequently, as well
as most conjunctive queries. The main limitation remains
that there are queries which are not boundedly evaluable at
all, although the same researchers are working on another
approach making use of the same data properties called in-
cremental scale independence. This technique is most useful
for queries which are computationally expensive but per-
formed often. Informally, it is simply precomputing Q(D)
once, and then updating that result on demand by access-
ing at most M tuples. Incremental scale independence was
implemented in BEAS as a method to optimize queries that
are not scale independent, and is worth further investigation
as well.

Approximating aggregate queries via SAQ works well for
functions that are not sensitive to outliers such as aver-
age, and on distributions that don’t have very many out-
liers, such as uniform and normal distributions. However on
other distributions that do have a lot of outlier and on func-
tions that are sensitive to outliers, such as maximum, DAQ

4The Zipf distribution is a very tail-heavy distribution, typ-
ically used to model data such as the populations of cities or
the word frequencies of a spoken language ranked by most
used to least used. When represented on a graph with both
axes on a log scale, the Zipf distribution appears approx-
imately linear. Having a higher parameter indicates that
more sample points are greater than the mean. In the fol-
lowing examples about 77% of sample points are greater
than the mean. [5]

is a promising new approach. Although DAQ rarely offers
the same performance gain that SAQ does, it allows users
greater control over their error bounds, and lends itself more
easily to algebraic manipulation. Bitwise DAQ specifically
works well for numeric data, and it would be interesting to
see the results of DAQ being applied to other types of data,
such as strings. A formal algebra has also been defined for
DAQ (the general approach, not specific to bitwise DAQ),
that is a modification of relational algebra and accounts for
the deterministic error bounds. This algebra is outside the
scope of this paper, but would be an interesting topic for a
different project or further investigation.

Both approaches discussed have an additional downside in
that they rely on the use of indexes that are computation-
ally expensive to compute, and space intensive to store. An
index necessarily duplicates some data. When multiple in-
dexes have to be computed or maintained on databases that
are hundreds of gigabytes in size these indexes accumulate
their own costs in terms of maintenance and data storage.

Acknowledgments
Thank you to Elena Machkasova, my advisor and senior
seminar professor, for her extensive advice and feedback.
I would also like to thank Peter Dolan for his help under-
standing database concepts and Jacob Opdahl, my alumni
reviewer.

6. REFERENCES
[1] Y. Cao, W. Fan, Y. Wang, T. Yuan, Y. Li, and L. Y.

Chen. Beas: Bounded evaluation of SQL queries. In
Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages
1667–1670, New York, NY, USA, 2017. ACM.

[2] S. Chaudhuri, B. Ding, and S. Kandula. Approximate
query processing: No silver bullet. In Proceedings of the
2017 ACM International Conference on Management of
Data, SIGMOD ’17, pages 511–519, New York, NY,
USA, 2017. ACM.

[3] W. Fan, F. Geerts, Y. Cao, T. Deng, and P. Lu.
Querying big data by accessing small data. In
Proceedings of the 34th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS ’15, pages 173–184, New
York, NY, USA, 2015. ACM.

[4] W. Fan, F. Geerts, and L. Libkin. On scale
independence for querying big data. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’14, pages
51–62, New York, NY, USA, 2014. ACM.

[5] N. Potti and J. M. Patel. Daq: A new paradigm for
approximate query processing. Proc. VLDB Endow.,
8(9):898–909, May 2015.

[6] Wikipedia. Relational database — Wikipedia, The Free
Encyclopedia, 2018. [Online; accessed February-2018].

[7] Wikipedia contributors. NP-completeness —
Wikipedia, the free encyclopedia, 2018. [Online;
accessed 29-April-2018].

