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Overview The big picture

The big picture

Large databases are difficult to query in a reasonable amount of
time
Querying often searches through an excessive amount of data
that is "nonsense" or irrelevant
You don’t always need the exact answer
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Background Relational Databases

Relational databases display data as tables, or relations and make it
easy to see relationships between different tables

Pet Owners

ID name
1 Jane
2 John

Pets

ID ownerID species name
1 1 dog Max
2 1 dog Tucker
3 1 cat Athena
4 2 dog Goldie

Each table is a set of rows or tuples consisting of the same attributes
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Background Relational Databases

Queries are questions about
databases

They can be expressed in
English
Formally they can be
expressed in SQL or relational
algebra

"What are the names of all dogs
and their corresponding owners?"

dogName ownerName
Max Jane

Tucker Jane
Goldie John
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Background Relational Databases

Cartesian Product

SELECT pets.name, petOwners.name FROM petOwners JOIN
pets WHERE pets.ownerID=petOwners.ID AND

species="dog";
"What are the names of all dogs and their corresponding owners?"

petOwners.ID petOwners.name pets.ownID pets.name species
1 Jane 1 Max dog
1 Jane 1 Tucker dog
1 Jane 1 Athena cat
1 Jane 2 Goldie dog
2 John 1 Max dog
2 John 1 Tucker dog
2 John 1 Athena cat
2 John 2 Goldie dog

n ∗m tuples
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Scale Independence Notation

For queries we use a notation similar to mathematical functions
Q denotes a specific query
D represents a set of data.
Q(D) denotes the results of Q on a dataset D
Both Q and Q(D) have nothing to do with the process used to
execute the query
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Scale Independence Notation

We also use a notation for relationships between attributes
R({petOwners.ID} → {pets.ID,pets.name,pets.species},20)
R(X → Y ,N) is a relationship
X and Y are sets of attributes
N is a positive integer
One tuple with X attributes is related to at most N tuples with
attributes Y
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Scale Independence Boundedly Evaluable Queries

Scale Independence and Bounded Queries

Q is scale independent, w.r.t. a bound M ≥ 0, in D if there exists a
D0 ⊆ D where |D0| ≤ M such that Q(D0) = Q(D)

Q is boundedly evaluable with a set access constraints, A, of
relationships R(X → Y ,N) such that Q(D) can be evaluated using A,
and all N are constant.
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Scale Independence Boundedly Evaluable Queries

"Find the nicknames of all of Jane’s dogs"
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Scale Independence Boundedly Evaluable Envelopes

Not all queries are boundedly evaluable, but a larger number of
queries have boundedly evaluable envelopes

Find boundedly evaluable queries Ql and Qu such that
Ql(D) ⊆ Q(D) ⊆ Qu(D)

We can also find approximation bounds Nl and Nu such that
|Q(D)−Ql(D)| ≤ Nl and |Qu(D)−Q(D)| ≤ Nu

Note that Ql and Qu depend on D. Q is therefore not boundedly
evaluable.
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Scale Independence BEAS: An Implementation

BEAS

Source - BEAS: Bounded Evaluation of SQL Queries
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Approximating Aggregate Queries

An aggregate query is a query which asks something about an entire
column of another query.

Queries involving functions like average, maximum, or sum

Example: "Find the average age of all dog owners"
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Approximating Aggregate Queries Sampling-Based Approximate Querying (SAQ)

Sampling-based Approximate Querying

To evaluate an aggregate query approximately, SAQ runs the query on
a random subset of the data.

This works really well for functions like average, which are not very
sensitive to outliers

SAQ is very inaccurate on functions like maximum which are very
sensitive to outliers

SAQ works better on data with few outliers like uniform distributions or
normal distributions with low variance
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Approximating Aggregate Queries Deterministic Approximate Querying (DAQ)

Deterministic Approximate Querying

A DAQ execution of a query has the following properties:
Deterministic error bounds
Runs for a number of iterations that can be specified
The accuracy of the results is increased with each iteration
There is a bounded number of iterations required to achieve an
exact result
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Approximating Aggregate Queries Deterministic Approximate Querying (DAQ)

Bitwise DAQ

The bitwise DAQ scheme iterates over the bits of all values.

On the first iteration it only looks at the most significant bit, on the
second only the second most significant bit, and so on
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Approximating Aggregate Queries Deterministic Approximate Querying (DAQ)

Bitslice index

Source - DAQ: A New Paradigm for Approximate Query Processing
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Approximating Aggregate Queries Deterministic Approximate Querying (DAQ)

Example: approximating the maximum of a 8-bit integer field with
bitwise DAQ.
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Approximating Aggregate Queries SAQ vs DAQ

SAQ vs DAQ with Average on Uniform Distributions

Source - DAQ: A New Paradigm for Approximate Query Processing
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Approximating Aggregate Queries SAQ vs DAQ

Zipfian Distribution
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Approximating Aggregate Queries SAQ vs DAQ

Source - Wikipedia: Zipf’s Law
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Approximating Aggregate Queries SAQ vs DAQ

SAQ vs Bitwise DAQ with top100

Source - DAQ: A New Paradigm for Approximate Query Processing
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Conclusion

Conclusion

Scale independence and bounded evaluability show promising
results
SAQ is suitable for some queries
DAQ shows some promise, and is good at a lot of things SAQ is
bad at
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Conclusion
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