
Combining Conditional Random Fields with Deep Neural
Networks for Semantic Segmentation

Rocherno F.M. de Jongh
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

dejon076@morris.umn.edu

ABSTRACT
Semantic segmentation is the task of assigning each indi-
vidual pixel in an image a predefined class, such as “road”,
“sidewalk”, “person”. Semantic segmentation has applica-
tions in domains where detailed understanding of an im-
age is required. Traditionally, semantic segmentation has
been approached by using structured probabilistic (graphi-
cal) models known as Conditional Random Fields (CRFs).
Lately, deep neural networks (DNNs) have had great suc-
cess on semantic segmentation. CRFs and DNNs both have
their shortcomings and benefits. There are some areas where
CRFs are better than DNNs, and some areas where DNNs
are better than CRFs. Combining these two methods al-
lowed for improved performance in semantic segmentation.
In this paper, we will be presenting both techniques individ-
ually, and then describing how they work together for better
results in semantic segmentation.

Keywords
Semantic segmentation, Undirected Graphical Models, Con-
ditional Random Fields, Convolutional Neural Networks

1. INTRODUCTION
Semantic segmentation aims to assign a predefined object

class to each pixel within an image. Semantic segmentation
has numerous applications where detailed understanding of
an image is required, including road segmentation for au-
tonomous driving, cancer cell segmentation for medical di-
agnosis, and mobile real-time video segmentation. In Figure
1 we can see the difference between semantic segmentation
and image classification. The distinguishing factor for se-
mantic segmentation is that every pixel in the image is as-
signed a predefined class, and also objects that are the same
get assigned in the same class as we can see in Figure 1 (b).
In contrast, image classification is just describing what ob-
jects there are on an image, which we can see in Figure 1
(a).

There are different methods for approaching semantic seg-
mentation, in this paper we will talk about the two most
used methods: Conditional random fields (CRFs), an early
attempt at semantic segmentation based around probabilis-
tic models [1], and Deep Neural Networks (DNNs), a more

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

Figure 1: (a) Image Classification and (b) Semantic
Segmentation. Modified from [5].

recent attempt at using neural networks [1]. In this paper,
we will start by giving a short overview of neural networks
in section 2.1, and structured probabilistic models in section
2.2, which will serve as background for the main topic that
we will cover in this paper. We will give a review of CRFs in
section 3, and DNNs in section 4, in the context of semantic
segmentation. Then we will show how we can incorporate
CRFs into DNNs to form a joint network, where the advan-
tages of these two models will be combined. Lastly, we will
review some DNNs that incorporates CRFs and discuss the
results of these frameworks in section 5.

2. BACKGROUND
For the first part of this section, section 2.1, we will give

a description of neural networks. For the second part of this
section, section 2.2, we will give a description of undirected
probabilistic graphical models which we will be using further
on for this paper.

2.1 Introduction to Neural Networks
Neural networks were inspired by the biological brain, and

and are loosely modeled on the biological brain. [6] As we
can see in Figure 2, neural networks are organized into layers
of nodes which are often called neurons. One layer in a
neural network is designated as the input layer, as the name
suggests the input to the system begin their interaction with
the neural network in this layer. The nodes in this layer
only have-one-way connections leading out of the layer. In
contrast the output layer is where information is extracted
from the neural network. In Figure 2 the input layer is the
leftmost layer, and the output layers is the rightmost. For
our purposes, the input of a neural network is an image,
where each node in the input layer represents a pixel in the
image. The output that we get from the output layer, is
either one of the predefined classes, or a vector containing
the probabilities for each of the predefined classes that the

Figure 2: A neural network. This is a neural net-
work containing 3 hidden layers.2

image can take. The middle layers of the neural networks
are called hidden layers. The neural network in Figure 2,
contains three hidden layers.

The process from input layer to output layer is as follow-
ing: Each node contains an activation function. A node will
assign a number, called a weight, to each of its incoming con-
nections. The node receives a different data item, which is a
number, over each of its connections, and multiplies each one
of these number by the associated weight. The node then
adds the resulting products together which yields a single
number. The results that each node returns from their acti-
vation function are passed to their neighboring nodes. After
passing through the the layers of nodes and connections, the
results are sent to the output layer, which returns some type
of output. [7].

An individual node in a layer might be connected to sev-
eral other nodes from the layer from which it receives data,
and several other nodes from the layer which it sends data
to. The most common type of layer in regular neural net-
works is the fully-connected layer. This is a layer for which
each node inside the layer is fully pairwise connected to the
nodes in adjacent layers, but the none of the nodes inside
this layer share a connection with each other. The neural
network in Figure 2 is an example of a neural network where
each of its layers are full-connected layer.

Now we will give a brief description on how neural net-
works are trained. Initially, the weights in a neural network
are set to a random values. Then training data is fed through
the input layer. The output of the neural network (semantic
segmentation of the image) is compared to the known clas-
sification. Training a neural network consists of modifying
the weights in such a way as to improve the accuracy of the
output on the training set. (see [6] for details.) Eventually
no more improvements occur and the training is complete.

For semantic segmentation, we are interested in a type of
neural network called convolutional neural network (CNN),
which will we talk about in section 4.1.

2.2 Probabilistic Graphical Models
In this section, we will talk about models where we can

represent relationships between pixels in a graphical way.
Probabilistic graphical models provide an easy and useful
way to visualize the structure of a probabilistic model and
can be used in designing and motivation of new models. We
will introduce some basic background in probability theory
and graph theory, in sections 2.2.1 and 2.2.2, respectively.

2http://neuralnetworksanddeeplearning.com/chap6.html

2.2.1 Introduction to Probability Theory
In this section we will give introduce some terms in prob-

ability theory that we are going to use in this paper.
A random variable is variable whose value depends on the

outcome of a random phenomenon. Since we are talking
about pixels in an image, we will be talking about discrete
random variables. A discrete random variable has a finite
number of states it can take. If we assume that a pixel is a
random variable that we want to assign a label to, then its
states are all the labels that the pixel can take. A probability
distribution is a function that gives a description of how
likely a random variable or a set of random variables is to
take each of its possible states.

We are often concerned about the relationship between
two or more random variables, in this case the relationship
between two or more pixels in an image. For this, we need to
use the joint distribution of random variables which allows
us to compute the simultaneous behavior of these random
variables. Thus, with the joint distribution we can under-
stand the relationship between the random variables. Some-
times we want to know how certain random variables behave,
given that we know something about some other variables.
For example, say we have a pixel, pi. And we know the
label of another pixel, pj . Knowing the label for pj influ-
ences how we assess the probabilities of various labels for
pixel pi. Probabilities that are calculated based upon such
information are called conditional probabilities. We call the
resulting distribution the conditional distribution of pi given
pj .

d

a

b

c

Figure 3: A graph with two maximal cliques.

2.2.2 Introduction to Graph Theory
In this section, we will give some basic definitions of graph

theory that will use in this paper. For this paper, when we
talk about graphs, we mean graphs in a graph theory sense.
Let G = (V,E) be a graph, where G consists of a set of
nodes, V , and a set of edges E. Two distinct vertices are
called adjacent if there is an edge connecting these two ver-
tices. A graph is called a complete graph if there is an edge
connecting every pair of vertices in the graph. An induced
subgraph is a subgraph obtained by deleting a set of nodes
and its their corresponding edges. A clique is an induced
subgraph that is a complete graph. A maximal clique is
clique where a vertex cannot be added to make it a bigger
clique. In Figure 3, we can see that the sets {a, b, c} and
{a, c, d} are the maximal cliques in the graph. We can see
that sets such as {a, b} and {c, d} are cliques in the graph,
but are not maximal cliques since they are part of larger
cliques in the graph, in fact, they are part of the two maxi-
mal cliques in the graphs, {a, b, c} and {a, c, d}. For the rest
of the paper, I will be referring to only maximal cliques.

2.2.3 Undirected Graphical Models
Probabilistic graphical models is a way of encoding a prob-

ability distribution between the random variables using a
graph. In general, each random variable is represented as
a node in the graph, and the edges connecting the nodes
represents some sort of probability relationship between the
nodes. There are different kinds of structured probabilistic
models, but for this paper, we will focus on the undirected
graphical models. Undirected graphical models are graphical
models that have a set of nodes and a set of undirected edges
which connects a pair of nodes.

A naive way that we can perform semantic segmentation
is to independently classify each pixel in an image by only
considering the local features of that pixel. With local fea-
tures we mean things like the colors and hue of that pixel.
Because neighboring pixels tend to have the same label, this
naive way of classifying each pixels independently will pro-
duce unsatisfactory results in semantic segmentation. So, if
there was a way to check the joint properties of neighbor-
ing pixels, we could get better results when segmenting an
image.

This is where using a probabilistic models helps in image
segmentation. On of the ideas behind probabilistic models
is instead of looking independently at the pixels in an image,
we look at the joint distribution of the pixels. In general,
pixels that have similar features, such as color, have strong
correlation with each other, meaning that they are more
likely to have the same label.

In section 3 we will talk about a specific kind of undirected
graphical model that is used in semantic segmentation.

3. CONDITIONAL RANDOM FIELDS
In this section we will give a review of conditional random

fields that are used for semantic segmentation.

3.1 CRF definition
In the context of semantic segmentation, a CRF models

a probability distribution of pixel labels, conditioned on a
global observation. In general, the global observation is usu-
ally the image.

Let G = (V,E) be a graph. Let Xi be the random variable
corresponding to the pixel i, where Xi represents the label
assigned to the pixel i, which can be one of the labels from
the set of predefined labels, L = {l1, ..., lL}, where L is the
number of predefined labels.. Let X be set formed by the
random variables X1, ..., XP , where P is the total number
of pixels in the image. Then, the set V of the G is defined
by V = {X1, ..., Xp}.

A formal definition of CRF in context of semantic seg-
mentation is, where it is characterized by a log-linear model
is given by:

P (X = x|I) =
1

Z(I)
exp
(
− E(x|I)

)
where I are the input images of size P , C is the set of maxi-
mal cliques in graph G. Z(I) is a normalizing function that
ensure the probability distribution equals 1, such that it is
a probability distribution [10]. E(x|I) =

∑
c∈C φc(xc|I).

Each maximal clique produces a potential function 3, φc.
E(x|I) is called the energy function of x, where x is all of

3Potential functions are arbitrary nonnegative, real-valued
functions [8].

the possible ways the labels can be assigned to the pixels in
the image.

Popular CRF graphs are the grid graphs, which only has
node interactions between a limited number of neighboring
nodes, and fully connected graph, which is where all nodes
are connected, thus forming a complete graph. The fully
connected CRF, or dense CRF are being favored, because
the more connections between the nodes leads to better seg-
mentations. Also, efficient algorithm exists for the fully con-
nected pairwise CRF, which we will explain below.[1]

Because fully connected pairwise CRF are preferred in
general, we will talk about this model. For the CRF to
be a fully connected pairwise CRF, the graph G needs to
be a complete graph. Then, instead of only looking at the
maximal clique, which in the case of a complete graph would
be the whole set of nodes, we will look at the pairwise cliques,
thus we will look at all of the pairs of nodes. We will define
the energy function as following:

E(x|I) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj)

where 1 ≤ i, j ≤ P . ψu(xi|I), called the unary potential, is
calculated independently for each pixel. The unary potential
returns the cost of pixel i taking the label xi, given the image
features. The pairwise potentials, ψp(xi, xj), returns the
cost pixel i taking the label xi and pixel j taking the label
xj simultaneously. So, the edges connecting the nodes means
that the costψp(xi, xj), is defined. The pairwise potentials
in this model are defined as:

ψp(xi, xj) = µ(xi, xj)

M∑
m=1

w(m)k(m)(fi, fj)

where each k(m) is a Gaussian kernel and w(m) are linear
combination weights. fi and fj are feature vectors associated
with the pixels i and j respectively. Feature vectors are
features derived from the image features, such as color. In
general, the two feature vectors that get used are RGB values
and spatial locations, such that the kernel will be defined as
a two-kernel potential as following:

k(fi, fj) = w(1)exp

(
−|pi − pj |

2

2θ2α
−|Ii − Ij |

2

2θ2β

)
+w(2)exp

(
−|pi − pj |

2

2θ2γ

)
Where pi and pj are the positions and Ii and Ij the color vec-
tors, of pixels i and j respectively. The first part of k(fi, fj)
is called the appearance kernel, and is inspired that that
nearby pixels with similar color tends to be in the same
label class. The second part of k(fi, fj) is called the smooth-
ness kernel, and it removes small isolated regions [9]. All of

the parameters in the model, w(m), θ, α, β are learned during
the inference of the CRF.
µ(xi, xj) is called the compatibility function. Basically, it

imposes a penalty when labels that are nearby and similar
to each other get assigned different labels.

In summary, with CRFs we want to model the probability
that an image has a certain labeling, given the input image.
To paraphrase, let’s say we assign each pixel a certain la-
bel, we want to know then what is the probability that this
labeling is true, given the input image.

3.2 CRF Inference
To train the CRF, data sets of already labeled images are

used. Different CRFs method uses different ways of training.

A popular inference method for fully connected CRFs mean
field approximation, which is a heuristic method. Mean field
approximation minimizes E(x|I), which results for the most
probably labeling x for the given image. Since minimizing
E(x|I) is hard, mean field approximation approximates the
actual CRF distribution P (X = x|I) by a simpler distribu-
tion, say Q(X = x|I). Then, the parameters are learned
by piecewise training, which means the the unary potentials
and pairwise potentials are learned separately. The full de-
scription of the inference algorithm is out of scope of this
paper, but a detailed description can be found in [9].

4. DEEP NEURAL NETWORKS
When a neural network consist of more than 1 hidden

layer, we call it a deep neural network. As we can see, the
neural network in Figure 2 is also an example of a DNN. In
the following section, we will talk about one particular kind
of DNN called convolutional neural network.

4.1 Convolutional Neural Networks
Convolutional Neural Networks are similar to ordinary

neural Networks, they are made up of neurons and can also
be trained. As with neural networks, the input for the CNN
is image. What is different this time is that the image will be
taken as a 3-dimensional array, h×w×d, where h is height,
w is width, and d is the dimension of the array, which is the
3 RGB colors.

Most CNN architectures consists of three main types of
layers: Convolutional Layer, Pooling Layer, and Fully-Connected
Layer. We will give a brief description of each layer. Then,
in section 4.5, we will talk how we can “extend” CNNs to
use them for semantic segmentation.

4.2 Convolutional Layer
The first layer in every CNN is a convolutional layer, and is

what mainly differentiate CNNs from other types of neural
networks. The input that the convolutional layer takes is
an array of pixel values, which are the pixels of an image.
Then, a smaller (or as big as the input) array of numbers,
called a filter (or kernel) is used that represents a certain
feature. To start, the filter is aligned in the top left corner
of the input. The area that the filter covers is called the
receptive field. The filter then multiplies the values in the
filter with the pixel values in the image, using element wise
multiplication. Then the filter slides one spot, and does the
same thing. Every unique position that the filter slides to,
produces a number, which are stored in an array called a
feature map. The feature maps are then used as input for
the following layers in the CNN. [4, 11]

4.3 Pooling Layers
A pooling layer, or downsampling layer, simplify the infor-

mation that they get from the convolutional layer. A pooling
layer takes each output of a feature map, and condenses the
feature map. So, a pooling layer will divide the input it gets
into regions, and summarizes that region into a smaller re-
gions. Thus, pooling layers are used to reduce the spatial
dimension, e.g. array of values, of the input it received. [4,
11]

4.4 Fully Connected Layer
Generally, the last layer of successful CNNs is called the

fully connected layer This layer takes the input it has got-

Figure 4: Here we can see how the fully connected
layer is transformed into a fully convolutional net-
work, by taking the fully connected layer to be a
convolutional layer, where the size of the filter and
the input feature map are the same. [12]

ten from the preceding layer, which can be the the pooling
layers, and connects this input to the output neurons. Thus
this layer takes an input and returns an output, which is
an C-dimensional of probabilities, where C is the number of
classes the CNN has to choose from. [4, 11]

4.5 Extending CNNs for Semantic Segmenta-
tion

In the previous sections we gave a brief description on
how CNNs work. But, we described a CNN that works for
image classification, and not semantic segmentation. In this
section we will talk how we can extend CNNs, so they can be
used for semantic segmentation. There are more than one
way that CNNs can be extended to be used for semantic
segmentation, but we will describe the most common one.
Long et al. [12] showed that the fully connected layer of a
CNN can be viewed as a filter that covers that whole region
of the input feature map. The authors called them fully
convolutional networks (FCNs), that can take an input of
any size, and returns a classification map.

In Figure 4, on the top part we can see a CNN that is being
used for image classification, we can see that all the way
to the top right, there is a vector of probabilities showing
to which class the image most likely belongs to. But, we
can see on the bottom part of the figure, the last layer, the
fully connected layer is being interpreted as a convolutional
layer and the filter is taken to be the same as the input
feature map, which is 4096 in this case. Then, this will
return what the authors call a “heat map”, which is just
a feature map, but this time at pixel level, as needed for
semantic segmentation.

The network is trained really similar to neural network,
training data sets with labeled images are used. The net-
work can automatically learn features from the training data
set using a method called stochastic gradient descent, or a
variant of this method, which minimizes a training objective
function. An algorithm called backpropagation, is used to
train the network. Backpropagation is a method that can
compute the gradients of the parameters in the network in
an efficient manner, with respect to the objective function.
[1] A detailed description of these methods can be found in
[6].

5. COMBINING CRFS AND DEEP NEURAL
NETWORK

Although FCNs achieved great results for semantic seg-
mentation, this did not always produced smooth outputs.
A challenge for CNNs is, since CNNs were initially designed
for image classification, is that at the pooling layers, a lot of
spatial information get lost, which resulted in feature maps
with low spatial resolution for the FCNs. Because of this,
for semantic segmentation, the output of these CNNs some-
times resulted in objects with boundaries that are not sharp
and blobby shapes. [2]

In this section we will describe two models that combines
both CRF and CNN, which is mainly to take advantage of
the smoothing constraints in CRFs. In section 5.1, we will
describe a method that applies CRF as a post-processing
step after the input has been segmented by a CNN. In section
5.2, we will describe a method that incorporates CRFs in
CNN to create a unified framework.

5.1 CRFs For Post-Processing
In this section we will describe the first method that em-

ploys both CNN and CRF.
In post-processing, the output of the CNN are post-processed

through the CRF to smooth out the results of the CNN.
As we said in section 3, CRFs incorporates assumptions in
their model, such as, similar pixels and pixels that are close
to each other should have the same label. Because of this,
CRFs can help produce sharper boundaries and finer grained
results from the output received from the CNN [13].

We said that the the CRF takes the output of a CNN.
With this we mean that the output of the CNN is taken to be
as the unary potential for the CRF. The unary potential will
then be defined as, ψu(xi|I) = −logP (xi|I), where P (xi|I)
is the probability distribution of labels for the pixel i, that
is computed by the CNN. The pairwise term, ψp(xi, xj), is
the same as described in section 3. In the first row in Figure
5 we can see an example of how this method works. Convo-
lutional feature extractor is just the way the convolutional
layer works as describes in section 4.2.The linear classifier is
the process after the convolutional layer, thus when we get
the output from the convolutional layer and pass it through
the pooling layers and then the fully connected layer. Then,
we see we get a result which is used as the input for the
unary potential for the CRF. In the figure they showed that
a Dense CRF, which is a fully connected CRF, is used to
further smooth out the image. In theory, any kind of CRF
can be used, but dense CRF is the most common one, for
reasons stated in 3.

In this method, CRF is disconnected from the CNN, and
also disconnected from the CNN training. So, the CNN is
trained by itself and the inference of the CRF also take place
by itself.

5.2 End-to-End CRFs
In this section we will describe the second method that

employs both CNN and CRF. In this method, CNNs and
CRFs are combined in an end-to-end joint framework. For
this section, we will mainly talk about the method used in
[13] which interprets CRFs as RNNs in the framework.

The main point in [13] was to show that the mean field in-
ference can be reformulated as a Recurrent Neural Network
(RNN), which are a family of neural networks. Each output
of an iteration of a RNN is used as the input for the next

iteration, and all of the iterations use the same parameters.
[1] Because this is similar to how the mean field inference
works, the authors proposed to treat the mean field inference
as a RNN, and called this structure CRF-RNN. All of the
parameters of the CRF-RNN are the same as the parameters
for the mean field inference. The structure of this network
will start just as a normal CNN for semantic segmentation,
as we can see in Figure 5. The input image will go through
the convolutional feature extractor and linear classifier as
describe in section 5.1, and then the output from the linear
classifier will go to the CRF-RNN structure, which performs
CRF-based probabilistic modeling. [13]

The way that the CRF is incorporated in this framework,
the two methods, CRF and CNN, will not be trained sep-
arately, but rather are trained end-to-end using the back-
propagation algorithm and Stochastic Gradient Descent. In
theory, this method should work outperform the method us-
ing post-processing, since everything is trained at the same
time. [13]

6. RESULTS
In Table 1 we can see the results of recent algorithms

for semantic segmentation. The metric that they are us-
ing is intersection over union (IoU). This metric assesses
the segmentation accuracy by checking each class of labels,
and checking the resulting segmentation against the ground
truth, which is the correct label assignment. To get the ac-
curacy, the metric divides the correctly assigned pixels over
the the total pixels. (So, basically, Correctly assigned pixels

All pixels
.)

The three methods not using a CRF in the table all employ
CNN in a way in there algorithm, but did not use a CRF
in any way. Based on the IoU percentage, we can see that
these algorithms performed worse than the algorithms that
did use CRF in a way in their algorithm.

Finally, we discuss the results for the methods that do
employ CRF in a way in their algorithm. The methods
that are under “Methods using CRF for post-processing”, all
employ some kind of CNN, but they also use fully connected
CRFs as post-processing, as described in section 5.1. The
methods that are under “Methods with end-to-end CRFs”,
all combine CNNs and CRFs as an unified framework, as
described in 5.2. From Table 1 we can see that these two
methods that employ CRFs in way with CNNs, outperforms
the other methods. The algorithm that employs end-to-end
CRFs has the higher IoU percentage. Also, looking at the
last two rows of Table 1, we see that methods employing end-
to-end training for CNN and pairwise CRF have a higher
mean IoU percentage, than method where the CNNs and
pairwise CRFs are trained disjointly. Showing evidence that
end-to-end training give better results, But, what is clear
from the table is that the methods that combines CNNs
and CRFs definitely outperforms the methods that do not
combine these.

7. CONCLUSION
We gave an overview of CRFs and DNNs in the context

of semantic segmentation. Then we discussed and gave ex-
amples of some models that combined the powers of CRFs
and DNNs to tackle semantic segmentation. We have shown
two ways of combining these models, methods using CRFs
as postprocessing, and methods using CRFs end-to-end. We
have shown and discussed that combining these two models

Figure 5: Here we can the structure of the two methods that combines CNN with CRF. The first row
uses post-processing CRF and the second row combines CNNs and CRFs as an end-to-end joint framework.
Modified from [1]

Method IoU[%]

Methods not using a CRF
SDS 51.6
FCN 67.2

Zoom-out 69.6
Methods using CRF for post-processing

DeepLab 71.6
BoxSup 75.2

Dilated Conv 75.3
DeepLab Attention 76.3

LRR 79.7
Methods with end-to-end CRFs

CRF as RNNs 74.7
Context 77.8

Deep Gaussian CRF 80.2
Method Mean IoU[%]

Pairwise CRF trained disjointly 69.5
Pairwise CRF trained end-to-end 72.9

Table 1: Results of algorithms on the Pascal Visual
Object Classes (VOC) 2012 test set. Modified from
[1].

results in better image segmentation. We also showed that
methods employing end-to-end CRFs results in better image
segmentation.

Acknowledgements
I want to give a special thanks to my advisor, Professor
Peter Dolan, and the senior seminar coordinator, Professor
Elena Machkasova, for their guidance and feedback through-
out this semester.

8. REFERENCES
[1] A. Arnab, S. Zheng, S. Jayasumana,

B. Romera-Paredes, M. Larsson, A. Kirillov,
B. Savchynskyy, C. Rother, F. Kahl, and P. H. S.
Torr. Conditional random fields meet deep neural
networks for semantic segmentation: Combining
probabilistic graphical models with deep learning for
structured prediction. IEEE Signal Processing
Magazine, 35(1):37–52, Jan 2018.

[2] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834–848, April 2018.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE
transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2018.

[4] A. Deshpande. A Beginner’s Guide To Understanding
Convolutional Neural Networks, 2016.
https://adeshpande3.github.io/A-Beginner

[5] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea,
V. Villena-Martinez, and J. Garcia-Rodriguez. A
review on deep learning techniques applied to semantic
segmentation. arXiv preprint arXiv:1704.06857, 2017.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

[7] L. Hardesty. Explained: Neural networks.
http://news.mit.edu/2017/

explained-neural-networks-deep-learning-0414,
Apr 2017.

[8] M. I. Jordan. An introduction to probabilistic
graphical models, 2003.

[9] P. Krähenbühl and V. Koltun. Efficient inference in
fully connected crfs with gaussian edge potentials. In
Advances in neural information processing systems,
pages 109–117, 2011.

[10] V. Kuleshov and S. Ermon. CS 228: Probabilistic
Graphical Models, Lecture Notes, 2017.
https://cs.stanford.edu/ ermon/cs228/index.html.

[11] M. A. Nielsen. Neural networks and deep learning.
Determination Press, 2015.

[12] E. Shelhamer, J. Long, and T. Darrell. Fully
convolutional networks for semantic segmentation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):640–651, April 2017.

[13] S. Zheng, S. Jayasumana, B. Romera-Paredes,
V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr.
Conditional random fields as recurrent neural
networks. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1529–1537, Dec 2015.

http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

	Introduction
	Background
	Introduction to Neural Networks
	Probabilistic Graphical Models
	Introduction to Probability Theory
	Introduction to Graph Theory
	Undirected Graphical Models

	Conditional Random Fields
	CRF definition
	CRF Inference

	Deep Neural Networks
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layers
	Fully Connected Layer
	Extending CNNs for Semantic Segmentation

	Combining CRFs and Deep Neural Network
	CRFs For Post-Processing
	End-to-End CRFs

	Results
	Conclusion
	References

