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@ It is easy for humans to see an image and immediately classify
and understand what is on the image

Flgu Ie. http://www.pawbuzz.com/wp-content/uploads/sites/551/2014/11 /corgi-puppies-21.jpg

@ Can we make computers emulate this?
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Introduction

Example
@ In radiation treatment planning, radiologists need to compute
best path for applying radiation
@ Radiologists manually trace outlines on CT or MR images

F IgLI F€: https://radiologykey.com/segmentation-of-pelvic-structures-from-ct-scans-for-planning-in-
prostate-cancer-radiotherapy/
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@ Semantic Segmentation

© Structured Probabilistic Models
@ Statistical Background
@ Markov Random Fields
e Conditional Random Fields (CRF)

© Neural Networks
e Convolutional Neural Network (CNN)

@ Combining CNN with CRF

© Results
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Introduction to Image Segmentation

@ In computer vision, image segmentation is the process of
partitioning a digital image into multiple segments

@ The goal of image segmentation is to cluster pixels into
relevant image segments

F |gU F€. https://www2.eecs.berkeley.edu/Research/Projects/CS /vision /grouping/resources.html
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way?
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Introduction to Image Segmentation

@ What if we want to partition the image in a more meaningful
way?
@ What if we also want to understand the image?
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@ Semantics means the study of meanings
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Introduction to Semantic Segmentation

@ Semantics means the study of meanings

@ That is what we are trying to do, study of meanings in images
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pixel level
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Semantic Segmentation

Introduction to Segmentation

e Semantic segmentation is the understanding of an image at
pixel level

@ Semantic segmentation assigns a predefined object class to
each pixel within the image.

o Takes an image as an input
o Returns an image with all of the pixels in the image labeled
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FIgU Fe€. http://www.stat.ucla.edu/ xianjie.chen/
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Applications of Semantic Segmentation

Semantic segmentation has numerous applications such as: Road
Segmentation for Autonomous Driving

Flgu re: http://tex.stackexchange.com/
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Introduction to Semantic Segmentation

@ Semantic segmentation has numerous applications such as:
synthetic “shallow depth-of-field effect shipped in the portrait
mode” of the Pixel 2 and Pixel 2 XL smartphones.

FlgU F'€. https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xI.html
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Introduction to Semantic Segmentation

@ Semantic segmentation has numerous applications such as:
Mobile Real-Time Video Segmentation

FOREGROUND

@ hairs

@ eyebrows
skin

@ glasses

@ nostrils

® lips

® eyes (n/a)
other

BACKGROUND
o .

4 @) background
[ g

FIgU I'€. https://research.googleblog.com/2018,/03/mobile-real-time-video-segmentation.html
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Introduction to Semantic Seg_

o Image
classification

@ What's in the
image?
Source:

http://arxivst.com/papers/2017/04 /22 /a-
review-on-deep-learning-techniques-
applied-to-semantic-segmentation /
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Introduction to Semantic Seg_

@ Object detection

@ Box each object
in image
Source:

http://arxivst.com/papers/2017/04/22 /a-
review-on-deep-learning-techniques-
applied-to-semantic-segmentation/
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bottle

@ Semantic
Segmentation

Source:
http://arxivst.com/papers/2017 /04/22/a-
review-on-deep-learning-techniques-
applied-to-semantic-segmentation/
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@ Instance
Segmentation

Source:
http://arxivst.com/papers/2017 /04/22/a-
review-on-deep-learning-techniques-
applied-to-semantic-segmentation/

o = = = z 9ace
30/74



Semantic Segmentation
Structured Probabilistic Models

Neural Networks
Combining CNN with CRF

Results

Introduction to Semantic Segmentat_

(a) Image classification (b) Object detection

bottle

(c) Semantic segmentation

(d) Instance segmentation
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@ Structured Probabilistic Models
@ Statistical Background
@ Markov Random Fields
e Conditional Random Fields (CRF)
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Statistical Background

@ Random variable
e A variable that its value depends on a random phenomenon
o Probability distribution

e A distribution of the probabilities of the possible events that a
random variable can take
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Structured Probabilistic Models

@ Structured Probabilistic Models is a way of describing a
probability distribution, using a graph

@ In a probabilistic graphical model, each node represents a
random variable and the edges represent a probabilistic
relationship between these random variables.
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Structured Probabilistic Models

o Directed graphical models use graphs with directed edges

o Undirected graphical models use graph with undirected
edges
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Structured Probabilistic Models

o Directed graphical models use graphs with directed edges

o Undirected graphical models use graph with undirected
edges

@ We care about undirected graphical models, also called
Markov Random Fields
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Markov Random Fields _

@ Each pixel in an image will correspond to a node in a graph
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Markov Random Fields

@ Each pixel in an image will correspond to a node in a graph

@ Variables, such as colors in an image, are introduced to
explain values of the nodes
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Structured Probabilistic Models Statistical Background
Markov Random Fields
Conditional Random Fields (CRF)

Markov Random Fields

@ Each pixel in an image will correspond to a node in a graph

@ Variables, such as colors in an image, are introduced to
explain values of the nodes

@ Probability two nodes having the same value
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Markov Random Fields

In this example: A
depends on B and D.
B depends on A and
D. D depends on A,
B, and E. E depends

on D and C. C
depends on E.
Source:

http://arxivst.com/papers/2017/04/22/a-
review-on-deep-learning-techniques-
applied-to-semantic-segmentation/
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e Conditional Random Fields are an important special case of
Markov Random Fields.
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Structured Probabilistic Models Statistical Background
Markov Random Fields
Conditional Random Fields (CRF)

e Conditional Random Fields are an important special case of
Markov Random Fields.

@ Checks probability a node (pixel) is a certain value, given
another know node value
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Conditional Random Fields

0 o Output
GVEG O m

X1 X5

FIgU I€. https://ermongroup.github.io/cs228-notes/representation /undirected /
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Neural Networks Convolutional Neural Network (CNN)

Neural Networks

Neural networks are means for doing machine learning
Neural networks are generally comprised of layers of nodes

Each node contains an activation function

Result in some form of output

54 /74



Semantic Segmentation
Structured Probabilistic Models

Neural Networks Convolutional Neural Network (CNN)
Combining CNN with CRF
Results

Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3
Yy

input laver

output layer

p—

FIgU F€: http://neuralnetworksanddeeplearning.com/chap6.html
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Convolutional Neural Network

@ Almost the same neural networks

e Convolutional Neural Networks (CNN) contains convolutional
layer
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Convolutional Layer

@ Used to condense the input data into recognized patterns

@ This layer uses a filter, which is an array recognizing certain
feature
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Neural Networks Convolutional Neural Network (CNN)

Convolutional Layer

@ Used to condense the input data into recognized patterns
@ This layer uses a filter, which is an array recognizing certain
feature

@ Feature map is an array containing all of the results of the
convolutions
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CNN

sUnset

pﬂ[
convolution + max pooling vee
nenlinearty |
convolution + poeling layers fully connected layers ~ Nx binary classification

FIgU I€: https://adeshpande3.github.io/A-Beginners-Guide-To-Understanding-Convolutional-Neural-Networks /
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Fully Connected Layer

@ Usually last layer

@ Take an input from the feature map, and returns a vector of
label probabilities
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CNN

sunset

pW[
convolution + max pooling vee
nenlinarty |
convolution + poeling layers fully connected layers  Nx binary dlassification

Figure:

https://adeshpande3.github.io/A-Beginner27s-Guide-To-Understanding-Convolutional-Neural-Networks /
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CNN for pixel prediction

Texton Feature

Extractor ™

Boosting Classifier

Grid CRF|

¢l
2
Result

Input Image

Texton Feature
Extractor

Boosting Classifier

Dense CRF|

Result

Input Image

.

Deep Convolutional Neural Network|

Convalutional
-

Feature Extractor

Linear Classifier  —1

Unary.

Result

Input Image

|

Convolutional
Feature Extractor

——  Linear Classifier ~ ——»

'Deep Convolutional Neural Network

(CRF Inference Layer

Result

Figure: [3]
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Combining DNN with CRF

@ Let's look at a demo!

@ http://www.robots.ox.ac.uk/ szheng/crfasrnndemo
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[Method ToU (%] Base Network|
Wethods not using deep learning
lo2° [36] 78 -
IMethods ot using a CRE
lss (37) 516 AlexNet

N [6] 672 VGG
lzoomaut [38] 9.6 VGG
[Methods using CRF for postprocessing
[Deeplab (5] 716 vGe
[EdgeNvet [39] 736 VGG
[Boxsup [40] 752 VGG
[pikated Conv [27] 753 VGG
|Centrole Boundaries [41] 757 VGG
[Pecplab Atenfion [42] 763 VGG
lIRR (30] 793 ResNet
[peeplab v2 [43) 797 ResNet
[Methods with endiic-end CRFs
[CRF as RNNs [7] 747 VGG
[Pecp Goussian CRF [8] 755 VGG
[Deep parsing network (DPN) [44] 775 VGG
Icontext (32] 778 VGG
[Higher order CRF [33] 779 VGG

p Goussion CRF (8] 802 ResNet

Figure: [3]
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