
Commit protocols in mobile databases

Kyle Foss
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

fossx229@morris.umn.edu

ABSTRACT
A mobile database is a database that is installed on a mo-
bile device, and a mobile device is able to communicate and
share data over wireless networks with fixed devices and
other mobile devices. Complications in database transac-
tions occur, perturbations occur which can leave the data in
an inconsistent state. In this paper, we explore three atomic
perturbation-resistant commit protocols that address per-
turbations in three types of mobile database environments,
one based on improving partition tolerance in mobile ad-hoc
environments, another aimed at decreasing node and com-
munication failures in infrastructure based environments,
and one at improving fault tolerance in hybrid mobile en-
vironments. Simulation results indicate that each of these
three commit protocols reduce inconsistency caused by per-
turbations.

Keywords
Mobile databases, Commit Protocols, Atomicity

1. INTRODUCTION
When a person uses their phone to buy an item from an

online store, he or she expects money to be taken away from
their bank account, and the item purchased to be shipped to
their address. Except, it doesn’t, and when the person calls
the store, the store shows no record of the purchase ever
being made, despite the charge on their bank account. This
situation represents a common problem in distributed sys-
tems, know as the consensus problem. A distributed system
consists of a network of entities such as computers. The con-
sensus problem arises when agreement among a number en-
tities or processes for a single value is needed, so a consensus
protocol needs to be enacted. A type of distributed system
is a distributed database, which is a database spread among
multiple servers. The agents in this distributed database are
transactions. “A transaction is a program unit whose exe-
cution preserves the consistency of database” [5]. To ensure
consistency, different fragments of a distributed database
must be in agreement when committing a transaction, so all
actions associated with a transaction are executed to com-
pletion or none are performed. This property of a trans-
action is known as atomicity and can be referred to as an

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

Figure 1: An overview of a mobile database system

atomic action. [5]
In this paper, we present three atomic commit protocols

for mobile database systems. In section 2, we introduce key
terms and concepts relevant to parts of mobile database sys-
tems, transactions, and commit protocols. In section 3, we
present key issues in mobile database systems. In section
4, we present a commit protocol that addresses issues in in-
frastructure based environments and examine its results. In
section 5, we present a commit protocol that addresses is-
sues in wireless ad hoc environments and examine its results.
In section 6, we examine a commit protocol that addresses
issues in hybrid mobile environments.

2. BACKGROUND

2.1 Mobile database system architecture
A Mobile database system shown in figure 1 [3], consists

of several entities. One of these entities is a mobile device.
Mobile devices are devices such as cellphones and laptops,
and these mobile devices are known as Mobile Nodes (MNs)
in a mobile database system. MNs have mobile databases
installed on them. MNs are able to access the data stored on
themselves through a Database Management System (DBMS).
This is software that allows users to interact with the data
stored on a database. MNs communicate with each other
and other entities know as Base Stations (BSs) through
wireless communication interfaces ranging including low and



high bandwidth forms of wireless communications. Since an
MN is able to communicate with a BS, that MN can access
entities know as Fixed Nodes (FNs), through a wired net-
work, and each FN has a DBMS and a database installed
on it. [3].

2.2 Transactions and Transaction Processing
Transactions represent real life events such as sales from

a website and bank statements. For example, a transaction
to transfer fifty dollars from a savings account to a check-
ing account will perform two actions: change the savings
account record by reducing the balance of the savings ac-
count, and change the balance of the checking account by
adding fifty dollars. If the second step fails, and the first
step succeeds, then the checking account won’t have a cor-
rect balance. The transaction would end in an inconsistent
state. Thus, data can unexpectedly change due to how enti-
ties in a transaction communicate, so the transaction needs
to be monitored. This is known as Transaction Process-
ing. Transaction processing is important for data integrity,
specifically for the data in a database. Data integrity is the
maintenance of, and the assurance of accuracy and consis-
tency over the data’s life cycle. [1]

2.3 Commit protocols
Commit protocols are used in transactions to ensure data

consistency through atomicity. To ensure atomicity, every
participant in the transaction will vote on whether or not to
commit the transaction they’re involved in. Every partici-
pant must agree complete the transaction. Therefore, the
voting process must be unanimous. Every time a transac-
tion is processed it will go through either a commit or a
rollback procedure. If a participant votes to not commit a
transaction, the transaction will be aborted, and data will
be rolled back to a previous state. [5]

3. PERTURBATIONS
Problems that occur in mobile database systems are

known as commit perturbations. Commit perturbations in
mobile database systems are categorized into different cat-
egories: environment constraints and failures. Environment
constraints are caused by heterogeneity, unstable storage,
and energy constraints. Heterogeneity in a mobile database
system occurs due to the variety of MNs inside a mobile
database system. Not all MNs are guaranteed to have the
same computing resources and ways of communication. MNs
have unstable storage and power issues. A MN is prone to
lose data stored on it because it is easy to damage or lose,
so data stored cannot be recovered. Additionally, MNs can
lose power due to battery life.

The other set of commit perturbations are know as fail-
ures. Failures are classified in two different ways: node
failures and communication failures. Node failures occur in
MNs and FNs. The type of failures are known as transient
failures and permanent failures. Transient failures are tem-
porary failures and occur due to software or hardware faults.
Permanent failures are failures that are irreversible and oc-
cur due to theft or damage. Communication failures are
classified into two categories: network disconnections and
message loss. Network disconnections are transient. They
can be predictable and unpredictable. If a MN, BS, or FN
needs to be updated, it will have a scheduled time when it’s
offline, and it’s therefore a predictable disconnection. An

Figure 2: An overview of FT-PPTC

unpredictable occurs when a MN loses connection to the
mobile database system. This can occur when a MN loses
connection to a base station. The last category message loss
occurs due to network congestion and collisions. This occurs
when too many MNs are attempting to communicate with
a base station.

4. FT-PPTC
Fault-Tolerant Pre-Phase Transaction Commit (FT-

PPTC) is used in infrastructure based environments, and
these are environments where participating mobile nodes (P-
MNs) are able to communicate with BSs but not other P-
MNs. The objective of FT-PPTC is to separate P-MNs from
participating fixed nodes (P-FNs) In FT-PPTC, P-MNs and
P-FNs have various roles. One role of a P-MN is to start
the transaction. This P-MN is know as a Host Mobile Node
(H-MN). Each P-MN including the H-MN relies on a repre-
sentative known as a mobile node agent (MN-Ag). A MN-Ag
is a BS which is a P-FN, and a MN-Ag allows P-MNs to com-
municate with a wired network through wireless communica-
tion. A MN-Ag known as a Coordinator (CO) is responsible
for monitoring the transaction. In order to seperate the P-
MNs and P-FNs, the transaction is split into two phases:
a pre-commit phase and core phase. The pre-commit phase
serves to collect information from P-MNs, and the core phase
only involves P-FNs and takes place in the wired network of
the environment. The nodes in the wired network of the en-
vironment are fixed, so a two-phase commit protocol is used.
[1]

4.1 Pre-commit Phase
To follow with the actions each node takes during the pre-

commit phase refer to figure 2. [1]
Actions of the H-MN. The H-MN takes various actions

during the pre-commit phase in a somewhat structured way.
First, the H-MN will notify a MN-Ag and select it as a CO
to start the transaction. Since the H-MN is a P-MN, it
will record its data before updates and calculate two upper
bounds for time-out values. The first upper bound calculates
the amount of time it takes to record its data before any
changes, the time to make those changes, and the amount of
time, and the time to forward those changes to the CO. This



time-out value is known as shipping time-out value. The
second upper bound is the amount of time it takes forward
a P-MN’s vote to commit or abort the transaction to the
CO. This time-out value is known as the execution time-out
value. Each of these upper bounds are used as time-outs for
the transaction, and during the transaction the execution
time-out value will be extended if needed. If the CO sends a
message to abort the transaction, the H-MN will record the
message locally and send an acknowledgement message to
the CO, and the H-MN’s changes will be rolled back based
on its records. [1]

Actions of a P-MN. A P-MN will follow the same pro-
cedure as the H-MN replacing anything that’s done with the
CO with a MN-Ag. For information of the procedure see the
start of section 4.1.

Actions of a MN-Ag. During the pre-commit phase,
when receiving information from its corresponding P-MNs,
the MN-Ag creates a record for each of its P-MNs and stores
it in stable storage. A MN-Ag will then wait for any mes-
sages sent by the CO or P-MNs. If the message is sent by
the CO, the MN-Ag will update its record with the received
message and forward the message to all of its corresponding
P-MNs. If the message is sent by a P-MN, one of two things
happen. If the message contains updates, the record(s) of
the MN-Ag will be updated to keep track of the new up-
dates, and a vote to commit the transaction will be sent
to the CO. If message doesn’t contain updates, the record
of the MN-Ag will be updated with the message, and the
message will be sent to the CO. [1]

Actions of the CO. During the pre-commit phase, the
CO will take various actions, and these actions will hap-
pen in somewhat arranged order. First, the CO will receive
information from the H-MN, the CO creates a record for
the transaction which will contain information about the
transaction. Every participant involved in the transaction
is stored in the record, and the record will contain a state for
processing occurring at each participant to reflect the sta-
tus of each participant in the transaction. The states are:
idle, active, pre-committed, committed, and aborted. The
state of the H-MN is set to active when it sends its time-out
values, updates, and vote to the CO, and the state of each
P-MN is set to idle. After this step, the actions and the or-
der the CO executes these actions will depend on the other
nodes in the transaction. [1]

The P-MNs will send their corresponding time-out values,
votes, and updates to the CO through their MN-Ags. When
receiving the time-out values from any MN-Ag, the CO will
set the state of its self to being active. It will also set the the
state of each P-MN to being active, when receiving its time-
out values, updates and votes from the P-MNs. If new time-
out values are calculated, the P-MNs will update the time-
out values stored in the record(s) at the CO. The CO will
then wait for the the maximum time-out value of execution
time-out value and shipping time-out value combined. If
the CO receives the updates from the H-MN, and a commit
vote from each MN-Ag within the time-out, the CO writes
all updates locally and sets the state of each P-MN to be pre-
committed. During the pre-commit phase, the transaction
can be aborted in two ways. First, if a CO receives a vote
to abort the transaction, the CO will end the pre-commit
phase by an abort decision and forward its decision to all P-
MNs. The other way a transaction is aborted is through the
expirations of the two time-out values. When a transaction

is aborted, all P-MNs will rollback to a previous state based
on their logs to maintain data consistency. If a CO receives
all data logs and votes from each P-MN, then the transaction
will proceed into the core phase. [1]

4.2 Core Phase
To follow with the actions each node takes during the

core phase refer to figure 2. [1] If the pre-commit stage
succeeds, the core phase begins, and the CO will execute
the two-phase commit protocol, which involves the P-FNs of
the transaction. (for more information about the two-phase
commit protocol see [5]). When the core commit stage of the
transaction begins, the CO sends the updates and votes of
the P-MNs to their corresponding P-FNs, and the two-phase
commit protocol is started. Votes are collected from each P-
FN. During the two-phase commit protocol the transaction
can be aborted in two ways. First, the transaction can time-
out due to P-FN not sending its vote, or the transaction will
be aborted due to the CO receiving a vote to abort from a
P-FN. If the time-out values don’t expire, and if the CO
doesn’t receive an abort vote, the transaction will succeed.
In both cases, the CO will inform all participating nodes of
the result. [1]

4.3 Results
To simulate a transaction in an infrastructure based en-

vironment Ayari et al., used a program called SimJava. [1]
The simulation’s parameters had a fixed number of P-FNs,
a varied amount of MNs in the range of 1-25, a fixed pro-
cessing time of 5ms for each P-MN to perform its actions. A
fixed processing time of 2ms for each F-MN to perform its
duties in two-phase commit, a fixed wireless communication
delay of 10ms, and a fixed wired communication delay of
5ms, for information on these settings see [1].

The simulation was evaluated on two criteria: throughput
and resource blocking time. “Throughput is the number of
successful commit transaction per time unit, and resource
blocking time is the amount of time a F-MN is accessed
during the transaction excluding the CO and MN-Ags” [1].

FT-PPTC was simulated against two other commit proto-
cols, two-phase commit and mobile two-phase commit. Re-
sults show that FT-PPTC has a higher throughput than
two-phase commit but not mobile two-phase commit due
to the amount of messages that are communicated in each
protocol, for more information on these results see [1].

For resource blocking time, FT-PPTC has a lower block-
ing time than two-phase commit and mobile two-phase com-
mit. This is due to the separation of the P-FNs and the
P-MNs since resource blocking time occurs during the core
phase. [1]

5. ParTAC
The goal of the partition tolerant atomic commit proto-

col (ParTAC) is to minimize and control the decision time
of a transaction in a wireless ad hoc environment, which
is an environment where MNs can only communicate with
each other. It improves the decision time by tolerating mes-
sage loss, network disconnections, and network partitioning,
which is when a cluster of P-MNs is separated from an-
other cluster of P-MNs that are communicating during the
transaction and later reestablish communication during the
transaction. ParTAC tolerates these perturbations by set-
ting a lifetime time-out value for each transaction and by its



Figure 3: An overview of ParTAC

CO selection process. [2]
To follow along ParTAC’s procedure refer to figure 3. [2]

ParTAC consists of four parts. First, a P-MN initiates the
transaction. Next, the P-MN that initiated the transaction
will notify other P-MNs of the transaction, and a set of P-
MNs is to become COs. The COs receive the transactions
lifetime value, so each CO can abort the transaction when
the lifetime of the transaction expires. Next, each CO will
vote on whether or not to commit the transaction and add
its own vote to the list of P-MNs that have voted to commit
the transaction. The CO then collects a vote from each P-
MN. If a CO encounters another CO during this process,
then the COs will exchange their lists of votes and add each
others list to their own. One of the COs will then change
its role to being a P-MN and no longer be a CO. During the
vote collection process the transaction can be aborted. If
not aborted, a CO with a list of all P-MNs votes will notify
all other P-MNs to commit the transaction. [2]

5.1 Roles of P-MNs
During the protocol, P-MNs make updates locally and

are required to send their votes to each CO encountered
provided no final decision has been made, and each P-MN
is not allowed to change their vote during the transaction.
The P-MN can either decide to vote to abort the transac-
tion or vote to commit the transaction. If the P-MN decides
to vote to abort the transaction, it sends a vote to abort
to each CO encountered in the transaction. If the P-MN
decides to commit, it will send a vote to commit each CO
encountered in the transaction. The P-MN then will peri-
odically communicate with the COs in the transaction by
receiving a beacon that’s sent by a CO. The beacon is used
to inform P-MNs of the presence of COs in the transaction.
When the beacon is received, the P-MN will respond back
by sending its vote. The P-MN will repeat this process for
every CO that has not been encountered in the transaction.
During and towards the end of the transaction, the beacon
is used to inform all P-MNs of the CO’s decision to abort
or commit the transaction. If a P-MN receives an abort or
commit decision, it will send an acknowledgement message
to notify a CO that it received its decision. The P-MN will
then either commit its changes or rollback the changes. [2]

5.2 Roles of COs

Table 1: Test settings for ParTAC

Parameter values
Geographical area 2km by 2km

Communication range 250m
Mobility models Random Waypoint (RWP), RPGM

Node speed LOW uniform in [0.5, 1.5] m/s
MEDIUM uniform in [3, 10] m/s

HIGH uniform in [10, 25] m/s
Number of nodes [20, 200] for Random Waypoint

[60, 380] for RPGM
Number of COs 2, 3, 4, 7, 10

Number of P-MNs 10
lifetime 60s, 120s, 300s, 900s

As described in section 5, a CO’s main role is to oversee
vote collection in the transaction. Each CO receives a copy
of the transaction’s lifetime value. Each CO then starts pro-
cessing its updates and adds its vote its list. While waiting
for time-out to expire, the CO will periodically send beacons
to other P-MNs and COs involved in the transaction. The
beacons allow the CO to communicate with other COs and
P-MNs in the transaction. If a P-MN sends a message to
the CO, it will either be a vote to commit the transaction or
to abort it. If the message is to abort the transaction, the
CO will send an abort message to all P-MNs. Alternatively,
a CO can vote to abort the transaction since it is a P-MN.
If the CO receives a vote to commit the transaction, the CO
will add the ID of the P-MN to a list of P-MNs that voted
to commit the transaction, and each CO keeps its own list.
Each time an ID is added to a CO’s list, a checklist algo-
rithm is run to check if the CO’s list contains the IDs of all
P-MNs involved in the transaction. In the case that a CO
encounters another CO in the transaction, one CO will be
chosen to remain a CO as described in section 5. If any of
the COs don’t collect all votes before the time-out of the
transaction expires, the CO will send an abort message to
all P-MNs, and the transaction will be aborted. [2]

5.3 Testing ParTAC
The results of ParTAC are based on three criteria: com-

mit rate, transaction decision time, and message complexity.
[2] Commit rate is measured by the ratio of successful com-
mitted transactions to the total number of initiated transac-
tions, and it measures service availability. Transaction deci-
sion time is the amount of time needed to complete a trans-
action. The message complexity is defined as the number of
messages sent and received on average by each P-MN during
the execution of the transaction. Message complexity deter-
mines the scalability of ParTAC. To simulate ParTAC Ayer
et al., [2], used a common component-based, compositional
based simulation environment called J-Sim. The program
uses two mobility models: random waypoint mobility model
(RWP) and reference point group mobility model (RPGM)
to simulate the movement of nodes in wireless ad-hoc envi-
ronment. In the RWP model, each node is given a random
velocity and will pause at times to change the direction. In
the RPGM model, nodes move in a group setting. Each
group contains a leader node which the other nodes in the
group follow. The velocity of the other nodes randomly de-
viates from the leader node. For test settings, Ayer et al [2]



(a) Impact of Mobility Model
on Commit Rate

(b) Impact of Mobility Model
on Decision Time

(c) Impact of Mobility Model
on Message Complexity

Figure 4: ParTAC results

used, different movement speeds for the nodes. The move-
ment speeds represented three different speed categories and
moved uniformly. The number of COs and transaction life-
time values were also varied. For more information see table
1. [2]

5.4 Results
As mentioned before, ParTAC is simulated under different

network conditions and protocol parameters to simulate the
behavior of various development scenarios. Results indicate
that the commit rate doesn’t depend on the mobility model
but on the amount of network partitioning occurring in the
transaction, which was described in section 5. For more
information on the results see figure 4a. [2]

The decision time and messages exchanged is higher in
RPGM than Random Waypoint. In the RPGM nodes are
concentrated in the same area, so as the number of MNs in-
creases, greater message loss and network congestion occurs.
For information on these results see figures 4b and 4c. [2]

6. GMTC
FT-PPTC and ParTAC are not optimal commit protocols

for hybrid mobile environments, which is an environment
where MNs can communicate with each other and BSs. FT-
PPTC fails since it cannot support a mobile ad hoc envi-
ronment since only MNs exist in this environment. ParTAC
fails since it’s very inefficient in this environment due to the
amount of messages that are communicated due to COs, and
the amount of time to complete a transaction. [4]

Generalized mobile transaction commit (GMTC) is a pro-
tocol that is combination of the ParTAC and FT-PPTC
protocols. It is an atomic perturbation-resilient commit pro-
tocol for hybrid mobile environments. GMTC inherits the
pre-commit phase and core phase from FT-PPTC and mod-
ifies the phases slightly. In the pre-commit phase, COs are
selected the same way as in ParTAC and FT-PPTC as de-
scribed in sections 4 and 5. However, the COs that are
selected are P-MNs that have the ability to connect with
infrastructure during the selection process. [4]

6.1 Pre-commit Phase
To follow with the actions each node takes during the pre-

commit phase refer to figure 5. [4] Actions of a P-MN.
The behavior of a P-MN in GMTC will behave similarly

Figure 5: An overview of GMTC

to their behavior in FT-PPTC and ParTAC as described
in 4 and 5. However, a small difference exist between the
two. When aborting or committing a transaction, a P-MN
will send its vote to a MN-Ag instead of a CO if possible.
When a P-MN doesn’t have access to a MN-Ag, it will follow
ParTAC’s procedure for P-MNs. [4]

Actions of COs. In the precommit phase, COs man-
age the transaction based on vote and lifetime value of the
transaction. COs will have the same behavior as described
in sections 4 and 5. However, when two COs encounter one
another, a CO that can connect with a MN-Ag will always
remain a CO. If two COs cannot connect with a MN-Ag,
CO resolution will remain the same as ParTAC as described
in 5. Additionally, the MN-Ag that acts as a CO will follow
this procedure and the checklist procedure as described in
section 5. I[4]

Actions of MN-Ags In pre-commit phase, MN-Ags in
GMTC will behave the same as described in section 4.1.

6.2 Core Phase
To follow with the actions each node takes during the core

phase refer to figure 5. [4] To enter the core phase, as de-
scribed in section 4.2 the CO in wired part of environment
will begin the core phase based on the information communi-



Table 2: Test settings for GMTC

Parameter values
Geographical area 2km by 2km

Communication range 250m
Mobility models Random Waypoint (RWP)

Node speed uniform in [0.5, 1.5] m/s
Number of nodes [20, 200]

Number of Pre-selected COs [3, 5, 10]
Number of P-MNs 10

Lifetime 60s, 120s, 300s

cated from the MN-Ags. P-FNs are apart of the core phase.
During the core phase, P-FNs follow procedure as described
in section 4.

6.3 Results
The results of GMTC are measured simulated based on

the same criteria and the same test software as described
section 5.3. However, some of the simulation settings were
changed and are described in table 2.

Results show that having BSs as a part of the transaction
increases the commit rate, despite having a low number of
P-MNs in the transaction when compared to ParTAC. This
becomes less important as the number of P-MNs increase.
When compared to FT-PPTC, there appears to be no dif-
ference between the two protocols in terms of commit rate.
For information on these results see figure 6a [4].

For the transaction decision time, the decision time is
lower for GTMC than ParTAC when the BS coverage is
44.17 percent. This is caused by having access to BSs, so P-
MNs can communicate despite network partitioning. How-
ever, the decision time increases as number of MNs increase,
and ParTAC will have a lower decision time in this case.
This due to the number P-MNs that communicate with a
corresponding BS. This same result occurs when comparing
decision time in FT-PPTC to the decisions time in GMTC,
but the difference between the decision times is less appar-
ent. For information on these results see figure 6b [4].

For message complexity, results indicate that amount of
messages exchanged per P-MNs remained mostly constant
across all three protocols. The only case when more mes-
sages were exchanged, was when transaction were aborted
and the number of MNs was high. For information on these
results see [4].

7. CONCLUSION
In the present paper, we discussed the importance of

transactions in a mobile database system and presented
three atomic commit protocols that address perturbations
that occur in three mobile database environments: infras-
tructure environments, wireless ad hoc environments, and
hybrid environments. We discussed the issues that arise in
each, and we found that FT-PPTC and ParTAC improve the
reliability and performance in infrastructure environments
and wireless ad hoc environments respectively. However, in
hybrid environments we found that GMTC is slower than
FT-PPTC and ParTAC in some cases. As the number of
mobile environments grow, there will be more commit pro-
tocols that will need to be developed and geared to handle
pervasive perturbations in mobile database environments.
It is important for us to address these perturbations so that

(a) Impact of BSs’ coverage on
commit rate

(b) Impact of BSs’ coverage on
decision time

Figure 6: GMTC results

our data doesn’t change in unexpected ways.

8. ACKNOWLEGEMENTS
I would like to thank Kristin Lamberty, Elena

Machkasova, and Thomas Hagen for help and feedback on
my senior seminar paper.

9. REFERENCES
[1] B. Ayari, A. Khelil, and N. Suri. Ft-pptc: An efficient

and fault-tolerant commit protocol for mobile
environments. In 2006 25th IEEE Symposium on
Reliable Distributed Systems (SRDS’06), pages 96–105,
Oct 2006.

[2] B. Ayari, A. Khelil, and N. Suri. Partac: A
partition-tolerant atomic commit protocol for manets.
In 2010 Eleventh International Conference on Mobile
Data Management, pages 135–144, May 2010.

[3] B. Ayari, A. Khelil, and N. Suri. On the design of
perturbation-resilient atomic commit protocols for
mobile transactions. ACM Trans. Comput. Syst.,
29(3):7:1–7:36, Aug. 2011.

[4] B. Ayari, A. Khelil, and N. Suri. Gmtc: A generalized
commit approach for hybrid mobile environments.
IEEE Transactions on Mobile Computing,
12(12):2399–2411, Dec 2013.

[5] C. Date. An Introduction to Database Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 8 edition, 2003.


