
Road Segmentation with Neural Networks

Tsz Hong (Andy) Lau
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

lauxx265@morris.umn.edu

ABSTRACT
Autonomous driving is the next biggest technological ad-
vance in the automobile industry. However, the current tech-
nology is still very much in its infancy. Networks of sensors
such as cameras and LIDAR systems are used to record and
measure the road condition. While neural networks are used
to understand the road condition and make the correct de-
cision to drive the vehicle. In this paper, we are specifically
focusing on the road segmentation of autonomous vehicle
technology. We will be going over the two approaches to
road segmentation by Oliveira, et al [5] and Caltagirone, et
al [2], and we will compare the performance of each approach
on a road benchmark dataset called KITTI dataset.

Keywords
Autonomous vehicle, LIDAR, fully-convolutional network

1. INTRODUCTION
Every year, thousands of lives are lost to road accidents

alone in the US. A lot of these accidents can be traced back
to human errors. Car drivers of today are getting easily
distracted on their cell phones and some are driving under
the influence of alcohol and drugs. To address this, the auto-
motive industry has been researching autonomous driving to
eliminate the human factor in driving, thus allowing for safer
roads for drivers and pedestrians alike. Autonomous drivers
have the potential to be the perfect driver since they would
not be distracted by their cell phones nor would they be able
to drive under the influence. In addition, autonomous driv-
ing promotes better fuel economy and alleviates congestion
by coordinating their routes. Autonomous driving requires
an important component called neural network that has the
ability to learn to drive. We will be specifically focusing on
the road segmentation aspect of autonomous driving.

We will be looking at the two approaches of road seg-
mentation by Oliveira, et al [5] and Caltagirone, et al [2].
Section 2 will give all relevant background information re-
garding how autonomous vehicles perceive the outside world
and how neural networks work. Section 3 will explore the
two approaches in greater detail and present a dataset de-
signed to benchmark neural networks on road segmentation
tasks. Section 4 will present the results gathered from the

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

two approaches and how each of them performed compared
to the other. Finally section 5 will give a summary of the pa-
per and present current updates regarding the performance
of road segmentation.

2. BACKGROUND
In this section, we introduce the important concepts of au-

tonomous vehicles. Autonomous vehicles perceive the out-
side world by having a network of sensors or cameras that
are placed either around the outer perimeter or on top of
the vehicle. There are currently two main sensors that au-
tonomous vehicles use to understand the condition of the
road: camera and LIDAR, which stands for Light Detec-
tion and Ranging. The network of these sensors send the
gathered information such as images or point cloud infor-
mation to an on-board computer which then analyzes the
information to categorize or identify objects on the road.
We will examine only a small, yet important area of au-
tonomous driving, road segmentation, which is the task of
classifying each pixel of an input into two categories: road
and non-road. We achieve this goal with the help of neural
networks and specifically a type of neural network optimized
for pixel-based classification.

2.1 Camera and LIDAR
One of the ways autonomous vehicles gather information

about the road is through a network of cameras mounted
around the perimeter of the vehicle. These cameras take
video recordings of the road which are then analyzed frame
by frame. Cameras are limited in their data gathering capa-
bilities. Adverse weather condition such as heavy fog impairs
the vision of the cameras. Meanwhile, shadows are easily
interpreted as objects. The computer in turn will have to
take into account these factors in their analysis of the road
condition as they will negatively impact performance and
efficiency. [6]

LIDAR sensors have been used in conjunction with cam-
eras in adaptive cruise control systems that are currently
available in vehicles [6]. LIDAR systems have three major
components: a transmitter, a receiver and an optical ana-
lyzer. The transmitter of a LIDAR system emits a pulsating
laser beam that bounces back when the beam hits an object.
The receiver then detects the said laser beam and the op-
tical analyzer determines the time it took for the beam to
return. Using this information allows the computer to de-
termine how far the object is relative to the vehicle. [3]
LIDAR sensors are usually mounted on top of a vehicle that
is spinning 360◦, collecting information around the vehicle.



2.2 Neural Networks and Deep Learning
In road segmentation tasks, the computer needs to discern

road surfaces and non-road surfaces in the optical informa-
tion sent from the network of sensors. Autonomous vehicles
achieve this task through the use of neural networks. Neu-
ral networks are loosely modeled after human brain but on
a smaller scale [1]. Natural human brains have a network
of neurons, connected to each other by structures known as
synapses. Neurons communicate through pulses which are
sent from one neuron to the other. Neural networks work
very similarly, nodes are neurons and are each connected by
edges, each with a weight that indicates how much influence
a value in one node has on another. Nodes are structured
as a stack that forms a layer in a neural network. Models
of neural network usually have multiple layers. All models
would have an input and output layer but may have a differ-
ent amount of layers in-between called hidden layers. Hidden
layers can be seen as distillation layers, each layer distilling
a specific feature from the input. Figure 1 shows a typi-
cal architecture of a neural network, it consists of an input
layer, two hidden layers, and an output layer. Nodes be-
tween two adjacent layers are fully-connected, which means
that each node in any given layer are connected to every
node in adjacent layers.

Figure 1: A simple diagram of a neural network with
two hidden layers [1]

A node typically takes in inputs from the previous layer,
and applies a modifier called weight that either amplifies or
dampens the input. These weights are what make a neu-
ral network powerful because it provides a way for us to
train a network. We discuss this concept later in section 2.4.
The nodes sum up all the weighted inputs from the previous
layer, and then pass the summation result to an activation
function that returns a single value. Without a non-linear
activation function, neural networks can only express lin-
ear relationships between input and output. By introducing
some non-linearity into a network, the model can predict
more complex functions, thus increasing the capability of
a network. The output of the activation function is then
compared to the threshold value: if the output exceeded the
threshold value, the node will send the output to the next
layer of nodes. This process will continue until it reaches an
output layer, which usually outputs a vector of class scores
for a list of predicted events. As an example, a neural net-
work tasked to recognize a hand-written digit will output a
vector of class scores for each digit. This entire operation is
called forward propagation.

Neural networks have had many real-world applications,

from character and speech recognition to a prediction of a
particular event. In the topic of road segmentation, a road
scene image is fed into the neural network and each pixel
of the image is classified as either road surface or non-road
surface. As we discuss in section 2.3.1, a regular neural net-
work is not optimized for this sort of operation. In fact,
a type of neural network called fully-convolutional network
is more optimized and more suitable for road segmentation.
As discussed before, a regular neural network only computes
a vector of class scores. In the interest of road segmen-
tation, we are aiming to reproduce the same exact image
as the input with the same resolution but with road and
non-road surfaces labeled. But before we delve into fully-
convolutional network, we need to understand its predeces-
sor convolutional neural network (CNN). CNNs are mainly
used for image classification in which an object of an im-
age is classified into one of several fixed and pre-determined
categories.

2.3 Convolutional Neural Network
Convolutional Neural Networks (CNN) are designed to

process data that come in the form of images. A color image
is transformed into three 2-dimensional arrays each contain-
ing one of the three color channels in the image. CNN is op-
timized for image classification compared to regular neural
network because of its inclusion of two new types of layers:
convolutional layers and pooling layers.

2.3.1 Convolution Layer
The convolution layer is the core building block of a con-

volutional neural network. The convolution layer consists
of layers of filters with each of layer looking at a specific
feature of the image. For example, one filter might be look-
ing for edges while another is looking for curves. A filter
is only looking at a small spatial area of the original input
but would convolve across the width and height of the input
image. The size of this small area is a parameter we can
control (hyper-parameter) called the receptive field. This
aspect of convolution layers is what makes CNN more op-
timized for image classification. A filter is made up of an
array of trainable weights, and these weights are the same
no matter where in the image the filter is applied as the filter
is convolving around the image. In regular neural networks,
a node inside the first hidden layer would have weight corre-
sponding to all the elements inside the three 2-dimension ar-
rays. For image classification problem, this fully-connected
aspect of a regular neural network does not scale well to im-
ages [1]. The amount of weights needed to be trained would
increase exponentially as the image size increases. The de-
sign of convolution layers allows for less weights to be trained
(only those needed by the relatively small receptive field of
the filter) which decreases training time and computational
load.

In the forward pass, starting from the top left corner, the
filter inside the convolution layer will slide across the width
and height of the input volume and multiply the weight in
the filter with the pixel value of the input image. The mul-
tiplications are then summed up and stored in the same rel-
ative position of what is called a feature or activation map
as seen in Figure 2. Since the convolution layers have layers
of filters, each layer results in a feature map that is then
passed onto the subsequent layer for further analysis.

Another aspect we need to consider is the hyper-parameters



that control the size of the output feature maps: the depth,
stride and zero-padding. First, depth of the output volume
corresponds to the number of filters we would like to use,
each learning to look for something different in the input,
i.e. curves or edges. Second, the stride correspond to how
many pixels we move the filter at a time, if the stride is 2,
then the filters jump 2 pixels at a time when we slide them
around. Third, zero-padding is a hyper-parameter respon-
sible for padding the input volume with zeros around the
border. There are some cases that one would need to pad
zeros around the border in order for the receptive field con-
sidered and the stride to consistently cover the entire image.
[1][8]

Figure 2: Visualization of 5x5 filter convolving
around an input volume and producing an activa-
tion map [1]

2.3.2 Activation Layer
It is common to include an activation layer right after

the convolution layer. An activation layer is simply a layer
with activation functions. As mentioned before, activation
function is used to introduce some form of non-linearity into
the network. The most common activation function is the
ReLU, stands for Rectified Linear Unit. ReLU has the fol-
lowing form, f(x) = max(0, x). It is the most common
activation function because of its low computational cost
compared to other activation functions [1].

2.3.3 Pooling Layer
Pooling (down-sampling) layers are usually inserted in be-

tween successive convolution layers. The purpose of these
pooling layers is to reduce the spatial size of the feature
maps from the convolution layers thus, reducing the amount
of parameters and computation in the network. Two hyper-
parameters need to be considered for pooling layers: spatial
extent and stride. Spatial extent represents the width and
the height of the input layer to be considered. The most
common down-sampling operation is max, giving rise to max
pooling. To give an example, a spatial extent of 2 and stride
2 means each max takes in 4 numbers (2 x 2 square) and
finds the max of those numbers. The result of the pooling
layer are these condensed feature maps that are then passed
on to subsequent convolution and pooling layers.

2.3.4 Fully Connected Layer and Softmax Layer
The fully connected layer is sometimes the final layer in a

CNN. Like the name suggests, this layer is fully connected to

all the feature maps compiled from previous convolution and
pooling layers. This layer is responsible for the classification
of the object in the image. By taking in inputs from all
previous layers, it collects the global context information
instead of the local information collected in the convolution
layers. This layer computes an N dimensional vector where
N is the number of classes. Each number in this vector
represents the probability of a certain category.

Some CNN include a softmax layer at the very end of the
network to scale the class scores into a range from 0 to 1,
effectively changing the vector of class scores into a vector
of probability for each class. In addition, softmax layer acts
to amplify the differences between the probability for each
class. In road segmentation, each pixel would have a vector
of two probabilities each representing the probability of the
pixel being the road or non-road surface. Finally, we would
hope to see that the difference between the road and non-
road probabilities is large so that no ambiguity is present in
the network prediction.

2.4 Training
We previously mentioned that what makes neural net-

works powerful are the sets of weights that can be modi-
fied in order to improve accuracy in the output. Training a
neural network involves a training dataset paired with their
ground truth labels. In the case of road segmentation, the
ground truth labels come from manually segmented images
in which people have hand-labeled the road and non-road
surfaces. The images are provided to a neural network and
the output of the network (class probabilities for every pixel)
is calculated using forward propagation. For each pixel the
highest class probability is compared to the known label
and a loss function is calculated as the difference between
the two. A high loss would indicate that the neural network
have performed poorly in its task, while a low loss would
indicate otherwise.

2.4.1 Backpropagation
Weights are initially randomized in the construction of a

neural network. In the forward pass, an image from the
training dataset is sent through the network and the output
probability is compared to the true label probability pro-
vided with the test image. As mentioned above, this com-
parison is quantified using a loss function. Going backward
through the network from output to input (called backpropa-
gation), the network will evaluate which weight contributed
the most to the total loss and calculate the weight adjust-
ments that would minimize the loss. The loss function has
its own curve and gradients. By aiming for the local min-
ima relative to the weight, the network will produce the
lowest loss. This process is called gradient descent. Another
component we need to consider is the learning rate, or the
amount by which to adjust weights while seeking the local
minima. With a high learning rate, we cover more ground
each step, but risk overshooting the minima. With a low
learning rate, it is more precise, but time-consuming. Af-
ter the weight calculation is completed at each layer, the
weight will be updated using the calculation from the back-
ward pass. The number of training examples in one epoch
(forward/backward pass) is called batch size. In road seg-
mentation tasks, the batch size could consist of hundreds
of road scene images in one epoch. A large training dataset
has the benefit of better fine-tuning the weights but requires



Figure 3: Up-Convolutional Network. The network part up to the first up-sampling layer the encoder side of
the network and the following portion the decoder network side. Deconvolution layers have size equal to C ∗
Ncl, where Ncl stands for number of classes and C for the scalar factor of filters augmentation. The numbers
under the convolution layers represent the depth. [5]

more memory. Therefore, the most optimal way of training
a CNN for road segmentation task is usually via stochas-
tic gradient descent (SGD). SGD is a method used during
the training phase to reduce the amount of training required
while keeping the network better trained by randomly pick-
ing samples from a training dataset to train the network.

2.4.2 Dropout
Neural network in general sometimes suffer from overfit-

ting. It is condition in which the network is so well trained in
the training dataset that it fails to generalize the underlying
relationship, causing the network to do poorly in its predic-
tion in the testing dataset. This could attributed to the fact
that a few weights are trained and modified in the training
phase, leaving the rest of the weights effectively deactivated.
Therefore, neural networks commonly implements a dropout
as a technique to deactivate a certain percentage of weights
during the training phase. Doing so would allow the rest of
the weights to be trained on the training set, thus allowing
the network to better understand the underlying relation-
ship of the dataset.

2.5 Fully Convolutional Network
The ultimate goal in road segmentation is that the output

of the network has the same size and resolution as the input
image with each pixel labeled as road or non-road. As we
discussed in section 2.3.3, the pooling layer inside a CNN re-
duces the spatial dimension of the input in order to decrease
the amount of parameters needed to be trained. Therefore,
the end of all pooling and convolution layers results in a se-
ries of feature maps that are compressed. In order for the
output to match the size and resolution, we need to return
these feature maps back to the original input. Long, et al
developed a type of CNN called fully convolutional network
(FCN) that enables this functionality. An additional layer
called deconvolution or up-sample layer is added to the end
of a CNN architecture. The deconvolution layer takes in
all the feature maps from previous layers and reconstruct
the maps back to the size of the input. Another common
option that is employed to reconstruct the feature maps
back to the original input is through a process called max-
unpooling. Max-unpooling preserves the location where the
original max-pooling took the maximum value in the spatial

extent considered for max-pooling and pad zeros to all the
other empty location, essentially performing a reverse max-
pooling operation. The FCN architecture could be general-
ized into two main components: encoder and decoder. The
encoder consists of convolutional layers and pooling layers
that extract features from images and reduce the spatial di-
mension. Meanwhile, the decoder recover the object details
and spatial dimensions lost in the encoding component. [4]

3. METHODS
Oliveira, et al [5] and Caltagirone, et al [2] approach the

road segmentation task in two different ways. Oliveira, et al
approached the road segmentation problem by creating their
own modification of the FCN called Up-Convolution Net-
work (Up-Conv-Poly). The Up-Conv-Poly takes in a color
road scene image and outputs the same image with the road
and non-road surfaces highlighted. Meanwhile, Caltagirone,
et al approach the road segmentation problem with their
own network called LIDAR-only Deep Neural Network. As
the name suggests, it takes in LIDAR point cloud data. The
point cloud data is initially 3-dimensional, but then is com-
pressed down to a 2-dimensional grid image. The output is
similar to the Oliveira, et al network output as it creates
the same input image with each grid cell labeled as road or
non-road surface.

3.1 KITTI Benchmark Dataset
The KITTI road benchmark dataset is designed to bench-

mark road detection. The dataset was acquired in various
locations such as city, rural, and highway over a period of
five different days. The dataset contains both a training
set and a test set. The training and test set have each of
its pixel already labeled as road or non-road surfaces that
act as ground-truth labels. These ground-truth labels are
obtained through manual segmentation of each road scene
image. As mentioned in section 2.4, the training set is im-
portant during the training phase as it provides a way for
the weights inside the network to be properly adjusted. The
KITTI road benchmark consists of both road scene images
and LIDAR point clouds as an extension to the data set.
[2][5]



Figure 4: Architecture of the proposed LoDNN. The network has an encoder and a decoder but has an
additional implementation of a context module. The input of the network is LIDAR point clouds compressed
into 2-dimensional grid. The output has the same dimension and resolution as the input but with road
surfaces labeled blue. W represents the width, H represents the height, and D is the number of feature maps.
[2]

3.2 Up-Convolutional Network
Up-Convolutional Network takes a color road scene im-

age and outputs a class score for each of pixel of the input
image, thus labeling each pixel as road or non-road surface.
The network like FCNs could be split into two parts, an
encoder and a decoder. The encoder is responsible for dis-
secting the image for specific features and output a series of
feature maps. The encoder part of the network is inherited
from a network architecture called Visual Geometric Group
(VGG), more information can be found in [7]. Meanwhile,
the decoder part of the network adopted the up-sampling
layers proposed by Long, et al. The decoder takes in the
feature maps generated from the encoder and recreate an
output that has the same resolution and spatial dimension
as the input. The decoder consists of deconvolution layers
that up-samples the features maps via bilinear interpolation.
Bilinear interpolation could be summarized as a procedure
for taking four data-points in a feature map and using them
to construct a larger collection of data-points that brings the
spatial dimension closer to the input image.

Dropout layer (discussed in section 2.4.2) is included in
the Up-Conv-Poly to avoid overfitting. A convolution layer
is implemented right after the up-sampling and convolution
layer with the same spatial dimension as the previous layer.
This layer is called a 1x1 convolution layer that is designed
to increase the amount of non-linearity that can be incorpo-
rated into the network [1]. Oliveira, et al also implemented
a softmax layer (discussed in section 2.3.4) at the end of
network. See figure 3 for a complete architecture design of
the Up-Conv-Poly.

Researchers also implemented data augmentation to com-
pensate for the small number of training examples. They
employ a series of data transformations such as scaling and
altering the RGB value of the original image, so that more
training examples are available for the network to learn.
Thus, increasing the accuracy of the prediction output by
the network.

3.3 LIDAR-only Deep Neural Network
Caltagirone, et al developed a LIDAR-only Deep Neural

Network (LoDNN) that takes LIDAR point clouds as in-
puts and outputs a similar result as Up-Conv-Poly. LIDAR
point clouds are 3-dimensional point clouds information that
needs to be transformed into a suitable format before it can
be used as an input for the network. The first step of the
procedure is to create a grid in the x-y plane of the LIDAR
point clouds and compress the 3-dimensional information
into the grid. For each grid cell, some basic statistics are the
computed: number of points, mean reflectivity, mean, stan-
dard deviation, minimum and maximum elevation. These
six grids, each representing an aspect of the original LIDAR
point clouds, are then fed into the network.

Like Up-Conv-Poly, LoDNN follows an encoder/decoder
configuration. Its encoder is made up of two convolution
layers and one pooling layer. The output of the encoder are
feature maps that are then passed on to the context module.
Context module are made up of dilated convolution layers
which are similar to regular convolution layers but have the
receptive field for the filter increasingly expand at every sub-
sequent dilated convolution layer. Expanding the size of the
filter effectively expands the context for the filter which im-
proves accuracy while still keeping the number of parameters
down [2]. The activation function used by dilated convolu-
tion layers is called an exponential linear unit (ELU). A 1x1
convolution layer is implemented at the end of all dilated
convolution layers to add some form of non-linearity into
the network. The context module of the network is immedi-
ately followed up by the decoder component. The decoder
contains a max unpooling layer, followed by two convolu-
tion layers and a softmax layer. The two convolution layers
act as up-sampling layers bringing the feature maps gener-
ated from the encoder and context module back to the same
spatial dimension as the input. See figure 4 for a complete
architecture design of the LoDNN.

It was not appropriate to inherit a pretrained encoder



from a previous established network because the encoder
would only be trained for camera images. Therefore, Calta-
girone, et al deemed it more appropriate to train the network
from scratch, using only KITTI training data.

Researchers also implemented data augmentation in their
network. Each training images was rotated about the LI-
DAR z-axis for angles in the range [-30◦, 30◦] using steps
of three degrees. After rotation, each example was also mir-
rored about x-axis. In this way, the training set was in-
creased by a factor of 42. [2]

The output of the network has the same spatial dimension
as input grid but with each grid cell labeled as road or non-
road surface.

4. RESULTS
The two proposed networks were both evaluated on the

KITTI road benchmark test set in the urban road category.
Some metrics were used for evaluation such as recall (REC),
precision (PRE), maximum F1-measure (MaxF), and time
it took to make inference on a single image. Four important
metrics are also needed to considered, true positives (TP),
representing the road surfaces predicted by the network was
accurate; false positives (FP), representing the road sur-
faces predicted by the network was inaccurate; true nega-
tives (TN), representing the non-road surfaces predicted by
the network was accurate; false negatives (FN), representing
the non-road surfaces predicted by the network was inaccu-
rate. Given the definitions of the four important metrics,
we can now understand what precision and recall means,

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Precision is also a statistical term that determines how
much of the road surfaces determined by the network was
actually accurate out of all road surfaces determined by the
network. Recall is a statistical term that determines how
much of the road surfaces determined by the network was
actually accurate out of all possible road surfaces in the in-
put image. The maximum F1-measure is the harmonic aver-
age between the recall and precision. Table 1 illustrates the
performance result gathered from both Up-Conv-Poly and
LoDNN after running the road benchmark test set.

Table 1: KITTI Road Benchmark Results (In %)
On Urban Road Category

Method MaxF REC PRE Time (ms)
LoDNN [2] 94.07 95.37 92.81 18

Up-Conv-Poly [5] 93.83 93.67 94.00 80

LoDNN outperformed Up-Conv-Poly in terms of the max-
imum F1-measure, precision and inference time, meaning
LoDNN has a higher accuracy and was faster than Up-Conv-
Poly in making predictions on new images. Caltagirone, et
al did not explain the exact reason why LoDNN received a
higher accuracy and less inference time. But judging from
the differences in the network architecture and types of in-
put, one might be able to deduce that LIDAR systems could
ignore much of the background noises (shadows, light reflec-
tion, etc) compared to camera images. One thing to notice

that Up-Conv-Poly did receive a higher precision in its net-
work than LoDNN did. Although, no explanations were
given as to why this has occurred. Thus, it propagated the
effect to the network in which less work is needed by the
network to make inference and increasing the accuracy of
its inference.

5. CONCLUSION
As demonstrated by the work of Oliveira, et al. and Cal-

tagirone, et al. neural networks show considerable promises
in road segmentation in terms of their accuracy in predict-
ing road surface and performance. Oliveira, et al. combined
previous trained encoder from [7] and the up-sampling lay-
ers from [4] to create the Up-Conv-Poly. Meanwhile, Cal-
tagirone, et al trained its own encoder and implemented a
context module to increasingly expand the receptive field
of its convolution layers, thus increasing the context con-
sidered by the filters. When comparing the performance of
each network, the LoDNN came out ahead in terms of its
harmonic average of precision and accuracy as well as its
inference time of the KITTI road data set in the urban road
category.

Acknowledgments
Many thanks to my advisor, Peter Dolan, my professor for
senior seminar, Elena Machkasova, and my alumnus reviewer,
Mitchell Finzel, for your guidance and feedback.

6. REFERENCES
[1] Cs231n convolutional neural networks for visual

recognition. http://cs231n.github.io/. Accessed:
2018-03-20.

[2] L. Caltagirone, S. Scheidegger, L. Svensson, and
M. Wahde. Fast lidar-based road detection using fully
convolutional neural networks. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 1019–1024, June 2017.

[3] C. John and C. Scott. A survey of lidar technology and
its use in spacecraft relative navigation. 2013.

[4] J. Long, E. Shelhamer, and T. Darrell. Fully
convolutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, June
2015.

[5] G. L. Oliveira, A. Valada, C. Bollen, W. Burgard, and
T. Brox. Deep learning for human part discovery in
images. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 1634–1641,
May 2016.

[6] B. Ranft and C. Stiller. The role of machine vision for
intelligent vehicles. IEEE Transactions on Intelligent
Vehicles, 1(1):8–19, March 2016.

[7] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[8] Y. B. Y. Lecun and G. Hinton. Deep learning. Nature
The International Journal of Science, 521:436–444,
2015.


