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What is road segmentation?

@ Crucial component for
enabling fully autonomous
driving

@ Determining road surfaces
from a series of images
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Cameras

@ Cameras are mounted around the vehicle to create a 360°
view of the surroundings
@ Limitations include

o Adverse weather condition
o Shadows and reflections
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@ Stands for Light Detection and Ranging
@ Have three major components

e Transmitter
o Receiver
o Optical analyzing system

@ Collecting the distance and time it takes for the emitted signal
to return
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Neural Networks
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Figure: A simple neural network diagram with two hidden layers
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Training

@ Loss (object or cost) function, represents the amount of
inconsistencies between the output of the network and
supposedly correct output

@ Goal is to minimize loss
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Training

@ Initialize all weights
@ Process of training a network

o Forward propagate with a training set
o Calculate the loss

e Propagate backward

e Update and revise weights

@ Gradient Descent
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Image Classification Problem
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Feed an image into the network and output a list of most likely
objects
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Convolutional Neural Network

e Convolutional Neural Network (CNN) a more efficient type of
neural network that is optimized for image classification

@ Works similarly to a regular neural network except for its
convolution layer and pooling layer
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Convolution Layer

@ Receptive fields
@ Depth, stride
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Activation Layer

@ Introducing non-linearity into the network

@ Most common activation function used is called Rectified
Linear Unit (ReLU)
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Pooling Layer

o Downsizing layer, reducing spatial size of the representation

Single depth slice
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Fully-Connected and Softmax Layer

@ As the name implies, nodes in this layer have full connections
to all nodes in the previous layer
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o Avoids overfitting

@ Deactivate a certain percentage of nodes during the training
phase

@ Forces the network to learn more robust features
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Fully-Convolutional Network (FCN)

@ Modification of CNN architecture
@ Replace all fully-connected layer(s) with backward convolution
(up-sample or deconvolution) layer(s)

@ FCN architecture is split into the following components:
e Encoder
o Decoder
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Up-Sample Layer

@ Pooling layer aims to reduce the spatial dimension of input

@ Up-sampling allows the output to match the spatial dimension
of the input
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Overall Goal

@ FCNs, have seen a rise in popularity in road segmentation
@ We are exploring two approaches to road segmentation

e Up-Convolution Network
o LIDAR only Deep Neural Network

@ Comparing time and accuracy
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Up-Convolutional Network (Up-Conv Poly)
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LIDAR only Deep Neural Network (LoDNN)
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LIDAR only Deep Neural Network (LoDNN)

@ Compress LIDAR point cloud into a grid in the x-y plane;
some basic statistics are then computed for each grid cell

@ Context module using dilated convolutions
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Encoder Decoder Output
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@@ Convolution 3x3, stride 1, zero-padding + ELU @ Convolution Ix1
@ Dilated convolution 3x3, stride 1, zero-padding
[ Max pooling 2x2, stride 2 @l Max unpooling @ Sofimax
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KITTI Road Benchmark

@ Designed to benchmark road detection
@ Manually segmented images are available for training

@ Available in camera image and LIDAR point cloud format

29/33



KITTI Road Benchmark

Results and Conclusion

KITTI Road Benchmark

Velodyne HDL-64E Laserscanner

Point Gray Flea 2

30/33



KITTI Road Benchmark

Results and Conclusion

Results and Conclusion

@ Precision (PRE), recall (REC), and Maximum F1 Measure
were used as metrics for evaluation

Method Maximum F1 Measure | PRE | REC | Time (ms)
LoDNN 94.07 92.81 | 95.37 18
Up-Conv-Poly 93.83 94.00 | 93.67 80

Table: KITTI Road Benchmark Results (In %) On Urban Road Category

31/33



KITTI Road Benchmark

Results and Conclusion

Acknowledgement

Thank you to my advisor Peter Dolan and Elena Machkasova for
your guidance and feedback

32/33



KITTI Road Benchmark

Results and Conclusion

Discussion

Questions?
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