Road Segmentation with Neural Networks

Andy Lau

University of Minnesota, Morris

UMM CSci Senior Seminar Conference, April 2018

What is road segmentation?

- Crucial component for enabling fully autonomous driving
- Determining road surfaces from a series of images

Neural Networks

Convolutional Neural Network

Fully-Convolutional Network

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

Outline

1 Background

- Cameras and LIDAR
- Neural Networks
- Convolutional Neural Network
- Fully-Convolutional Network

2 Up-Convolutional Network (Up-Conv Poly)

- 3 LIDAR only Deep Neural Network (LoDNN)
- 4 Results and Conclusion

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

Cameras

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

- $\bullet\,$ Cameras are mounted around the vehicle to create a 360° view of the surroundings
- Limitations include
 - Adverse weather condition
 - Shadows and reflections

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

LIDAR

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

- Stands for Light Detection and Ranging
- Have three major components
 - Transmitter
 - Receiver
 - Optical analyzing system
- Collecting the distance and time it takes for the emitted signal to return

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

Neural Networks

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

hidden layer 1 hidden layer 2

Figure: A simple neural network diagram with two hidden layers

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Training

- Loss (object or cost) function, represents the amount of inconsistencies between the output of the network and supposedly correct output
- Goal is to minimize loss

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

Training

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

- Initialize all weights
- Process of training a network
 - Forward propagate with a training set
 - Calculate the loss
 - Propagate backward
 - Update and revise weights
- Gradient Descent

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Image Classification Problem

Feed an image into the network and output a list of most likely objects

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Convolutional Neural Network

- Convolutional Neural Network (CNN) a more efficient type of neural network that is optimized for image classification
- Works similarly to a regular neural network except for its convolution layer and pooling layer

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Convolution Layer

- Receptive fields
- Depth, stride

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Activation Layer

- Introducing non-linearity into the network
- Most common activation function used is called Rectified Linear Unit (ReLU)

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Pooling Layer

• Downsizing layer, reducing spatial size of the representation

٧

3

17/33

イロト イポト イヨト イヨト

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Fully-Connected and Softmax Layer

• As the name implies, nodes in this layer have full connections to all nodes in the previous layer

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Dropout

- Avoids overfitting
- Deactivate a certain percentage of nodes during the training phase
- Forces the network to learn more robust features

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Fully-Convolutional Network (FCN)

- Modification of CNN architecture
- Replace all fully-connected layer(s) with backward convolution (up-sample or deconvolution) layer(s)
- FCN architecture is split into the following components:
 - Encoder
 - Decoder

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

Up-Sample Layer

- Pooling layer aims to reduce the spatial dimension of input
- Up-sampling allows the output to match the spatial dimension of the input

Up-Convolutional Network (Up-Conv Poly) LIDAR only Deep Neural Network (LoDNN) Results and Conclusion

Overall Goal

Cameras and LIDAR Neural Networks Convolutional Neural Network Fully-Convolutional Network

- FCNs, have seen a rise in popularity in road segmentation
- We are exploring two approaches to road segmentation
 - Up-Convolution Network
 - LIDAR only Deep Neural Network
- Comparing time and accuracy

Outline

- 2 Up-Convolutional Network (Up-Conv Poly)
- 3 LIDAR only Deep Neural Network (LoDNN)
- 4 Results and Conclusion

Up-Convolutional Network

Outline

- 2 Up-Convolutional Network (Up-Conv Poly)
- 3 LIDAR only Deep Neural Network (LoDNN)
- 4 Results and Conclusion

LIDAR only Deep Neural Network (LoDNN)

- Compress LIDAR point cloud into a grid in the x-y plane; some basic statistics are then computed for each grid cell
- Context module using dilated convolutions

LIDAR only Deep Neural Network

Outline

- 2 Up-Convolutional Network (Up-Conv Poly)
- 3 LIDAR only Deep Neural Network (LoDNN)
- Results and Conclusion
 KITTI Road Benchmark

KITTI Road Benchmark

KITTI Road Benchmark

KITTI Road Benchmark

- Designed to benchmark road detection
- Manually segmented images are available for training
- Available in camera image and LIDAR point cloud format

KITTI Road Benchmark

KITTI Road Benchmark

KITTI Road Benchmark

Results and Conclusion

• Precision (PRE), recall (REC), and Maximum F1 Measure were used as metrics for evaluation

Method	Maximum F1 Measure	PRE	REC	Time (ms)
LoDNN	94.07	92.81	95.37	18
Up-Conv-Poly	93.83	94.00	93.67	80

Table: KITTI Road Benchmark Results (In %) On Urban Road Category

KITTI Road Benchmark

Acknowledgement

Thank you to my advisor Peter Dolan and Elena Machkasova for your guidance and feedback

Discussion

KITTI Road Benchmark

Questions?