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ABSTRACT

Identifying which plants have not had their needs met can be
difficult to do on a large farm. Using human input to identify
the needs of these plants can be relatively time consuming
and expensive. Even when using humans is not the issue,
the number of varieties of plants often requires a number
of experts for each type. Finding this many experts can be
impractical for every farm. Identifying the needs of crops
and sorting plants by type without human input would be
a way to increase the efficiency of farming.

In this paper we will look at using machine learning to
achieve these goals. Using both supervised and unsuper-
vised techniques we can classify plants into pre-identified
categories, and even sort plants without previously known
classes. Looking at support vector machines and k-means
clustering shows an important step to the next step towards
full farm automation and improving the long term sustain-
ability of large scale farming.
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1. INTRODUCTION

Farming was an important step allowing us to sustain
large human populations. Farming allowed few people to
sustain many people, freeing others to specialize in the differ-
ent aspects of life. However, large scale farming can quickly
become inefficient by missing the needs of certain plants.
Whether it’s disease, nutrients, or even water, missing the
needs of these plants can have large impacts on the results
of production.

Farmers with enough experience eventually learn to rec-
ognize the needs of a plant just by looking at it. This type of
monitoring becomes inefficient at a large scale because a sin-
gle person can only monitor so many plants at a time. When
monitoring by sight, a farmer may have to hire more inex-
perienced helpers to help with this monitoring. However,
this quickly becomes expensive and runs the risk of human
error coming in to play, especially since the helpers likely do
not have as much experience. This can mean the crop is not
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reliably having its needs addressed. Without knowing the
needs of an individual plant, a farm may have to pre-treat
their crops for diseases and pests. This means treating ev-
ery plant for something it may not need, potentially wasting
a resource that could be used more efficiently and increase
the environmental impact of these treatments compared to
spot-treating. One of the goals of using machine learning in
a farming environment is to find a method of classifying the
needs of plants in a way that allows for spot-treating, the
treating of plants only when needed.

“Sustainable intensification” — producing more
food from the same area of land while at the
same time reducing the environmental impacts—
demands innovative agronomic practices. Preci-
sion agriculture strategies (the integration of dif-
ferent modern technologies like sensors, informa-
tion and management systems) can reduce the
ecological and economic impacts in agricultural
crop production.

—Behmann et al. [1]

Much like the way humans learn by experience, we can
use machine learning to build computer systems which can
recognize the needs of crops to improve response time and
maximize efficiency. At its essence, it is a method to quickly
recognize patterns. Machine learning is being used to op-
timize search results and routing for maps while also being
used to recognize features in images.

Machine learning recognizes features by looking at a large
set of data and recognizing similarities between the data and
categorizing it. For example, in the context of farming we
may want to define different categories of similar looking
plants. It can also be configured to categorize based on
predefined categories. This could be used for categorizing
already harvested plants or identifying ones with a specific
need. Both can have further uses.

First we will cover some background of machine learning
and cover some different methods we can use machine learn-
ing to speed up already necessary processes. Then we will
talk more specifically about each part of machine learning
and give a description of their basic implementations. Fi-
nally we will discuss the effectiveness of our techniques on
the use cases with examples from the papers referenced in
Section 5.



2. BACKGROUND

There are many different ways machine learning can be
used, but the best choice for any system largely comes down
to the different learning, or training, methods: supervised
and unsupervised learning. Supervised learning is training
based on previously labeled data with previously decided
categories. For this method we split our labeled data into
training data and testing data to ensure our method is gen-
eralized to future data. This can allow for identification
of these specific categories as a generalized rule for future
data, while keeping human input to just our training data,
whereas unsupervised learning is the identification of cate-
gories based on similarities that the machine implementation
finds. This can bring to light different features that may be
necessary to watch out for in the future. Human input is
only necessary to identify what each of these newly defined
categories mean. Both methods decrease human input to a
specific set of categorization needs that a human must ini-
tially interpret.

The implementation of machine learning in a production
farming environment can allow the efficiency of crops to im-
prove just by making the recognition of these categories more
accurate. It won’t initially make decisions on what to do
about these categories. Those decisions still require a hu-
man to understand the categorization and act accordingly.
However, in the future, robots could be implemented to re-
spond to certain categorizations. This would further remove
the manpower necessary to deal with a large farm by letting
the mental side of recognition and the physical reaction be
put fully on some system, or set of systems of machine learn-
ing techniques combined with robotics.

The uses of machine learning this paper explores focus on
the categorization of plants in a faster manner to improve the
efficiency of modern farming. Farms can use these methods
to prevent their crops from being impacted by diseases and
pests. They can also categorize their plants into different
types to identify weeds, or to identify phenotype.

2.1 Phenotyping

Defining different plants by phenotype can be useful when
looking for a specific feature of a certain plant. Many social
practices have caused organic food to become more popu-
lar, such as healthy eating or concern for the environment.
This causes many farms to grow both organic and conven-
tionally grown plants. Due to regulation, phenotyping these
plants accurately is a necessity or the organic plants may not
be permitted to label themselves as organic. Kessler et al.
looked at classifying individual wheat plants to recognize
whether they were organically or conventionally grown [2]
using Support Vector Machines, which we will discuss in
Section 3.

2.2 Identifying Stress

Plants are susceptible to a variety of diseases and damage
from insects. To increase productivity of a crop, one must
identify the diseased area to efficiently treat the infected
plants and avoid over-treating unaffected crops. Puig et
al. [3] discussed the method of using a k-means clustering al-
gorithm, which we will discuss in Section 4, to identify dam-
age from white grubs, which caused damage to the roots of
sorghum plants. These grubs eat the roots of sorghum plants
which reduces nutrient intake and causes unhealthy plants,

potentially killing them. In a separate research study, Behmann

et al. [1] looked at the ability to identify general biotic stress
in plants by looking at the overall health of the plant to iden-
tify the plants that may need looking at. Whether the biotic
stress is disease, pest, or an invasive plant, it is important
to identify and act on this stress early, to prevent any loss
of health to the plants.

2.3 Input Methods

Distinguishing one plant from another can be difficult for
a person to do without a deep prior knowledge of the two
plants. On a large scale, using humans to tell the differ-
ence between every plant is impractical. Using an external
mechanical input method, known as remote sensing, can al-
low for a large amount of data to be collected, and then be
analyzed later.

These methods of remote sensing include images of indi-
vidual plants and aerial images of the crop. These images
can be taken using different spectra or by identifying chloro-
phyll florescence levels (the specific amount of light absorp-
tion in a plant) [1].

However, machine learning is not limited to just doing im-
age processing. This can be expanded to methods varying
from using a variety of sensors to detect the differences of
nutrients in the soil, to using sensors to identify the condi-
tions of the air surrounding the plants. For instance, Kessler
et al. [2] use more than “300 gas chromatography-mass spec-
trometry measurements” as their input data [2]. These mea-
surements identified different metabolites that were present
in each plant. For our uses, consider metabolites to be in-
tensities of different color wavelengths of each plant being
burned.

Whether looking to identify plants based on a desired
characteristic or looking for warning signs that something
is different than normal, both supervised and unsupervised
learning can be used to improve the efficiency of these clas-
sifications.

3. SUPERVISED LEARNING AND
SUPPORT VECTOR MACHINES

Supervised learning is a method of machine learning that
commonly creates a classifying method for a set of data that
has predefined classes. In general this is a method to match
the data to the predefined classes, and then applying this
trained method to classify new data.

Using supervised learning we can identify previously de-
fined categories. This is especially important for our first
goal phenotyping, as we discussed in 2.1. We can also use
this method to identify different plants, such as identifying
organic and conventional wheat crops [2]. Supervised learn-
ing is not limited to these categories. It can attempt to
identify any set of classes as long as the data is predefined.

Support Vector Machines (SVMs) are a form of supervised
learning that attempts to split two predefined classes with
a linear classifier. A linear classifier is a linear function that
gives the optimal separation between the data [6].

3.1 Linear Classification

Assuming the two classes are separable by a single vec-
tor (hyperplane in any dimension) with no overlap, we can
choose the two points closest to the opposing class and draw
two parallel lines. The line that bisects the plane between
the original lines is our main defining vector. The side vec-
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Figure 1: Three potential linear classifiers; Hs being the
best one as discussed in Section 3.1. Image from [6].

tors are our support vectors, and our classifying vectors.
These support vectors are why a SVM is called a Support
Vector Machine.

Looking at Figure 1 we see that there are two different
classes of points: black and white. The three classifiers dis-
played are not all reasonable. We can see that Hp is a bad
classifier because our points are not divided by class. Ha
does divide our classes but it doesn’t seem reliable because
points that a human may cluster with one class could be
identified as the other. Finally, Hs is our best classifier
since it separates the classes with the largest margin pos-
sible. This minimizes the possibility of a new point being
misclassified.

As shown in Figure 2 we want a classifier that is the bi-
sector of the two hyperplanes, our dotted lines in two di-
mensions, that separate the data as much as possible. This
hyperplane can be described with the vector @ where 0 is
the normal vector to the hyperplane, or solid line in our ex-
ample. Now that we have our linear classifier we can identify
the class of each point with this equation:

wW-T—b=c

where 7 is the normal vector to our classifying hyperplane,
the equivalent of a line in any other dimension, and ﬁ is
the minimum distance that our classifier is from the origin.

To classify each point we define our class by identifying
which side of our line we are on. We find our class by plug-
ging in our data point vector for & with our normal vector
and offset value, b. Then we separate the classes by the
sign of the output c. So In Figure 2 the black points would
have a positive sign for ¢ and the white points would have a
negative sign for c¢. If the value of ¢ was 0 the point would
be part of our classifier and we would not know what to do
with it unless we defined all zero values to have a certain
sign, such as positive [6].

Figure 2: Our best linear classifier with support vectors dis-
played as dashed lines. Image from [6].

Figure 3: Example of a quadratic kernel function altering
data to allow for linear classification by an SVM on data
that is non-linearizable (a circle). Image from [5].

3.2 Nonlinear Classification

The data provided may not be possible to separate with
a linear classifier. This means that the linear classifier must
be defined in a higher dimension than the data is naturally
in. This requires the definition of a kernel function. A kernel
function is a function used to map data that is non-linear
to a higher dimension to allow for linear separation, as seen
in Figure 3. This is why it was important to think of our
vectors before as hyperplanes, it allows us to work in any
dimensional space if our kernel function forces it.

The general form of a two dimensional kernel function that
takes in and returns a pair of values is:

P(z,y) = (#(x), ¢(y))

However, if data is non-linearizable naturally, like in Fig-
ure 3 we must use a function that expands our data into
another dimension to allow a linear classifier to work. If
this is the case, we can use a quadratic kernel function to
expand this data into three dimensions. This is of form:

D(z,y) = (z,y,2° +y°)



Note that the output has three dimensions, rather than
just two. As you can see in Figure 3, the output data allows
a linear classifier in the form of a plane to separate our data
into the classes we wanted.

Kernels are not easy to find and require a lot of trial and
error. A more complicated function can be used to transform
the data such as a Gaussian function, which will not be
explained in depth in this paper.

4. UNSUPERVISED LEARNING AND
K-MEANS CLUSTERING

Unsupervised learning is a method of machine learning
that creates its own classes rather than using predefined
classes. In general it is a method to create classes out of
a set of data to see how the machine classifies things we
may not have previously thought belonged together.

This is a very important method for identifying features
of a plant that were previously unnoticed. Using unsuper-
vised learning in a farming environment can allow a farm to
identify sources of biotic stress by looking at each of the clas-
sifications given by the algorithm, and identifying the key
features the system created and interpreting them for best
use. This may also be more helpful for researchers wanting
to identify new similarities, or used by users that want to
simply identify when leaves are a different color to identify
health.

As an unsupervised method, k-means clustering is very
similar to Support Vector Machines but creates divisions
entirely algorithmically and defines its own clusters rather
than being based on desired classifications.

To initialize a k-means analysis, the algorithm chooses k
random points within the domain. These points will be the
initial means that we want to adjust to get a more accurate
model. The number of points we choose will correspond to
the number of clusters we want to organize our data into.
To define our clusters, the mean closest to our data point is
the class it resides within. Next, we update our classifica-
tion. This requires us to find the centroid of each class and
choosing that to be our new mean to evaluate at. In our
context the centroid is defined as the average point within
our class. You can find our centroid, C, by adding all of our
points, x, together and divide by the number of points, p in
every cluster:

D
C = n=1%n

p

So in each iteration we find the centroid of our current
class structure and redefine our mean to be each new cen-
troid. Then we re-classify the points by assigning to them
the class of the closest new centroid. This will bring us closer
and closer to separating into categories until the changes of
the mean values between iterations approach zero. This is
when we finish the iteration, and use those means as our
model for categorization.

Looking at Figure 4 we can see the initialization of the
k-means algorithm on the left. These points were three ran-
domly selected and do not represent a good set of means. To
test if it is our final set of means, we use the centroid equa-
tion on each region, and redefine our means as that centroid
as shown in the right picture. Then we would progress for-
ward until the centroid does not change. Note that although
the example in Figure 4 is in two dimensions, finding these

Figure 4: First step of a k-means iteration. From [4]

| SVM Processing Conventional /Organical Grown Wheat |

Year Trained On Year Tested On Accuracy
2007 2007 0.97
2010 2010 0.88
2007 2010 0.55
2010 2007 0.56

2007, 2009, 2010 2007, 2009, 2010 0.90

Table 1: Kessler et al. Results [2]

clusters can be done in any dimension.

It can be noted that there is no promise that this algo-
rithm will create clusters in any way that makes sense. How-
ever, frequently it can display new features that one did not
previously expect [4].

S. RESULTS

This section will be a discussion of the success of the two
methods we talked about in this paper. We will look at the
results of more specific studies that used these methods and
what they were trying to do.

5.1 Effectiveness of Supervised Learning

5.1.1 Phenotyping

Kessler et al. [2] analyzed metabolite values for the input
data instead of image data. In previous work they had used
metabolic profiling techniques. Using the same input data
allowed them to more easily check whether their new method
was as accurate as their older method. The benefit of using
a machine learning approach is to not rely on only a single,
previously known metabolite as a marker of a given plant.
Instead it can use the entire metabolite measurements of
any plant to more accurately define a phenotype. We also
note that their method was destructive to the plant. This
was offset by using samples of presorted plants and testing a
small subset of them to classify the identity of that set. Note
that Behmann et al. [1] discussed the feasibility that image
data would be a reasonable way to find similar results.

Kessler et al. [2] analyzed 313 samples of wheat based
on whether they were conventionally or organically grown.
Their input data was not linearly separable originally, so
a Gaussian kernel (a kernel using a gaussian function) was
used on their 36 metabolites, creating a linearizable 35 di-
mensional plane. This was shown to be accurate up to 90%
of the time within a single year as shown in Table 1. Con-
sidering the small number of samples but large dimensional
space, this is considered to be very accurate. This is ex-



citing because conventional and organic wheat can then be
identified and processed separately with this method.

However, it would be ideal if we could use the training
data from one year to the next. Kessler et al. [2] noted that
with their input data the accuracy between other years was
only 55 percent. This is not very impressive. This means the
training data will need to be sourced from the same years.
The changes between years are likely due to factors like the
weather changes within years. However, it is possible that
a larger data set encompassing many more years than just
three may be able to classify the different plants into more
subsets, giving more accurate general classifications. In the
future, it may be helpful to note that these methods are
more accurate when using more specific data points that
are already verified to be unique by biologists. With enough
data from separate years, there may be a generalized method
that can classify future years accurately.

Adding more data to a system will most likely create a
more accurate categorization. However, other ways we could
make this more accurate for general data would require more
research to identify consistent identifiers that can be used in
this method. This will allow our system to train using more
generalizable data and it may become more applicable on
all new sets of data.

5.1.2 Biotic Stress ldentification

Support vector machines can also be used to identify dis-
ease. Behmann et. al. [1] analyzed the method of using
SVMs for weed detection and nitrogen deficiency in corn.
Their method started with image processing. They used the
scaled addition of RGB color values over all pixels in each
image, giving a general summary of the image. The linear
classifier was a plane since the three color values cause the
SVM to operate in three dimensional space. They stated
that SVMs were generally 97% accurate. This was a high
enough accuracy to be considered correct. They also dis-
covered that when a shape classification was put into place
(another machine classified the shape and added that to the
data set as another dimension) the classification accuracy
would increase with smaller grain plants, which were only
accurate 85% of the time. Using these methods Behmann et
al. [1] found that there was an increase of weed control by
85-98%. This showed that "the amount of herbicides applied
was reduced by between 8-81%.”

This was wide variability based on the needs for pesticides
of each type of plant. However, it shows great improvement
in the ability to spot treat for weeds on a large farm rather
than treating full crops.

5.2 Effectiveness of Unsupervised Learning

5.2.1 Biotic Stress Identification

Recognizing insect damage on crops by hand can be a long
and arduous process if the input is large enough. So using
k-means is a great way to separate the data into easier to
handle pieces which can be interpreted by hand. After tak-
ing in the image data, Puig et al. [3] use the k-means method
to identify where there are damaged crops in images. The
differences from pixel to pixel are categorized from the k-
means computation and then mapped back onto their crops
to visually show the location of where there seem to be prob-
lems as seen in Figure 5. In these images it is shown that
out of the 6.09 hectacres of land there are 3.25 hectacres of

healthy crops, 1.71 hectacres of dead crops, and 1.13 hec-
tacres of crops that are damaged (transition areas).

The location and distribution of transition ar-
eas is relevant information in order to design a
site-specific control strategy.

—Puig et al. [3]

Behmann et al. [1] also discussed this method. Since k-
means don’t require much training data but can form its own
classifications easily, it is very useful for creating models for
data that aren’t known about.

5.2.2  Phenotyping

Although the discussion of phenotyping wheat with Kessler
et al. focused on Support Vector machines [2], with our pre-
vious discussion of k-means, we can see how we might be
able to extend the work that Behmann et al. [1] method to
future implementations of the research Kessler et al. [2] did.
If the years were not given initially, then use another ma-
chine to identify phenotype. We can see how this may be
practical in Figure 6.

By looking at the data we can easily see how k-means may
be able to classify these three different data sets. Then the
data appears to be seperable again by a second clustering
algorithm on the initial clusters. This is just speculation
however and definitely requires further investigation.

6. CONCLUSION

Improving the efficiency of manpower will always be a dis-
cussion in any job. For farming, machine learning could be
a route to lessening the amount of manpower to identify
the needs of plants and allowing a person to more efficiently
know the information they want to know. Whether much in-
formation is known about our data or not, machine learning
has different methods to address the different classification
needs in farming.

Using Supervised Learning to phenotype your corn, dis-
tinguishing the weeds from your crops, or even identifying
a specific type of damage is possible as long as you have
enough previously identified data to ensure that you have a
more accurate model.

If you want to categorize some plants that you don’t know
the mix of or recognize a problem you haven’t seen before,
unsupervised learning will categorize your data without pre-
defined categories. This will only require you to look at
similar characteristics of each set, rather than identify the
individual characteristics of each plant.

Machine learning methods can be continuously improved
and fine tuned to continue to recognize the needs plants need
and eventually recognize these needs without much, or any,
human input.

In the future, there could be further investigation into the
possibility of using a Support Vector Machine for the wheat
identification on data that is both trained on many years
of data, and tested on data that is outside of that scope. I
believe that I would be interesting to see if a few years of
data could accurately identify the data in the future.

In addition, it would be interesting to see Support Vector
Machines for many classes at once. It may be interesting to
see it looking for specific diseases and identify between the
diseases. This would likely help with more efficient, and pre-
cise, ability to identify what is wrong with the plant while



Figure 5: Above: Overlay of three identified k-means clustering classes on an areal image of damaged crops in Queensland,
Australia [3]. The lower image is a display of the three different classes identified, but not an overlay. This method classified

the red green and blue values of each pixel as the input data.
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Figure 6: Comparison of amount of two metabolites of wheat
referenced as PC1 and PC2 in Kessler et al. [2]. Circles:
Organic, Triangles: Conventional. Red: 2007, Green: 2009,
Blue: 2010

looking forward to the future for possible robotic responses.
This would further reduce the human response necessary
down the line. It may be possible that humans are only
necessary for identifying the results of unsupervised classifi-
cation in the future, if enough data is run through supervised
learning machines.
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