Machine Learning for Large Scale Farming

Zachariah Litzinger

UMN Morris

April 15, 2017

Zachariah Litzinger (UMN Morris) Machine Learning for Farming

What are we doing?

- Large space
- Few experts
- Sorting into types is challenging
- Need identification is challenging
- Prevent pre-treating

https://flic.kr/p/8fH39P

Outline

1 Introduction

- Phenotyping
- Detecting Needs
- Collecting Data

2 Supervised Learning: Support Vector Machines

- ③ Unsupervised Learning: k-Means Clustering
- 4 Results

- Sorting by type
- Many uses
 - Weeds
 - Sort species
- Example: Sorting organic and conventionally grown wheat [KBA⁺15]

https://flic.kr/p/6Qa14W

Detecting Needs: What Plants Need

- Nutrients
 - Water
 - Soil Quality
- Disease treatment

 $\rm https://flic.kr/p/dBdzj$

Machine Learning for Farming

Detecting Needs

- Early recognition
- Hard to do by hand
- Increase efficiency
- Can discover new needs or detect previously known issues
- Prevent pre-treating
- Example: Detect Blight Disease in potatoes [PGHG15]
 - Irish Potato Famine
 - Still prevalent today

https://flic.kr/p/qRXVt

Collecting Data: Before

https://flic.kr/p/81ocW2

• Sampling

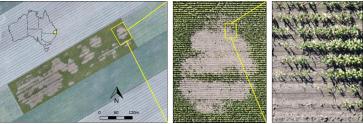
- Lots of person-power
- Takes a lot of time

Zachariah Litzinger (UMN Morris)

Machine Learning for Farming

April 15, 2017 7 / 29

Collecting Data: Future


- Less person-power
- Faster
- Covers a lot of area, 48 minutes for 70 acre area [PGHG15]

https://flic.kr/p/ExQeNH

Collecting Data: Processing

- Reduce resolution to improve computational cost [PGHG15]
- Single picture: RGB per pixel
- Multiple pictures: scaled RGB summary per image (average)

[PGHG15]

- Less data needed than traditional data analysis methods [BMR⁺15]
- Note: Kessler et al. analyzed already harvested corn, used metabolic data for classification

Zachariah Litzinger (UMN Morris)

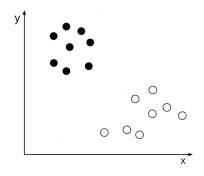
Machine Learning for Farming

Introduction

- Phenotyping
- Detecting Needs
- Collecting Data

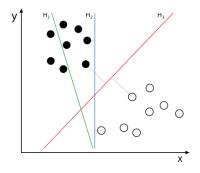
2 Supervised Learning: Support Vector Machines

3 Unsupervised Learning: k-Means Clustering


4 Results

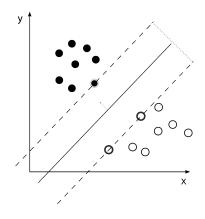
- Used to detect specific classes of data
- Requires predefined categories
- Methods used for this field:
 - Support Vector Machines
 - Random Forests
 - Neural Networks

Supervised Learning


- Classify our initial data
- Split the data into two parts:
 - training data
 - testing data
- Train the method on training data
- Measure success by percent correct for testing data
- If accurate enough, we can classify future data

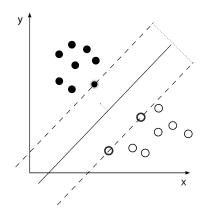
https://z.umn.edu/svm-linear-classifier

Support Vector Machines (SVMs)


- Data is separable by a vector, so it is linearly separable by a linear classifier
- Can be high dimensional classifier (hyperplane classifier)
- H_1 is bad
- H_2 isn't optimal
- H_3 is what we are looking for

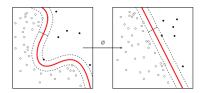
https://z.umn.edu/svm-linear-classifier

Method: SVM - Getting our Linear Classifier

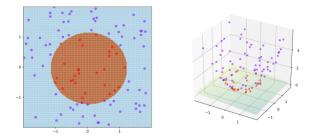

- Choose two parallel lines that separate the data
- Make them as far apart as possible
- These support vectors can be of standard line form for our purposes ax + b = y where both support vectors have the same slope

https://z.umn.edu/svm-support-vectors

Method: SVM - Getting our Linear Classifier


- The bisecting vector is our defining vector, also of standard line form.
- Note: In higher dimensions we use vectors for these definitions.

https://z.umn.edu/svm-support-vectors


Method: SVM - Kernel Functions

- Takes original position values
- Gives new position
- General Form: $\Phi(x, y) = \langle \phi(x), \phi(y) \rangle \text{ [mW18]}$
- Challenging to identify and come up with

https://z.umn.edu/kernel-machine

Method: SVM - Kernel Example

https://z.umn.edu/kernel-trick-quadratic

• Quadratic Kernel

•
$$\Phi(x,y) = \langle x,y,x^2 + y^2 \rangle$$

• Example: $\Phi(3,2) = \langle 3,2,3^2 + 2^2 \rangle = \langle 3,2,13 \rangle$

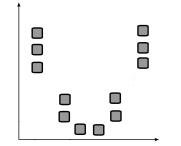
[kW18]

Zachariah Litzinger (UMN Morris)

Introduction

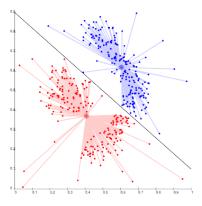
- Phenotyping
- Detecting Needs
- Collecting Data

2 Supervised Learning: Support Vector Machines


3 Unsupervised Learning: k-Means Clustering

4 Results

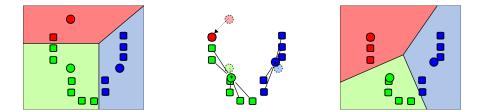
- Used to create new classes for data
- Requires analyzing new categories
- Methods used for this field:
 - k-Means Clustering
 - Image Segmentation


- No need to label the data
- Method classifies our data
- We analyze each of the classifications to understand what the significant property found is.

https://z.umn.edu/k-means-cluster-examples

k-Means Clustering

- Looking to cluster data into regions of most similar points
- User chooses how many regions



https://z.umn.edu/k-means-cluster

k-Means Clustering

- Randomly choose k points, 3 in example
- Regions defined by Euclidean Distance
- Find centroid of points in each region
- Reclassify points for new regions
- Repeat until centroid is stable [kmcW18]

$$C = \frac{\sum_{n=1}^{p} x_n}{p}$$

https://z.umn.edu/k-means-cluster-examples

Machine Learning for Farming

Introduction

- Phenotyping
- Detecting Needs
- Collecting Data

2 Supervised Learning: Support Vector Machines

3 Unsupervised Learning: k-Means Clustering

4 Results

- Kessler et al. wanted to classify conventionally grown and organically grown wheat
- Uses 313 total samples
- Used metabolic profile instead of image data
- Goal: Create a reliable classification method for sorting when bio-markers of data are unknown, making classical statistical analysis impossible

Kessler et al. Results [KBA ⁺ 15]		
Year Trained On	Year Tested On	Accuracy
2007	2007	0.9677
2010	2010	0.8846
2007	2010	0.5547
2010	2007	0.5562
2007, 2009, 2010	2007, 2009, 2010	0.9032

- Shows the accuracy of same years is above or close to .9
- Cross-year results accuracy only around .55
- Outperformed statistical analysis of full bio-marker set
- Note: Behmann et al. identified that using RGB image data would be a sufficient set of input data for goals similar this. [BMR⁺15]

- Puig et al. wanted to detect insect damage
- Covered 70 acres of land
- Used overhead image data
- Goal: Create a "near real-time assessment" of problem spots in sorghum fields.

- $\bullet\,$ Using a k-Mean value of k=3
- Successfully identified
 - Dead portions
 - Unhealthy portions
 - Healthy portions

[PGHG15]

April 15, 2017 27 / 29

Conclusion

With Machine Learning:

- Cover large area
- Need fewer experts
- Accurately identify needs
- Sort plants based on type
- Increase efficiency of farms

https://flic.kr/p/8fH39P

Nic McPhee https://flic.kr/p/5aSKLx

Zachariah Litzinger (UMN Morris)

Machine Learning for Farming

April 15, 2017 29 / 29

Special thanks to Nic McPhee and Elena Machkasova for their guidance and support during this research paper.

Zachariah Litzinger (UMN Morris) Machine Learning for Farming

- Jan Behmann, Anne-Katrin Mahlein, Till Rumpf, Christoph Römer, and Lutz Plümer, A review of advanced machine learning methods for the detection of biotic stress in precision crop protection, Precision Agriculture **16** (2015), no. 3, 239–260.
 - Nikolas Kessler, Anja Bonte, Stefan P. Albaum, Paul Mäder, Monika Messmer, Alexander Goesmann, Karsten Niehaus, Georg Langenkämper, and Tim W. Nattkemper, *Learning to classify* organic and conventional wheat – a machine learning driven approach using the meltdb 2.0 metabolomics analysis platform, Frontiers in Bioengineering and Biotechnology **3** (2015), 35.
- k-means clustering Wikipedia, *k-means clustering Wikipedia, The Free Encyclopedia*, 2018, [Online; accessed 22-February-2018].
- Polynomial kernel Wikipedia, *Polynomial kernel Wikipedia, The Free Encyclopedia*, 2018, [Online; accessed 22-February-2018].

- Kernel methods Wikipedia, Kernel methods for vector output Wikipedia, The Free Encyclopedia, 2018, [Online; accessed 22-February-2018].
- Eduard Puig, Felipe Gonzalez, Grant Hamilton, and Paul Grundy, Assessment of crop insect damage using unmanned aerial systems: A machine learning approach, 21st International Congress on Modelling and Simulation (MODSIM2015) (Gold Coast, Qld), December 2015.