
Collision Attack on SHA-1

Danish Malik
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

malik083@morris.umn.edu

ABSTRACT
The purpose of this research is to examine the first success-
ful in practice identical-prefix collision attack on SHA-1. In
specific, this paper discusses the structure of the files that
were used in relation to the compression function of SHA-1
to obtain a collision. Additionally, the methods used to per-
form the collision are analyzed such as construction of a lin-
ear and non-linear differential path, as well as the procedure
for selecting disturbance vectors using joint local-collision
analysis. The paper also provides an understanding of the
computational power that was used to conduct the attack.

Keywords
SHA-1, Collision Attack, Cryptography, Cyber-security

1. INTRODUCTION
A hash function H is an algorithm that computes for any

input data x of arbitrary bit-length, a fixed number of bits
known as the hash value z such that H(x) = z. Hash func-
tions find common use for rapid data search in collaboration
with a data structure known as a hash table. Hash functions
accelerate database queries by finding duplicated data. Fur-
thermore, hash functions are commonly used in cryptogra-
phy. Cryptographic hash functions belong to a special class
of hash functions as they exhibit several properties making
it ideal in the world of cyber security. The first property of
a cryptographic hash function is that it must be determin-
istic. This implies that irrespective of the number of times
a particular input is passed through a hash function, the
returned value must be the same. The deterministic prop-
erty of cryptographic hash functions is critical since it would
be impossible to keep track of the input if it produces dif-
ferent hashes for any number of computations. The second
property of cryptographic hash functions is quick computa-
tion, which means they must be capable of returning hash
values quickly to maintain an efficient system. The third
property of hash functions is known as Pre-Image Resis-
tance, which implies it must be computationally infeasible
to reverse a hash value z to its corresponding value x such
that H(x) = z (one-way function). Additionally, this prop-
erty is reinforced as cryptographic hash functions produce
hash values with large number of bits. For instance, SHA-1

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

computes hash values of 160 bits. As a result, using the tra-
ditional brute-force attack, an attacker must compute the
hash of 2160 – 1 inputs to successfully reverse a given hash
value. The fourth property of cryptographic hash functions
is known as the avalanche effect. According to this property,
a slight change in input causes a significant change in the
output hash value. The fifth and most important property
of hash function is collision resistance. This property implies
that a cryptographic hash function must compute distinct
hash values for unique inputs. A collision occurs when two
distinct inputs x and y map to the same hash value such
that H(x) = H(y). The major purpose of cryptographic
hash functions is based on the assumption that, in practice,
it should be nearly impossible to find collisions when com-
puting the hash values of distinctive input data. Thus, such
properties make cryptographic hash functions find common
use in the world of cyber security for maintaining the in-
tegrity of data. They are used in several authentication
applications such as message authentication code, password
hashing and digital signature schemes.

The MD-SHA family is the most popular family of hash
functions up to date. The structure of the hash functions be-
longing to the MD-SHA family is based upon the iterative
Merkle-Damgard construction. Additionally, its compres-
sion function is built upon a block cipher in Davies-Meyer
Mode. In 1990, R. Rivest introduced MD4 [5] to the world
of cyber security, marking the start of the MD-SHA family.
Just two years later, in 1992, MD4 was replaced with MD5
[4] due to serious security flaws. MD5 found common use in
the software world for several years despite the weakness of
its foundational compression function. In 1993, the National
Security Agency created and published SHA-0 as a US stan-
dard. However, SHA-0 was quickly replaced with SHA-1 in
1995. The only difference between SHA-1 and SHA-0 is a
1-bit rotation that occurs during message expansion of the
input message. In 2004, Stevens et al. [8] demonstrated an
extremely powerful attack, known as a chosen-prefix attack,
against MD5. This groundbreaking development eventually
led to the widespread use of false digital signatures that al-
lowed malicious users to impersonate any website especially
those of digital commerce even under the protection of the
HTTPS protocol [9]. After the deprecation of MD5, SHA-
1 has been consistently subject to several attacks primarily
during the last ten years. Additionally, several teams worked
on generating collisions for reduced versions of SHA-1 which
essentially assumes lesser rounds within its compression al-
gorithm. The very first theoretical collision attack on SHA-

Stage t Round i Constant kt Function ft
1 0...19 k1 = 5A827999 f1 (B, C, D) = (B ∧ C) ∨ (∼B ∧ D)
2 20...39 k2 = 6ED9EBA1 f2 (B, C, D) = B

⊕
C

⊕
D

3 40...59 k3 = 8F1BBCDC f3 (B, C, D) = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)
4 60...79 k4 = CA62C1D6 f4 (B, C, D) = B

⊕
C

⊕
D

Table 1: Stage functions and constants for SHA-1

1 was presented in 2005 by Wang et al. [11], which was
ground-breaking since it displayed run-time, although still
exponential it was significantly faster than the traditional
brute-force attack. Chabaud and Joux [1] presented the first
theoretical attack on SHA-0 which had a complexity of 261.
However, after the integration of neutral bits by Biham and
Chen [2], full collisions on SHA-0 reduced to a complexity
of 251. The first theoretical collision attack on SHA-1 had
a complexity of 269 after Wang et al introduced modular
addition differentials as well as message modification tech-
niques. In 2013, Stevens [7] presented the currently best
known collision attack on full SHA-1 with an estimated cost
of 261 calls to the SHA-1 compression function. However, a
publicly demonstrated collision attack was still out of reach.
Finally, in 2017, a team led by Elie Bursztein from Google
and Marc Stevens from the Centrum Wiskunde Informatica
(CWI) collaborated over a period of two years to perform
the first successful in practice collision attack [10] on the full
(80 rounds) of SHA-1 with a complexity of 263.1.

2. BACKGROUND

2.1 SHA-1
SHA-1 takes an input message X of arbitrary bit-length

l and yields an output of 160 bits. First, the input X is
padded to obtain a multiple of 512 bits. Before the padded
message Xpadded can be fed into the compression function c,
which is the heart of SHA-1’s algorithm, it is divided into n
512-bit message blocks B1, B2, . . . , Bn. Furthermore, each
message block Bj can be sub-divided into exactly sixteen
32-bit segments known as message words as shown below.

Bj = W0, W1, ..., W15

These 16 message words from each 512-bit message block Bj

are expanded to a set of 80 message words by the message
schedule of SHA-1 according to the recursive equation be-
low.

Wi =

{
Wi 0 ≤ i ≤ 15

(Wi−16 ⊕Wi−14 ⊕Wi−8 ⊕Wi−3) ≪1 16 ≤ i ≤ 79,

where X ≪n specifies a circular left shift of the word X
by n bit positions and ⊕ denotes bit-wise XOR.

As a result, using all 512-bit message blocks B1, B2, . . . , Bn,
the message schedule prepares n sets of 80 message words
with length 32-bit each for the compression function of SHA-
1. Additionally, the compression function contains a 160-bit
internal state known as the chaining value CVi that is ini-
tialized to a predefined value CV0 = IV , where IV denotes
the initialization vector, before the computation of the first
set of 80 message words (derived from B1). Every set of
80 message words is processed in 80 rounds. Each round
i of the compression function uses a message word Wi and
updates the chaining value such that CVi+1 = c(CVi,Wi).
The chaining value CV80 acquired after the computation of
the first set of 80 message words (derived from B1) becomes
the initial chaining value CV0 prior to the computation of
the second set of 80 message words (derived from B2). The
chaining value CV80 obtained after processing the second set
of 80 message words (derived from B2) becomes the initial
chaining value CV0 prior to the computation of the third set
of 80 message words (derived from B3). The initial chaining
value CV0 for subsequent sets of 80 message words is defined
similarly. The final chaining value CV80 obtained after pro-
cessing the final set of 80 message words (derived from Bn)
is output as the hash value z.

At every round i, the chaining value is parsed as five 32-
bit strings known as state words denoted by A,B,C,D and
E as shown below.

CVi = (Ai || Bi || Ci || Di || Ei)

where || denotes concatenation.

The compression function c processes the set of 80 message
words derived from each message block Bj in four stages. In
each stage, the compression function uses different internal
functions ft and constants kt, where t corresponds to the
stage of the compression function. The internal function ft
uses bit-wise Boolean operations such as AND (∧), OR (∨),
NOT (∼) and XOR (

⊕
) as shown in Table 1.

At every round i of the compression function, the state words
that form the chaining value are updated using the message
word Wi−1 and the state words (that form the chaining value
CVi−1) from the previous round. For each round i = 1...80,
the state words that form the chaining value are updated as
shown below.

Ai = (Ai−1 ≪5) + ft(Bi−1, Ci−1, Di−1) + Ei−1 + Wi−1 + kt
Bi = Ai−1

Ci = Bi−1 ≪30

Di = Ci−1

Ei = Di−1

where + denotes addition modulo 232

3. ATTACK

3.1 Construction of the hash input
The attack was initiated by constructing two near-collision

PDF images x and y, where x denotes the first PDF im-
age and y denotes the second PDF image. Near collision
refers to the property that the content of the PDF images x
and y have some similarity but, as a whole, are not entirely
the same. Each image is divided into five 512-bit message
blocks B1, B2, . . . , B5 that are contained in three different
segments.

Figure 1: Identical prefix in hexadecimal [10].

The first segment, which is known as the prefix P , con-
tains the first three 512-bit message blocks B1, B2 and B3.
Furthermore, the prefix P is identical in both images x and
y.

P (x) = (B1||B2||B3)(x) = (B1||B2||B3)(y) = P (y)

where P (x) and P (y) represent the Prefix P of images x and y

The second segment of both files is known as the first near-
collision block M1. Moreover, this segment contains the
fourth 512-bit message block B4. The content of this seg-
ment is different for both x and y. Hence,

M
(x)
1 = (B4)(x) 6= (B4)(y) = M

(y)
1

The third and final segment of x and y is known as the
second near-collision block M2 which contains the fifth and
final 512-bit message block B5. However, the content of this
segment also differs for x and y.

M
(x)
2 = (B5)(x) 6= (B5)(y) = M

(y)
2

The second and third segments of both PDF images, x and
y, have very minimal differences from each other as under-
lined through red and blue hexadecimal symbols in figure
3 which is why they are referred to as near-collision block
pairs. This type of specific collision attack, where the input
is structured in the configuration described, is known as a
chosen-prefix attack.

SHA-1(P ||M (x)
1 ||M

(x)
2) = SHA-1(P ||M (y)

1 ||M
(y)
2)

Figure 2: Attack overview.

3.2 Overview of Collision Attack
For the PDF images x and y to go through the compres-

sion function c, each message block Bj of its five 512-bit
message blocks B1, . . . , B5 must be expanded by the mes-
sage schedule. Recall, every message block Bj can be subdi-
vided into 16 message words of 32-bit length. The message
schedule expands the 16 message words W0,. . .W15 into a set
of 80 message words W0,. . .W79. As a result, the message

schedule prepares five expanded message blocks B
′
1,..., B

′
5

for each PDF image x and y, where every expanded message

block B
′
j contains 80 message words.

The chaining value CV80 obtained at the eightieth round
after processing the final message word W80 of an extended

message block B
′
j is used as the initial chaining value before

the compression function processes the first message word

W0 of the next expanded message block B
′
j+1. After the

computation of the final message word W79 of the final ex-

panded message block B
′
5, the chaining value obtained is

output as the hash value z.

As shown in figure 2, the five expanded message blocks of x
are represented in orange whereas the five expanded message
blocks of y are represented in green. Due to the predefined
initialization vector, the compression function c starts with
identical chaining values for both computations of x and y.
Thus, prior to the start of the first round before the compu-
tation of the first segment P for both x and y.

CV
(x)
0 = CV

(y)
0

where CV
(x)
0 and CV

(y)
0 represent the initial chaining value

of images x and y

After processing all three blocks B
′
1, B

′
2 and B

′
3 that are

contained in P , represented by the red blocks in Figure 2,
the chaining value obtained is identical for both computa-

Figure 3: Near-collision block pairs in hexadecimal [10].

tions of x and y since P is identical in both images. Thus,

c(CV
(x)
0 , P) = CVP = c(CV

(y)
0 , P)

Next, as the hash computation of x and y continue, the

fourth expanded message block B
′
4, which resides in the first

near-collision block pair M
(x)
1 , represented by light blue in

Figure 2, and M
(y)
1 , represented by dark blue in Figure 2,

are input through the compression function c. The fourth

expanded message block B
′
4 starts with updating the identi-

cal chaining value CVP which was obtained after processing

the third expanded message block B
′
3. The chaining value

obtained after the compression function processes B
′
4 is dif-

ferent for both computations of x and y since the content

for B
′
4 is different in both images as shown through red and

blue hexadecimal symbols in Figure 3. Thus,

c(CV
(x)
P ,M

(x)
1) = CV

(x)
1 6= CV

(y)
1 = c(CV

(y)
P ,M

(y)
1)

Finally, the last expanded message block B
′
5 which resides in

the second near collision block pair M
(x)
2 , displayed as light

magenta in Figure 2, and M
(y)
2 , displayed as dark magenta in

Figure 2, are input through the compression function. The

fifth and final expanded message block B
′
5 starts by updating

the conflicting chaining value CV1 that was acquired after

the computation of the fourth expanded message block B
′
4.

As shown in Figure 3, the bit differences in the construction

of B
′
5 in each image update the chaining value such that af-

ter processing the final message word W79 of the block, the
chaining value CVC obtained for both computations of x and
y are identical. This is the final collision that occurs during
the attack since all five expanded message blocks that reside
in different segments of the images have been processed by
the compression function. Additionally, this identical chain-
ing value CV1 obtained is output as the hash value z. Thus,

c(CV
(x)
1 ,M

(x)
2) = CVC = c(CV

(y)
1 ,M

(y)
2) where CVC = z

4. METHODS
One of the major techniques used to conduct the attack is

finding a differential. path, a form of crypt-analysis, that is
the study of how differences in input affect the resultant out-
put. In the case of SHA-1, it allows us to obtain a precise de-
scription of bit differences in state words (A,B,C,D,E) that
form the chaining value and the message words W0 ,..,W79

that update the chaining value. Additionally, constructing
a differential path helps us to understand how these bit dif-
ferences should propagate over the 80 rounds of the com-
pression function. The composition of differential attacks
on SHA-1 have become increasingly specific overtime; con-
sisting of a non-linear differential path with low probability
as well as a linear differential path of high probability. The
terms non-linear and linear correspond to how the paths
were obtained in relation to the internal functions of SHA-
1. More specifically, the linear path works around the XOR
operations as well as the permutations from the message
expansion schedule whereas the non-linear path deals with
AND, OR, and NOT operations. This is because XOR is a
linear operation since bits undergoing it can be represented
through linear equations while AND, OR, and NOT opera-
tions cannot be expressed nor solved as linear equations.

The linear path is constructed by evaluating message pairs
until one is found that behaves linearly. The goal is to find
two sets of message words such that after 6 rounds, both
sets of message words produce the same chaining value thus
resulting in a local collision.

Consider two sets of message words, where M = Wi,..,Wi+5

is the original set and M
′

= W
′
i ,..,W

′
i+5 is the modified set.

A local collision can be achieved by modifying one set of

message words M
′

such that the first message word W
′
i ,

within the set, creates a disturbance, through a perturbing
bit, on one of the state words (A,B,C,D,E)i+1 that form
the chaining value of the following round. The attacker can

then modify subsequent message words W
′
i+1, W

′
i+2’, W

′
i+3,

W
′
i+4 and W

′
i+5 from the same set M

′
to correct or diffuse

the disturbance, that was created initially, within the next
five rounds. Thus, producing a local collision through two
different paths from (A,B,C,D,E)i to (A,B,C,D,E)i+6.
The first path uses the original set of message words M and

the second path uses the modified set of message words M
′

[1].

The attacker must consider both XOR differences as well
as modular differences while expressing the description of
the state and message words as those operations form the
core foundation of the internal function within SHA-1. The
differences between the state and message words can be ex-
pressed in the form of signed XOR differences which is sim-
ilar to XOR differences with the exception of having a value
for the differing bit represented by a sign.

Local collisions are a fit basis to generate differential paths
of good probability. The main obstacle to achieve local col-
lisions is the fact that the attacker does not control all of the
message words as most of them are generated through the
message schedule. This obstacle can be overcome by chain-
ing local collisions along a disturbance vector (DV) such
that the pattern of local collisions is compatible with the

message expansion of SHA-1 [11]. The disturbance vector
is a set of 16 message words of 32-bit length each, that has
been expanded by the message schedule of SHA-1. Every
“1” bit position of the disturbance vector marks the start of
a local collision.

4.1 Disturbance Vector Selection
The message expansion schedule within the compression

function may be defined through two directions: Forward
and Backward expansions. The sequence of the first 16
words W0, ...,W15 is known as the information window since
they can be defined by the attacker [3]. Furthermore, these
initial 16 words may be expanded forward to obtain the re-
maining 64 message words W16, ...,W79 using the recursive
linear equation demonstrated in Section 2 which is the stan-
dard expansion method of SHA-1.

Similarly, we can expand the initial fixed 16 words through
backward expansion to obtain W−64, ...,W−1 using the re-
cursive linear equation below.

Wi = (Wi+16 ≫ 1)⊕Wi+13 ⊕Wi+8 ⊕Wi+2

for −64 ≤ i ≤ −1

Any sequence of consecutive 80 message words Wi, ...,Wi+79

with −64 ≤ i ≤ 0 is a valid expanded message which can be
fed into the compression function. For a given information
window, we can construct an extended expanded message
(EEM) which contains 144 message words obtained through
both forward and backward expanded words of the initial
16 words that form the information window [3]. Thus, the
EEM consists of the following 32-bit message words:

W−64, ...,W−1,W0, ...,W15,W16, ...,W79

Each EEM consists of 65 valid expanded message words,
each of which is a potential candidate as a disturbance vec-
tor.

4.2 Construction of a non-linear differential
path

Once a disturbance vector has been selected, the linear
part of the differential path is established. Next, the pro-
cedure for the attack requires constructing an appropriate
non-linear path over the first 16 rounds that connects the
chaining value differences to the “1” bit positions of the dis-
turbance vector through the remaining rounds.

For the first near-collision attack, an arbitrary prefix can
be included to fulfill some conditions on the chaining value.
Consequently, this allows much more freedom in terms of
constructing a non-linear path as it is not restricted to a
specific value of the chaining value pair. However, the non-
linear path for the second near-collision attack has to start
from the resultant chaining value pair. The second near-
collision attack, however, must cancel the specific difference
in the resultant chaining value pair [10].

5. COMPUTATION
The computation of the near-collision block pairs were

scattered across the world to shape the attacks into a dis-
tributed computation model with two specific purposes. Firstly,
to lessen the wasted time of computational failures. Sec-
ondly, to conduct computations independently without du-
plication of work.

The first part of the attack, which corresponds to the com-

putation of the first near-collision block pair M
(x)
1 and M

(y)
1 ,

was conducted on a heterogeneous CPU cluster hosted by
Google which was distributed over 8 different physical lo-
cations. The computation was divided into small jobs that
were to produce partial solutions up to round 61 of the com-
pression function with an hour of expected run time. Con-
sequently, this run time of one hour proved to be successful
against several kinds of failures such as machine or network
issues. The second and final phase of the attack that corre-
sponds to the generation of the second near-collision block

pair M
(x)
2 and M

(y)
2 was conducted on a collection of het-

erogeneous GPUs hosted by Google. The generation of the
second near-collision block pair was significantly more ex-
pensive than that of the first near-collision block pair. The
first near-collision block pair was found after spending 3583
core years up to round 61, whereas, the second near collision
block required 2987 core years of computation [10].

The full-collision attack is 100,000 faster than the brute
force attack that relies on the birthday paradox. The full-
collision attack can be conducted with processing power
equivalent to 6,5000 years of single-CPU computations and
110 years of single-GPU computations. On the other hand,
the brute-force attack would require 12,000,000,000 GPU
years to complete and is therefore impractical [6].

6. CONCLUSION
Any Certification Authority abiding by the CA/Browser

Forum regulations is not allowed to issue SHA-1 certificates
anymore. Additionally, Chrome will consider any websites
protected with SHA-1 certificates as insecure.

The full collision attack on SHA-1 has proved to be success-
ful in practice and thus requires immediate reconsideration
of SHA-1’s use in many applications such as GIT. Although,
the computational power required to conduct a full colli-
sion attack on SHA-1 is enormous, it is not impossible to do
given enough time and numerous powerful CPUs and GPUs.
Other alternatives such as SHA-236 or SHA-3 should be used
in future security protocols to prevent potential hacks.

References
[1] Florent Chabaud and Antoine Joux. “Differential Col-

lisions in SHA-0”. In: Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998,
Proceedings. Vol. 1462. Lecture Notes in Computer
Science. Springer, 1998, pp. 56–71. doi: 10 . 1007 /

BFb0055720.

[2] Rafi Chen Eli Biham. Near-Collisions of SHA-0. Cryp-
tology ePrint Archive, Report 2004/146. https : / /

eprint.iacr.org/2004/146. 2004.

[3] Stephane Manuel. Classification and Generation of Dis-
turbance Vectors for Collision Attacks against SHA-1.
Cryptology ePrint Archive, Report 2008/469. https:
//eprint.iacr.org/2008/469. 2008.

[4] R. Rivest. “The MD5 Message-Digest Algorithm”. In:
United States: RFC Editor, 1992.

[5] Ronald L. Rivest. “The MD4 Message Digest Algo-
rithm”. In: Proceedings of the 10th Annual Interna-
tional Cryptology Conference on Advances in Cryptol-
ogy. CRYPTO ’90. Berlin, Heidelberg: Springer-Verlag,
1991, pp. 303–311. isbn: 3-540-54508-5. url: http:

//dl.acm.org/citation.cfm?id=646755.705223.

[6] Shattered. https://shattered.io/. Accessed: 2018-
03-20.

[7] Marc Stevens.“New Collision Attacks on SHA-1 Based
on Optimal Joint Local-Collision Analysis”. In: Ad-
vances in Cryptology - EUROCRYPT 2013. Vol. 7881.
Lecture Notes in Computer Science. Springer, 2013,
pp. 245–261. doi: 10.1007/978-3-642-38348-9_15.
url: https://www.iacr.org/archive/eurocrypt2013/
78810243/78810243.pdf.

[8] Marc Stevens, Arjen Lenstra, and Benne Weger.“Chosen-
Prefix Collisions for MD5 and Colliding X.509 Certifi-
cates for Different Identities”. In: Proceedings of the
26th Annual International Conference on Advances in
Cryptology. EUROCRYPT ’07. Barcelona, Spain: Springer-
Verlag, 2007, pp. 1–22. isbn: 978-3-540-72539-8. doi:
10.1007/978-3-540-72540-4_1. url: http://dx.
doi.org/10.1007/978-3-540-72540-4_1.

[9] Marc Stevens et al. Short Chosen-Prefix Collisions for
MD5 and the Creation of a Rogue CA Certificate. 2009.
doi: 10.1007/978-3-642-03356-8_4. url: https:
//www.iacr.org/archive/crypto2009/56770054/

56770054.pdf.

[10] Marc Stevens et al. The first collision for full SHA-1.
Cryptology ePrint Archive, Report 2017/190. https:
//eprint.iacr.org/2017/190. 2017.

[11] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.“Find-
ing Collisions in the Full SHA-1”. In: In Proceedings of
Crypto. Springer, 2005, pp. 17–36.

