Prevention of C/C++ Pointer Vulnerability

Zihan An
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
anxxx154@morris.umn.edu

ABSTRACT

Programming languages C and C++ have shown their vul-
nerability on the safety of memory allocation. Recently, the
use-after-free (UAF) error and buffer overflow error are par-
ticularly popular among attackers. It is difficult to stop
their exploitation using the current techniques. In order to
provide a safer development environment for C and C++
users, this paper will discuss three new techniques that are
provided by three different research groups in their recent
studies.

Keywords

C/C++, use-after-free, buffer overflow, pointer vulnerabil-
ity, type specification, type state analysis, machine learning,
pointer tagging.

1. INTRODUCTION

The importance and value of developing methods that
protect a language mostly depends on its usage. As a gen-
eral purpose programming language, C serves many domains
in programming world. The subjects could be for instance:
operating system, development of other languages, compu-
tational platform, etc. Likewise, C++4 supports varieties
of the applications in the real-world such as game develop-
ment, graphic user interface, web browser, etc.[1] These two
languages share the same memory allocation system which
is the dynamic memory allocation to the heap accessed by
an address variable called pointer. This feature allows the
programmer to customize the memory space allocation ac-
cording to the amount of space they need. However, the
downside of this memory allocation feature is that the han-
dling of such allocation is fairly complex and the pointer has
shown its extreme vulnerability on ensuring the safety of the
allocation operations. Furthermore, since the C and C++
are pretty old languages in terms of the time they were in-
vented, the safety issue was not a main concern back then.
The languages did not have enough security implementation
to counter the pointer vulnerability in default. These lead
to many security issues. The most common two vulnera-
bilities are use-after-free and buffer overflow errors. They
are particularly popular targets to attackers since their ex-
ploitations are hard to stop using the current techniques.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

The current approaches of preventing the pointer vulnera-
bility are either expensive on the computer resource cost or
lacking effectiveness.

In the Section 2 of this paper introduces the general back-
ground information of the terminology within it. Then the
paper discusses the three solutions as preventions to the
pointer vulnerability. In the Section 3 we discuss the first
solution which is called Type-After-Type Type-Safe Mem-
ory Reuse (TAT)[2]. The TAT system uses type specifica-
tion on the memory allocation to prevent attackers from us-
ing use-after-free error to access object with different type.
In the Section 4 we discuss the second solution which is
the Machine-Learning-Guided Typestate Analysis for Static
Use-After-Free Detection[3]. The focus of this solution is to
apply the machine learning techniques to reduce the false
positive detection on use-after-free error that constantly ap-
pears in existing detection methods. In Section 5 we discuss
the third solution Delta Pointer[4]. The Delta Pointer on
the other hand is focusing on solving the buffer overflow
error. The Delta Pointer adds a upper bound check to orig-
inal pointer and will shut down the program once the data
is out of the bound. Therefore it can prevent the program
from potential run-time bug and attacks. At the end, the
conclusion wraps up the paper.

2. BACKGROUND

Memory allocation and reallocation can be different based
on different programming languages. There is a region of
memory called heap that can be allocated for the programs.
Now we should observe the difference between Java, Python,
and C/C++ allocating heap memory. For instance, Java has
a garbage collection system running in the Java Virtual Ma-
chine (JVM) which releases the objects that the program
no longer needs from the heap memory. Thus programmer
has almost minimal engagement in the process. Likewise,
Python has a hierarchy system that controls its private heap
called Python Memoryp Manager. The memory manager
frees a big chunk of memory that contains many small ob-
jects in the private heap at once when all the objects in the
chunk are no long needed.

Unlike these programming languages, C and C++ have
their unique memory allocation system. They do not re-
quire extra applications running in the background such as
JVM and Python Memory Manage. However, programmer
is responsible for both the creation and the destruction of
objects (specifically in heap memory). The advantage of let-
ting programmer having the control of memory allocation is
that such operation is very flexible when designing a pro-



Original

T

Dangling
pointer

Crafted m

Figure 1: When a pointer is first time assigned to an object, it is a valid pointer. When a memory is “freed”
after being used, the pointer still exist but points to an freed object, becoming a dangling pointer. If a new
object is created in the same address which the dangling pointer points to, both dangling pointer and the

new pointer will point to a same object.

gram. The program developers can always take the amount
of memory they actually need instead a fixed value given by
the computer. However, the risk of such operation is that
it can be very problematic and even potentially harmful.
The paper describes attack scenario in Subsection 2.2. The
C and C++ memory allocation can be separated into two
parts: stack and heap.

2.1 Stack & Heap

The stack is a special region of the computer memory
which stores the local variables in the program. Stack con-
sists of stack frames. Whenever a new function is used, it
is pushed to the stack with the variables that were defined
in it. When the function is no longer used, the function
and its variables are removed from the stack entirely. The
computer allocates space for stack in default thus the space
is fixed and limited. Normally the variables stored in the
stack are temporary, they are pushed in and popped out
pretty often.

On the other hand, the heap is the region that the com-
puter does not manage automatically for the user. The size
of the heap is almost unlimited comparing to the stack (con-
strained by how much space available in the system). The
heap is where C and C++ allow users to manually allocate
and deallocate space for their programs.

2.2 Pointer, Use-After-Free Attack, and Buffer
Overflow Attack

Unlike stack which is partitioned into stack frames, the
heap almost does not have any ordering for the objects in-
side. In order to locate and access the object that is stored
in the heap, C and C++ provide their unique referencing
variable which is the pointer. Pointers are symbolic repre-
sentation of addresses. They enable programs to simulate
call-by-reference as well as to create and manipulate dy-
namic data structures. For instance, int n; is a declaration
of a variable n, and int #*p; is a declaration of a pointer
that is called p. The actual value of p is an address which
looks like bf£5a400 (refers to place on the memory that can
be recognized by computer). Unlike the references concept
in Java, which is just an alias to an existing variable, the
pointer does not necessarily need to to refer an existing ob-
ject. Figure 1 illustrates when the pointer does not refer
to a valid object, or the memory where the pointer points

to has been freed (available for reallocation), it becomes a
dangling pointer. The existence of dangling pointer gives C
and C++ memory allocation a great vulnerability. There
are two scenarios that dangling pointer can be very harmful
element to the program. One is that the object that the
dangling pointer points to is not initialized automatically,
therefore the new pointer points to the same address is able
to read the information of that object. This can cause the
leak of the information. Another is that the attacker can
use the dangling pointer to craft the data at the object’s
address, if user uses the new pointer to access the data of
that address, it can lead multiple types of data corruption
and even cause sensitive information leak.

23 LLVM

The LLVM is a project that is a collection of modular
and reusable compiler and toolchain technologies. The name
LLVM is not an acronym, and LLVM has little to do with
traditional virtual machines. [5] In this paper, LLVM is
involved as a testing ground for our solutions.

2.4 Machine Learning

“Machine learning (ML) is a category of algorithm that
allows software applications to become more accurate in pre-
dicting outcomes without being explicitly programmed. The
basic premise of machine learning is to build algorithms that
can receive input data and use statistical analysis to pre-
dict an output while updating outputs as new data becomes
available.”[6] The specific method of machine learning that
this paper includes is the support vector machine, which
analyse the training samples with annotated details (fea-
tures) and provides a template for recognizing new samples.

2.5 Typestate

Typestate is a diagram representation of a machine. It
represents the execution of a computer. In this paper, the
typesate is used to represent the pointer at different stages.
It is used by the Machine-learning-guided detection for the
typestate analysis.

3. TYPE-AFTER-TYPE (TAT) TYPE-SAFE
MEMORY REUSE

In this section we discuss the solution Type-After-Type



Training phase:

TRUE
UAF
extract features
-

Analysis phase:

e

_—

Target

Program pre-analysis

Classifier

(Support Vector Machine)

extract features

]

N

State Bug
Analysis

queue as new Report

training sample

Figure 2: This is the general structure of TAC. In the training phase The Support Vector Machine takes
both true and false use-after-free samples with their extracted features, and build the recognition model for
state analysis. In the analysis phase the TAC takes target program and analyze it with the model, generates
the bug report, and uses it as a new training set of the Support Vector Machine

(TAT) type safe memory reuse. This solution is done by
a group of researchers in Vrije Universiteit Amsterdam [2].
The solution to the vulnerability is to provide a temporal
memory type (a signature use-after-free error) safety. The
temporal memory error happens when the program derefer-
ences a dangling pointer or attempts to deallocate a pointer
more than once. Assuming the program is dereferencing a
dangling pointer to a dynamically allocated object on the
heap, it allows the program to read the data of the object
(can be sensitive data) which is not supposed to be read
through this dangling pointer. On the other hand, if the
program deallocates a pointer more than once, this “unde-
fined behavior” can cause an uncertained error which can
crash the program anytime afterward and potentially cor-
rupt a part of the heap. “Temporal memory errors are a
major threat to software security. Type-After-Type uses
static analysis to determine the types of all heap and stack
allocations, and replaces regular allocations with typed al-
locations that never reuse memory previously used by other
types.” [2] Most of the current approaches to the vulnerabil-
ity are setting an additional temporal metadata that links
to a the pointer. Thus the program can check the tempo-
ral error by tracking down the metadata information of the
pointer. However, the procedure takes fair amount of ex-
tra space and additional time. Therefore the resource cost
is considered expensive. Comparing to existing approaches
dealing with temporal memory safety, TAT has much less
space requirement and run-time overhead by using its static
method. The procedure is done differently in the heap and
the stack.

3.1 Threat Model

The threat model should follow the conditions below: The
attacker is seeking type-unsafe exploitation of temporal mem-
ory error vulnerability in the victim program. The victim
program is considered capable of defending itself from other
classes of vulnerabilities such as buffer overflows. The at-
tacker is not able to access our metadata in the memory
manager’s data structures (to keep track of multiple typed
heaps) and the thread local storage (to store the stack point-
ers for multiple typed stacks). Therefore we can particularly
focus on dealing with temporal type safety without concern
of other potential parameters. [2]

3.2 Heap

To ensure the safety on the heap memory, the TAT sep-
arates the available memory in heap into several pools for
each different type. Everytime after the application frees
the memory, Instead of returning the memory to the opera-
tion system, TAT returns the memory to the same pool that
will only be available for future allocations of the same type.
The explicit procedure is scanning through the program and
detect the type of the allocated memory. After detecting the
type, TAT generates a 64-bits hash code (for security reason)
that is unique for the specific type to distinguish with other
types. In the future calls, TAT uses an alternative memory
allocation function supplied by a custom Malloc Library will
take the type hash code as an additional parameter. There-
fore TAT can achieve type awareness in the heap. Although
in the worst case (many calls from different type of mem-
ory) this procedure might cause some memory overhead, it
provides a maximum type safety at a lower level cost.

3.3 Stack

On the other hand, “the security issue on the stack is quite
different than on the heap. Stack allocations and dealloca-
tions are very frequent and must therefore be much more
efficient than those operations on the heap.” [2] However,
since the stack size is fairly small comparing to the heap
and its variables have their type specified during the allo-
cation time, the type analysis is not needed. A different
approach to ensure the safety on the stack is to guarantee
its initialization. Just like on the heap, TAT has a Stack
Initialization Library that creates and initialize a separate
stack with a pointer for each type whenever a new thread
is created. Whenever the thread is closed or destroyed, its
stacks will be freed to prevent memory leak.

3.4 Issues

TAT eliminates a wide range of temporal memory safety
errors at a low cost. However, there are several limitations
of the system.

First, attack can be wrapped as an allocation call to skip
the type detection process. Secondly, the system cannot de-
termine types if the target program is protected by using
an arbitrary custom memory allocator. Lastly, the system
requires source code as well as compiler managed type infor-



use use

live dead error use/free
rnTlocé free —— free

Figure 3: A brief state diagram illustrates the con-
cept of how the analysis is checking its target pro-
gram.

mation to help the type determination. These issues can be
solved applying additional information to the system with
the consent of user.

4. MACHINE-LEARNING-GUIDED STATIC
UAF DETECTION

Another solution to the use-after-free errors is the Machine-
Learning-Guided typestate analysis. It is done by a group
of researchers in University of New South Wales, Australia.
The research of approach is based on the limitation of the
existing use-after-free detection programs. Since the over-
approximation happens in the large scale target programs,
it causes numbers of false detection and has big overhead.
This approach is designed for large program with infeasible
paths and recursion cycles, loops that cause the hardness to
analyze the typestate of the pointer. The machine we use
is called TAC. It uses a support vector machine applying to
data investigated by the typestate analysis. One of the most
important purpose of using the machine-learning techniques
and static analysis is to best reduce the overhead of dynamic
methods have and the number of false detection.

4.1 Concept

The solution is built using machine learning techniques.
The entire process is divided into two phases. The first one is
the training phase and the second one is the analysis phase.

Training Phase. The developers set up the TAC predic-
tion model and train it using the both true and false UAF
samples in the real world programs. These samples are an-
notated by the developers for feature extraction. The fea-
tures are categorized into four categories: Type information
(identifying type like array, struct, container, etc), control-
flow (keeping track of information of pointer in loops and
recursions), common programming practices (memory man-
agement in common practice), and points-to information (in-
formation of the location the pointer is pointing to)[3]. To
actually train the prediction model, the support vector ma-
chine will take the features described above as parameters
and mark as either harmful or false detection. The expected
accuracy is obtained by a self testing during the training
phase. To be more explicit, the provided samples are di-
vided into 5 subsets with equal size. Then each subset is
used as a test set while using other 4 sets as training set.
The average accuracy of these test therefore is the expected
accuracy.

Analysis Phase. The analysis is divided to 2 separate
phases. The pre-analysis filters out “safe” objects that are
determined by the traditional method and left only the can-
didate objects that may be unsafe for further investigation.
The purpose of doing so is to significantly reduce the re-
source cost to the unnecessary targets. The developers give

//ch.c
774  static void ch_delbufs()

775 {
776 register struct bufnode *bn;
777
step2 778 while (ch_bufhead != END_OF_CHAIN)
779
step3 780 bn = ch_bufhead;

step4 ‘M 781 (bn)->next->prev (bn)->prev;

(bn)->prev->next = (bn)->next;

stepl 782 free(((struct buf *) bn));
783 }
784 ch_nbufs = @;
785 init_hashtbl();
786 }

Figure 4: A use-after-free bug found in less.

//1ib/http2/connection.c

228 void close_connection_now(http2_conn_t *conn) {
stepl 261 free(conn);

262 }

811 static void parse_input(http2_conn_t *conn) {
829 if (ret < @) {
step2 834 close_connection_now(conn);
836 }
848 }

850 static void on_read(socket_t *sock, int stat) {
852 http2_conn_t *conn = sock->data;

step3 , 861 parse_input(conn);
stepd‘\\{ 865 timeout_unlink(&conn->_write.timeout_entry);
step5 866 do_emit_writereq(conn);

868 }
step6 ... 994 int do_emit_writereq(http2_conn_t *conn) {
step7‘,,1066 buf = {conn->_write.bbytes, conn->_write.bsz};
stepsfiew socket_write(conn->sock, &buf, 1, on_w_compl);

1012 }

Figure 5: Two use-after-free bugs found in h2o.

TAC a set of candidate object whether with use-after-free
bugs or not and test its performance. Then the program
gives relevant functions for TAC to interact with. The TAC
will apply typestate analysis to these functions based on the
typestate relation on Figure 3. With the sufficient data and
technical analysis, the TAC is able to determine the true
bug that contains the use-after-free vulnerability.

4.2 Case Study

Here are 3 programs that contain use-after-free bugs found
by TAC.

Less. Figure 4 shows an unknown use-after-free bug found
in the Less (version 451) by TAC. TAC detected that the
line 781 a same freed object is dereferenced four times in the
while loop, causing one distinct use-after-free error.

H2o. Figure 5 shows couple known use-after-free bugs in
h20 detected by TAC. At line 261, the program frees conn
which is also involved in the nested call chain at line 834
to 861. However conn is used in another function time-
out_unlink called at line 865. TAC was able to find these
multiple different-type bugs.

Php. Figure 6 shows known use-after-free bugs and cou-
ple new ones in php (version 5.6.7) detected by TAC. These
bugs are actually located in separate files. The source is
freed at line 350 and then accessed at line 154. The freed
source is further accessed by function of another program
and double freed. TAC was able to detect such error related
to different files.

There bugs above are all true bugs. The TAC found the



//ext/opcache/zend_shared_alloc.c
338 void *_zend_shared_memdup(void *source, size_t s){

349 if (free_source) {
stepl 350 free(source);
351
stepztw' 352 zend_shared_alloc_register_xlat_en(source, r);
353 return retval;
354 }

//ext/opcache/zend_persist.c
143 zend_ast *zend_persist_ast(zend_ast *ast) {

step3 153 node = _zend_shared_memdup(ast, size);
step4‘\“' 154 for (i = @; i < ast->children; i++) {
155 if ((&node->u.child)[i]) {
156 (&node->u.child)[i] = ...;
157 }
158
stepsc‘”' 160 free(ast);
161 return node;

162 }

Figure 6: Two bugs found in php.

exact bugs in these program without giving any false detec-
tion.

4.3 Implementation

“The implementation of the TAC in the LLVM-3.8.0 showed
a significant result. The evaluation used eight open-source
C/C++ programs. TAC finds 109 bugs out of 266 warnings
by suppressing 19083 warnings reported by TAC-NML.”[3]

S. DELTA POINTER

Assuming an attacker is able to exploit a buffer overflow
by feeding malicious inputs to a given vulnerable user pro-
gram, he can repeatedly interact with the program, and
the program is automatically restarted in case of crashes
caused by failed exploitation attempts. A concept of the
Delta Pointer is designed for the situation.

“The Delta Pointer provides an efficient pointer tagging to
prevent such buffer overflow attack without checking explicit
memory access operation. It encodes the out-of-bounds states
in the pointer itself.” [4] When using the Delta Pointer to
access the memory, the program will read the metadata and
if it detects that the pointer was overflown, the pointer will
be recognized as an invalid pointer, causing a run-time error
and stop the entire program.

The Delta Pointer provides a solution to replace the null
pointers with a value of Ox7{Ifffff00000000 (a hexadecimal
representation of 64 bits whole Delta Pointer). This will
cause any dereference of a pointer derived from null to trig-
ger a fault and hence detection.[4]

5.1 Threat Model

The threat model is considered of the following conditions:
An attacker able to exploit a buffer overflow by giving ma-
licious inputs to a given vulnerable user program. The at-
tacker can repeatedly interact with the program, and the
program is automatically restarted in case of crashes caused
by failed exploitation attempts. The goal of the study is
to detect the exploitation of arbitrary buffer overflows when
memory is either written to or read from, protecting both
integrity and confidentiality.[4]

5.2 Delta Pointer Structure

The key feature of the Delta Pointer is its structure. As
it is described in Figure 7, a Delta Pointer consist of 64

tag virtual address
32 bit 32 bit
0| 7f ff ff e8 | 02 Oc 40 10
N
1 bit 31 bit
overflow delta tag

Figure 7: The first 32 bits are the tag which is added
to the last 32 bits original pointer address. The very
first bit is a overflow tag which determines whether
the pointer is overflown or not. The following 31
bits are the Delta tag which represents the size of
the buffer.

char p[24]; (0] 7f ff ff e8 | 02 Oc 40 10
+23 +23

p+=23; |@| 7f ff ff ff | 02 Oc 40 27
carry +1 +1

ptres; [T] 00 00 00 60 = 02 Oc 40 28
carry -1 -1

ptr--; @] 7t ff ff ff | 02 oc 40 27

Figure 8: Delta tag increases as the size of the con-
stants in the buffer increases

bits value. The first bit is the overflow key which represent
whether the pointer is overflown. The next 31 bits are the
Delta tag which consists with the size of the buffer when it is
initialized. The last 32 bits are the original address informa-
tion of the pointer. As shown in the Figure 8, the Delta tag
will keep track on the size information of the buffer. While
we adding constants into the buffer, the value of delta tag in-
creases respectively. Whenever the value reaches the upper
bound 7 (hexadecimal representation of 31 bits of “17s),
the overflow tag will be triggered. Any further addition to
the buffer will cause the delta pointer to be “invalid” and
shutdown the program to prevent the system from further
damage. If anything keeps adding into the buffer, it would
trigger the overflow tag, and further addition to the buffer
would cause a run-time error, shutting down the program.
Figure 9 illustrates when we need to retrieve the original
address of the pointer, we use bitwise arithmetic to mask
out the delta pointer tag and only keep the original address
contained in the pointer. This also prevents the metadata
of Delta Pointer itself to be revealed to outside.

5.3 Coverage

Many existing pointer tagging applications only consid-

Pointer: 0
Mask: 1

7f ff ff e8
00 00 00 00

02 Oc 40 10
ff ff ff ff

v

02 0c 40 10

0] o0 00 00 00

Figure 9: Masking out the Delta Pointer informa-
tion



ered the situation which the pointer is tagged with meta-
data, because a null pointer is dereferenced and cause the
program crush otherwise. However, this consideration ig-
nored that the fact pointers can be unsafely used by the
attackers and therefore we can not assume the presence of
metadata in the pointer. According to this, a robust pointer
tagging-based defense is designed to deal with the poten-
tial missing metadata. Delta Pointer is robust by design
against missing metadata since the zeroed metadata can not
be dereferenced as a valid pointer.

Delta Pointer focus on heap part of the memory alloca-
tion. This solution currently support all allocation functions
in C/C++ standard libraries. It does not automatically
support most of the custom allocators unless they have the
similar structure for the implementation of Delta Pointer.

5.4 Performance and Implementation

The tagging operation is bitwise, which means it is very
fast. However, the actual procedure could still cause the
temporary memory pressure especially when there is con-
flict with the operating system. Delta pointer is also good
at dealing against metadata corruption, since the pointer
overflow will also overflow the delta tag, immediately inval-
idating the pointer.

The implementation is a Delta Pointer prototype for Linux
using LLVM compiler infrastructure. “The code consists of
3,749 lines of code of LLVM C++ passes, which add the in-
strumentation described previously. An additional 846 lines
of code make up run-time and helper libraries, including a
static library that shrinks the address space of the process
to make room for tags in pointers. The code is open source.”
]

6. CONCLUSION

As two of the most widely used programming languages, C
and C++4 appear in applications over many different fields.
Their safety issues threaten significant amount of users infor-
mation. Thus the solutions to prevent these threats are very
essential. To overcome the challenges that affect the existing
prevention methods, these 3 new solutions contribute a sig-
nificant improvement of different aspects to the issue. Type-
After-Type uses a static method to categorize the memory
and specify its types to ensure the safety to use-after-free
error. Machine-Learning-Guided Typestate Analysis imple-
ments machine learning to resolve the false detection issue
within previous use-after-free detection. The dynamic Delta
Pointer design provides an efficient solution to disallow the
buffer overflow error, preventing both run-time bug and po-
tential attacks. Although above solutions still have some
levels of overhead and limitation issues, every cloud has a
silver lining, and the better solutions will take their place in
the future.

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Elena Machkasova
for the patient and deep guidance of the paper, as well as
Professor Nic McPhee and UMM alumnus Stephen Adams
for their valuable feedback.

7. REFERENCES
[1] “Applications of ¢ / c++ in the real world,” Apr 2018.
[Online]. Available:

https://www.invensis.net/blog/it/applications-of-c-c-
plus-plus-in-the-real-world/

E. van der Kouwe, T. Kroes, C. Ouwehand, H. Bos,
and C. Giuffrida, “Type-after-type: Practical and
complete type-safe memory reuse,” in Proceedings of the
34th Annual Computer Security Applications
Conference, ser. ACSAC ’18. New York, NY, USA:
ACM, 2018, pp. 17-27.

H. Yan, Y. Sui, S. Chen, and J. Xue,
“Machine-learning-guided typestate analysis for static
use-after-free detection,” in Proceedings of the 33rd
Annual Computer Security Applications Conference,
ser. ACSAC 2017. New York, NY, USA: ACM, 2017,
pp. 42-54.

T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and
C. Giuffrida, “Delta pointers: Buffer overflow checks
without the checks,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys '18. New York, NY,
USA: ACM, 2018, pp. 22:1-22:14.

“The LLVM compiler infrastructure project.” [Online].
Available: http://llvm.org/

“What is machine learning

(ML)? - definition from whatis.com.” [Online]. Available:
https://searchenterpriseai.techtarget.com/definition /machine-
learning-ML



