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Background Information
Memory Allocation of C/C++ Languages

● Dynamic memory allocation

● Stack & Heap

● Basic procedures: malloc() and free()

● Invention of C/C++: 1978 & 1980s

Pointer

● Address locator of C/C++

● y1 & y2 are pointers
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main()

x = 33 33

Stack                               Heap

Actual values of y1 will be like 0x7fffa057dd4



Pointer Attack Scenarios
Use-After-Free Attack (UAF):

● Dangling pointer

● Reallocation to attacker-controlled data
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Valid Object

[Object]

Freed Object

[????]
Valid Pointer Dangling Pointer



Use-After-Free Attack (UAF):

Pointer Attack Scenarios
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Pointer Attack Scenarios
Buffer Overflow Attack:

● Buffer -- temporary data storage

● Data leak out to other buffers

● Corrupt & overwrite data of other buffers

● Inplant harmful data & code
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Type-after-Type (TAT) Memory Reuse
Type Specification for Memory

● Prevents attackers take of advantage of dangling pointers

● Lower resource cost comparing the existing methods

● Heap site of specification

● Stack site of specification
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Type Specification for Memory

On stack:

● Safe variables: 

function names, 

global / local variables

● Unsafe variables:

pointers

Type-after-Type (TAT) Memory Reuse
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main()

x = 3

*y1 = {...}

*y2 = {...}

Safe variables

Unsafe variables



Type-after-Type (TAT) Memory Reuse
Type Specification for Memory

On heap:
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Available memory on heap

int char float

*x = 20

*x = ??

free(x)



Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

Focus on large scale program and reducing false detection

Features of the samples:

● Type information (e.g., global, array and struct)

● Control overflow (e.g., loop and recursion)

● Common practice (e.g., pointer casting and reference counting)

● Points-to information (e.g., the number of objects that may be used at a 

use site and the number of UAF pairs sharing the same free site)
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Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

● Training phase:

● Analysis phase:
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Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

● Pre-analysis

● State analysis

State graph

12

UAF error in state graph



Machine-Learning-Guided Detection
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Example of detecting UAF error in early version of less

bn is 
dereferenced 4 
times without 
updating its 
information



Delta Pointers
Low Resource Cost Pointer Tagging

● Each Delta pointer has its 

“overflow” tag

● Cause run-time error to stop the 

program avoiding the further 

damage

14

Address
of 

the 
object

Address

Overflow
tag



Delta Pointers
Low Resource Cost Pointer Tagging
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Delta pointer structure



Delta Pointers
Low Resource Cost Pointer Tagging
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Overflow detection



Delta Pointers
Low Resource Cost Pointer Tagging
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Pointer:
Mask:

Returning
address:

02  0c  40  10

Retrieving address



Conclusion
● C/C++ are widely used

● Dynamic allocation has both good and bad parts

● Balance between resource cost vs. effectiveness on defense

● Overview:

Type-after-Type type safe memory reuse (low cost)

Machine-Learning-Guided UAF detector (high accuracy & precision)

Delta pointers (fast)
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