
Prevention of C/C++ Pointer Vulnerability

Dexter An
Division of Science & Mathematics

University of Minnesota, Morris
April 20, 2019

List of Contents
● Background of C/C++ Memory Allocation and Pointer

● Pointer Vulnerability and Attacks

● Type-after-Type Type Safe Memory Reuse

● Machine-Learning-Guided Static UAF Detection

● Delta Pointer

● Conclusion

Background Information
Memory Allocation of C/C++ Languages

● Dynamic memory allocation

● Stack & Heap

● Basic procedures: malloc() and free()

● Invention of C/C++: 1978 & 1980s

Pointer

● Address locator of C/C++

● y1 & y2 are pointers

3

*y1

*y2

main()

x = 33 33

Stack Heap

Actual values of y1 will be like 0x7fffa057dd4

Pointer Attack Scenarios
Use-After-Free Attack (UAF):

● Dangling pointer

● Reallocation to attacker-controlled data

4

Valid Object

[Object]

Freed Object

[????]
Valid Pointer Dangling Pointer

Use-After-Free Attack (UAF):

Pointer Attack Scenarios

5

Original CraftedFreedPoiner *y Poiner *y
Poiner *y

Dangling
pointer

Poiner *z

!!!

Pointer Attack Scenarios
Buffer Overflow Attack:

● Buffer -- temporary data storage

● Data leak out to other buffers

● Corrupt & overwrite data of other buffers

● Inplant harmful data & code

6

overflow data

normal data

Buffer overflow

empty buffer

Type-after-Type (TAT) Memory Reuse
Type Specification for Memory

● Prevents attackers take of advantage of dangling pointers

● Lower resource cost comparing the existing methods

● Heap site of specification

● Stack site of specification

7

Type Specification for Memory

On stack:

● Safe variables:

function names,

global / local variables

● Unsafe variables:

pointers

Type-after-Type (TAT) Memory Reuse

8

main()

x = 3

*y1 = {...}

*y2 = {...}

Safe variables

Unsafe variables

Type-after-Type (TAT) Memory Reuse
Type Specification for Memory

On heap:

9

Available memory on heap

int char float

*x = 20

*x = ??

free(x)

Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

Focus on large scale program and reducing false detection

Features of the samples:

● Type information (e.g., global, array and struct)

● Control overflow (e.g., loop and recursion)

● Common practice (e.g., pointer casting and reference counting)

● Points-to information (e.g., the number of objects that may be used at a

use site and the number of UAF pairs sharing the same free site)

10

Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

● Training phase:

● Analysis phase:

11

TRUE

UAF

FALSE

UAF

extract features Classifier

Target

Program pre-analysis queue as new
training sample

State

Analysis

Bug

Report

extract features

Machine-Learning-Guided Detection
Static Use-After-Free Vulnerability Detector

● Pre-analysis

● State analysis

State graph

12

UAF error in state graph

Machine-Learning-Guided Detection

13

Example of detecting UAF error in early version of less

bn is
dereferenced 4
times without
updating its
information

Delta Pointers
Low Resource Cost Pointer Tagging

● Each Delta pointer has its

“overflow” tag

● Cause run-time error to stop the

program avoiding the further

damage

14

Address
of

the
object

Address

Overflow
tag

Delta Pointers
Low Resource Cost Pointer Tagging

15

Delta pointer structure

Delta Pointers
Low Resource Cost Pointer Tagging

16

Overflow detection

Delta Pointers
Low Resource Cost Pointer Tagging

17

Pointer:
Mask:

Returning
address:

02 0c 40 10

Retrieving address

Conclusion
● C/C++ are widely used

● Dynamic allocation has both good and bad parts

● Balance between resource cost vs. effectiveness on defense

● Overview:

Type-after-Type type safe memory reuse (low cost)

Machine-Learning-Guided UAF detector (high accuracy & precision)

Delta pointers (fast)

18

References & Acknowledgments
Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-Learning_Guided Typestate

Analysis for Static Use-After-Free Detection.

Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos. 2018. Delta Pointers: Buffer Overflow

Checks Without the Checks.

Van der Kouwe, Erik and Kroes, Taddeus and Ouwehand, Chris and Bos, Herbert and Giuffrida,

Cristiano. 2018. Type-After-Type: Practical and Complete Type-Safe Memory Reuse.

Thank the writers, my advisor Elena Machkasova, and peers who gave feedbacks to the

presentation.

Questions?

