
Procedural Generation via Machine Learning

Philip Blaskowski
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

blask017@morris.umn.edu

ABSTRACT
The automatic generation of content can be useful for video
game developers creating a game. It can provide developers
with the capabilities to automatically generate interesting
content for gamers to play through. The field that allows
developers to do this is called Procedural Content Genera-
tion (PCG). While this field has been around for a very long
time, progress in technology has allowed developers to think
up of new algorithms that allow them to generate content
better and more suited to their target demographic. In this
paper, we will talk about two Procedural Content Genera-
tion methods, both of which employ Machine Learning.

Keywords
Machine Learning, Procedural Content Generation, Games

1. INTRODUCTION
Procedural Content Generation is the use of algorithms to

create data with little to no human interactions [5]. It has
uses outside of gaming, but for the purposes of this paper
Procedural Content Generation is going to be in the context
of video games.

Probably the most famous example of this is Minecraft,
a game where a massive open world is randomly generated.
This world is vast and meant to be explored by the player.
Underground caves are generated filled with materials the
player can use to build to tools to explore even more. Fur-
thermore, the world is filled with monsters and animals, and
together with the things a player can find, they can change
the world as they see fit. As evident by the number of things
randomly generated in the game, it’s no wonder that the
game employs Procedural Content Generation.

Procedural Content Generation is important to game de-
velopers because it’s cheaper than humans manually creat-
ing the content by hand. Large amounts of content can be
created without much human input. With that said, this
also helps smaller studios develop games. These studios can
concentrate on making a good game with good mechanics
instead of worrying about if they have the manpower to cre-
ate assets for their game [2]. However, developers shouldn’t
use PCG without thought. The more famous games that
employ PCG usually have mechanics that take advantage

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

of it. Further development of this field, at least in gaming,
can lead to many possibilities. With the use of Machine
Learning, Procedural Content Generation can be used more
effectively.

In this paper, we’ll explore the possibilities brought upon
by combining Procedural Content Generation with Machine
Learning

2. BACKGROUND
There are certain concepts that we need to cover before

diving into specific methods for Procedural Content Genera-
tion. All of the research materials used in this paper employ
Machine Learning as the main feature in their methods, so
it’s a given that we need to go over certain Machine Learning
concepts. Also, my paper references multiple video games,
so we’ll be going over a brief overview of said video games.

2.1 Super Mario Brothers
Super Mario Brothers is a classic video game series pub-

lished by Nintendo in 1983. You follow the titular charac-
ter Mario as he runs and jumps his way through a level to
save Princess Peach. This game is a 2-d platformer, which
means it’s in two dimensions and you use your skills to jump
on platforms to get through a level. These tasks can be of
varying difficulty depending on the level.

2.2 Quake
Quake is a classic game first-person shooter published by

Id Software in 1996. you play as Ranger as he is sent by
humanity to eliminate the enemy known as Quake who is
sending armies through portals to test humanity’s martial
prowess. You play the game in first person, which means
you play through the playable character’s eyes (like in real
life). This also means the game is in 3-d, as opposed to
Super Mario Bros. 2-d. And of course, the shooter part
means you’re shooting things with guns; the game is quite
violent.

2.3 Machine Learning
Machine learning is a scientific study that employs algo-

rithms and statistical models to perform tasks without the
need for specific instructions. Machine Learning algorithms
use training data to build a mathematical model that allows
it to recognize patterns. These algorithms can be used in
many different applications like image recognition and fil-
tering an email inbox.

2.4 Training



Figure 1: An example of a Markov chain. Transi-
tioning from E to A has a 70% of occurring while
staying in E is 30%. Going from A to E has a 40%
chance while staying in A has a 60% chance. As
we can see all these probabilities equal 100%. This
ensures that the current state transitions into some-
thing. Taken from [6]

Machines are much better at processing and storing in-
formation and than humans. But, any problems not explic-
itly handled in the code can cause these programs to fail.
Machines are not as good at adapting to situations than
humans. They are completely dependent on being updated
or pre-programmed to handle these situations. Training al-
lows us to get around this. Training is a way to leverage a
machine’s ability to process information while also making
machines more intelligent. By feeding machines with data
relevant to a certain task (training data), they can look for
patterns and relationships in the data, allowing it to solve
many different situations that may arise while performing a
task.

2.5 Encoding data
Encoding data is vital for training. Machines can’t actu-

ally understand the human language. A machine learning
algorithm isn’t reading through your emails or recognizing
your face. It’s looking for patterns (learned in training) that
allow it to fulfill its tasks. This is why it’s necessary to take
the real world data you’ve gathered and turn into something
a machine can understand (0’s and 1’s). Encoding your data
is key to getting good data for use in training and testing.

2.6 Markov Chains
Markov chains are a stochastic model (a collection of ran-

dom variables) [6], which describes a sequence of events such
that the current state is dependent on the previous states.
Figure 1 shows this. As an example let’s pretend we’re build-
ing a 2D Super Mario Brothers stage, and the stage is broken
up into multiple tiles (a square of arbitrary size). If we start
at the top left and say the tile at that location represents a
part of the sky. We can take the resulting tile (a sky tile)
and try to generate the tile to the right of it. If we look at
Figure 1, there is a 60% chance to remain in state A and a
40% chance to transition to another state. If sky tiles are
represented by state A and cloud tiles are represented by
state E, then according to our example, there would be a
40% chance to generate a cloud tile. If a cloud tile is gener-

Figure 2: Structural layer (top right), player path
layer (bottom left), and height layer (bottom right).
Taken from [4]

ated then there would be a 30% chance to generate another
cloud tile while there would be a 70% chance to generate a
sky tile. While there are many more different features in a
Super Mario Bros. level this example should hopefully help
you understand Markov Chains.

A multi-dimensional Markov chain is an extension of Markov
chains, wherein a multi-dimensional representation is used
to represent the Markov Chain. The main feature of this is
that any state in the graph can be dependent on any other
state [3]. This is important to know because one of the
studies found in this paper utilizes matrices to encode lev-
els. However, the current state doesn’t have to be dependent
on all the other states. In the context of our example above,
the current tile may depend on surrounding tiles, far away
tiles, or even tiles from other matrices.

3. REPRESENTING LEVELS VIA LAYERS
The defining part of this method is that makes use of lay-

ers to represent a level in a game, these layers can be repre-
sented as: L = {L1, L2, , Ln}, where Ln is a two dimensional
matrix with dimension h ∗ w(height ∗ width). Each of these
layers has a set of tiles, ti, which varies between these lay-
ers [4]. This makes it so that each layer can represent the



different parts of the level. As an example, there can be a
layer that represents the structure of a level, another layer
representing the paths a player can take through a level, and
one more layer which represents the height of a level. Figure
2 shows a section of a Super Mario Bros. level represented
using the layers described above.

These layers aren’t bound to what is being described in
this section. An example this can be a difficulty layer, which,
as the name suggests would represent the difficulty through
a level (kind of like a heat map). This method seems very
straight forward, but it is very flexible; allowing developers
to create more complicated, and consistent levels.

3.1 Training
In this section, we will discuss how to train our mod-

els, both of which are Multi-dimensional Markov Chains
(MdMC). The difference being, one only has dependencies
based off of the structural layer, while the other has depen-
dencies spanning multiple layers. At the end of training, we
should have a complete Markov Chain with a Conditional
Probability Distribution (CPD) which are the probabilities
for a state to transition to another state.

To start training a single layer MdMCs we need two things:
a network structure, and the training levels (training data).
The network structure shows what the current state is de-
pendent on. This is necessary because the levels are repre-
sented via matrices and levels are generated using a matrix.
The training levels are created by the developers themselves.
The structural layer and height layer are generated by hand
and the player path layer is generated using an algorithm
that traverses the level. The CPD can then be estimated
using the patterns found in the training data.

Training the multi-layer MdMC is largely similar to train-
ing a single layer MdMC. The requirements are the same.
The main differences are that the training levels are being
represented using multiple layers, and the resulting Markov
Chain may have dependencies from the other layers.

3.2 Sampling
This section we will talk about sampling (generating) new

levels via the methods described above. First, we sample
levels utilizing a single layer MdMC and then a multi-layer
MdMC. After that, we sample one last time using a con-
strained sample extension.

Before we start our sampling process, we need our desired
level’s dimensions and the complete Markov Chain with the
CPD as we trained it. To begin sampling we first must pick
a starting point. Snodgrass et. al. [4] picked the bottom left
corner. We then move from our starting point, completing
the current row before we move on the next one. This pro-
cess is repeated until an entire level is sampled. To sample a
tile, we look at the CPD of our Markov Chain and generate
the tile depending on that.

To avoid errors during sampling we employ two proce-
dures: A look ahead and a fallback procedure. The look
ahead procedure allows us to avoid any unseen states, a
state resulting in a combination of tiles that we didn’t come
across in the training data. Think of the pipe in Figure 2,
it would be strange if the top of the pipe was dirt or incom-
plete. The procedure works by sampling a given tile and
then generating a number of tiles ahead of the sampled tile.
If an unseen state is observed a different tile is sampled.

The fallback procedure is used when an unseen state can-

not be avoided [4]. During our training process, the re-
searchers trained multiple MdMC models, each of which are
trained with increasingly simple network structures. When
we sample a tile, we start of by using the most complex
model. If an unavoidable, unseen state is observed we fall
back to simpler ones until we generate a tile that satisfies
our look ahead procedure.

Sampling a level using a multi-layered MdMC works very
similarly to the single-layered approach. The difference is
that the trained CPD models the probability of tiles in the
main layer, and the network structures contain states from
the other layers. This means that the model can have de-
pendencies from other layers.

To ensure we actually have playable levels, we add con-
straints to our sampling approach. This forces our sampling
algorithm to enforce playability, which is done through a re-
sampling process. Snodgrass et. al. apply their constraints
through an algorithm.

3.3 Experiment Overview
To test the performance of their method Snodgrass et. al.

generated Super Mario Bros. levels. They were especially
looking at whether their multi-layered approach was able to
recreate levels accurately and create more interesting situa-
tions than the single-layered approach.

To create their training levels they used the layers de-
scribed above (structural, player path, and height layers).
For their structural layer, Snodgrass et al represented it us-
ing a set of 34 tile types to represent objects (the ground,
platforms, pipes, enemies, etc.). There is also a tile used to
represent the boundaries of a level

For their height layer, they split the level up by group-
ing together multiple rows. This essentially allows for more
focused training within a section. For this layer, the re-
searchers used a set of 6 tiles to represent the layer. Four
tiles for the three consecutive rows, one for the final two
rows, and the last to represent the boundaries of the layer.

Lastly, their player path layer only uses three types of
tiles: one tile (x in this case) is used to signify a part on the
path, another (-) to signify parts not on the path, and like
the other two, a tile used to represent the boundaries of the
layer. Figure 2 illustrates this set-up.

3.4 Experiment set-up
For this experiment Snodgrass et. al. used 25 training

levels to train their single and multi-layered MdMCs. After
training, they sampled 1000 levels per each MdMC type.
Since the multi-layered MdMC employs the player path layer
they decided to sample with 4 different player path layers
of differing complexities (250 samples per player path layer);
the significance of this will be detailed later on. These player
paths are based on different levels in Super Mario Bros. One
of the paths involves a springboard, which will be used to
evaluate the model’s ability to make interesting interactions.

To evaluate the approach’s capabilities in generating in-
teresting level designs, the springboards mentioned above
come into play. Springboards are an infrequent tile type
that allows the player-controlled character to jump much
higher than normal. To measure the approach’s capabilities,
we calculate the ratio of the amount springs in the sampled
level against the number of springs required to complete the
sampled level. This allows us to see if the spring is placed
there by chance or if the springs are being utilized to com-



Linearity

This measures how well the plat-
forms in the level can be approxi-
mated with a best fit line. It returns
the sum of distances of each solid tile
type from the best-fit line, normal-
ized by the level length.

Leniency

This approximates the difficulty of
the level by summing the gaps
(weighted by length) and enemies
(weighted by 0.5), and normalizing
by the level length.

Fréchet

This measures the distance between
two paths. Intuitively it can be
thought of as the minimum length of
a rope needed to connect two people
walking on two separate paths over
the course of the paths.

Table 1: This table goes into more detail into the
metrics used to compare generated levels and train-
ing levels. Taken from [4]

plete a level. Another interesting point Snodgrass et. al. is
interested in is their approach’s ability to allow for the paths
used in the player path layer. To achieve this they calculate
the discrete Fréchet distance between the provided player
path and the actual path taken through the level. Finally,
knowing how well the approach follows the training data is
important, the linearity and leniency of sampled levels are
compared to those of the training data. Table 1 gives more
information on these metrics.

3.5 Results
Both single layer and multi-layer MdMCs had linearity

and leniency values similar to the ones calculated from the
training levels. We can see this in Figure 3 because the
points in the graph are clustered together. This means that
both models were able to mimic the structural aspects of
the training levels. This does not mean that they are ex-
act copies though, it just means that the levels look alike.
This is where the similarities end. The single layer MdMC
had a hard time placing springboards with intent (relevant
to completing a level). In contrast, the multi-layer model
was able to place springboards with intent more reliably.
This shows that the multi-layer MdMC was able to capture
nuances better than the single layer MdMC.

Another difference in the two models is the Fréchet dis-
tances, the multi-layer MdMC was able to generate levels
with lower Fréchet distances than the single layer model.
This means that the levels generated by the multi-layer rep-
resentation were able to generate levels that accommodated
for the given play paths better. Figure 4 shows this, the in-
tended path and the generated paths cross over quite a bit
throughout the Figure and even when they don’t cross, they
are close to each other and are shaped similarly. Snodgrass
et. al. were able to measure this by having an algorithm
that traverses the level.

The multi-layer MdMC model was able to create levels
with more nuance while also allowing for pre-set player paths
throughout a level. The single layer MdMC was able to only
really mimic structural similarities in the training levels, but

Figure 3: Shows the expressive range of the different
models. The y-axis is the leniency and the x-axis is
the linearity. Taken from [4]

Figure 4: Shows the similarities between the path
generated by the model vs the player path given
by the researchers. Blue is the generated path, red
is the intended path and purple is when the paths
cross. Taken from [4]

lose out on everything else.

4. LEARNING BASED GENERATION
A challenge in procedural content generation is the chance

of unplayable content being generated [1]. Situations where
payers are put into impossible situations, like being placed
in a room with enemies that kill the player in one hit. There
are existing methods that get around this, however this in-
volves manually changing the algorithm to account for these
situations. This can be very expensive especially when the
developer has a schedule to follow.

Additionally player feedback is also used to personalize
content for a given target population. While these meth-
ods see success, the used categories might not fit all players
and can lead to difficulty in inferring player types/styles
from a computational perspective. Also,subjective feedback
can be quite inaccurate and noisy, which can make things
more difficult. To avoid this problem, developers use public
playtesters. A generic play style can then be found to design
around. But this method is expensive and time-consuming.

A solution Roberts et. al. found is through the use of their
framework: LBPCG (Learning Based Procedural Content
Generation). This framework attempts to mimic commercial
game development, therefore the generation process is split



into three stages. The development stage (involves game
developers), public test stage (involves a public test phase,
and the adaptive stage (involves target players) [1]. They
go about this by encoding the knowledge of game developers
(development stage) and model the experience of test players
(public test phase). All this should result in a framework
that is able to generate appealing content (adaptive stage).

4.1 The Development Stage
In this section, we will start with the development stage,

which aims to encode a developer’s knowledge. We will look
at a brief overview of the stage then take a deeper look into
the techniques utilized in the stage, and how those tech-
niques are enabled. We will start with the Development
Stage which consists of two stages: the Initial Content Qual-
ity (ICQ) and Content Categorization models. Both models
serve to encode developer knowledge. The ICQ model is
used to filter out awful/unacceptable content and the CC
model is used to partition the acceptable content based on
the content features found in the games [1]. This process
allows developers to be more flexible in categorizing content
and then associate said content to certain design interests
and player populations. Furthermore, these models allow
developers to limit the search space for personalized con-
tent generation. This stage is essential for enabling models
described in the other stages.

As described above the ICQ model’s job is to look at a set
of games and decide which games are good or bad. In the
context of Machine Learning, we want this model to learn
what the developer deems as a good or bad game. To do
this a set of representative games must be chosen by the
developers before everything else. These games are then
split up into multiple subspaces. Each subspace can have
multiple features, Roberts et. al. treated these subspaces
as vectors for the model to evaluate. Then the developer
plays a representative game from each subspace and decides
the quality of the game. This should allow the model to
observe patterns and learn which games are good or bad.
However, this comes with a caveat that the model is making
general decisions about the games in the subspaces. It’s
completely possible that good games with bad representative
games could be overlooked.

The CC model’s job is to partition the accepted games
into categories. This process is largely similar to the ICQ
model’s learning process. When the developer is playing the
representative games, they are also tasked with labeling the
category and content features. The model should be able to
use this information to label games.

4.2 The Public Test Stage
Public user testing is proven to serve an essential role

in modern game development by allowing developers to en-
hance the end product further before the game is released [1].
To model this Roberts et. al. proposes two models again:
the Generic Player Experience model (GPE) and the Play-
log Driven Categorization model (PDC). The GPE model
is used to capture the public players’ feedback of games in
categories that the developers chose. While the feedback re-
ceived from these testers are subjective the GPE model at-
tempts to find a consensus on each game. The PDC model
attempts to model the experience of the test players and the
category of the game they were playing.

The GPE model’s job is to look at player feedback, esti-

mate the popularity of a game, and find outlier players based
on a conformity score given to each player. This should allow
for the generation of content based on a target player demo-
graphic. To fulfill these representative games are handed to
the public to play. These games are separated into different
categories (the same ones used for the CC model labels).
After a game has been, the player is then directed to indi-
cate whether they enjoyed the game or not. These scores are
then used to allow the model to learn the patterns between
the feedback given and the category and features of a game
to decide the popularity of the game and the conformity of
players against the rest.

The PDC model attempts to label whether an experience
is positive or negative based on the play-logs recorded during
a player’s run through a game. By looking at the category,
feedback, and play-logs, the model should be able to find
patterns and make a binary decision about whether the ex-
perience of the players was fun or not.

4.3 The Adaptive Stage
The Adaptive Stage only employs one model: the Indi-

vidual Preference (IP) model, which controls the content
generator with the four models used in the other two stages.
The IP model should be able to deal with the four main
issues: finding the preferences of the target audience and
the category of the games that the developers chose (PDC
and GPE), making sure that the quality of the generated
content is consistent (ICQ, CC, and GPE), detecting when
the content is diverging from the category (PDC), and au-
tomatically detecting and tackling crisis situations [1].

4.4 The IP model
Roberts et. al. carry out the IP model using a state ma-

chine with three stages; in this case, they used: Categorize,
Produce, Generalize as their stages. This allows them to
detect preferred content, good game generation as well as
system failure countermeasures.

The Categorize state is responsible for detecting a player’s
content preference. To do this the player needs to play a few
games used in the GPE learning process. As soon as the
player has played a game, the PDC model uses the player’s
play-log along with content features to decide whether the
player enjoyed the game or not. If the player shows any in-
dication in the data that they enjoyed the game, the current
state moves on to the Produce state

The Produce state is used to direct the ICQ and CC model
to direct the content generator into producing content based
on the category the Categorize state determined. This state
is also responsible for detecting whether a player actually
enjoys the game or not. This is done by giving the player the
generated content and using the PDC model to produce logs
the state determines if the player is enjoying the content. If
the state determines a player isn’t having fun with the newly
generated content the state loops back to the previous state.

The Generalize state is responsible for system failures.
System Failures, mean that the IP model cannot find a
player’s preferred content. If the IP model cannot produce
content for a player after many attempts, Roberts et. al.
proposes to exploit the ICQ, CC and the GPE model to
generate more generalized content.

To test their method Roberts et. al. ran a simulation
utilizing Quake. Naturally, they used their models to try
and generate content that pleases the player base.



To start, both the ICQ and CC models were trained by
a single developer who played and labeled the games used
in the Active Learning process. For the GPE and PDC
models Roberts et. al. utilized the internet, they set up a
client/Server architecture to collect data from their survey
takers. To actually collect meaningful data for the GPE they
chose 100 representative games via the ICQ model (games,
in this case, are just individual levels in Quake). This means
there were 20 games per difficulty categories and they fixed
the random number generator so all the survey takers play
the exact same game.

The client was distributed via a website like Reddit, es-
sentially websites that attract a lot of gamers (both casual
and hardcore). In total 895 surveys were submitted from 140
people. The survey merely contained two questions about
the game: “Did you enjoy it? (yes/no)” and “How do you
rate it? (Very Bad/Bad/Average/Good/Very Good)” [1].
The play-logs produced and the answers gained in the sur-
veys were used to train the PDC model.

Further analysis of the surveys proves that the represen-
tative games chosen were actually pretty good because the
caused controversy among the players. For example, as the
difficulty of the levels increases the amount of “Very Good”
labels also increases, but the hardest levels were also the
levels that had the most “Very Bad” labels. Additionally,
the middle difficulties were the least likely to receive “Very
Bad” labels. This shows that parts of the player base have
polarizing opinions, which potentially allow the models to
categorize players better.

4.5 Testing the IP Model
To test the IP model produced by the previous survey,

Roberts et. al. used two baseline algorithms to compare the
IP model to. A random model that just generates games us-
ing Oblige, a Quake map editor, and the other a Skill model,
which uses Oblige again to generate games by manipulating
the skill sliders (difficulty, amount of enemies, etc.).

To test the performance of the IP model against the two
other models Roberts et. al. ran another survey. This
survey involves getting players who didn’t participate in
the previous survey. The player is then asked to play 30
games, 10 generated by each model. Before actually playing
the games the players are asked some preliminary questions
about their amount of experience with video games and their
perceived skill level. After playing the games, the players are
then asked questions about their overall enjoyment.

To evaluate the performance of the three models Roberts
et. al. defined three metrics [1]. The first question asked
after a game is played is the same as the one used in the
previous test. The answer to that question is either a yes
or no. This scores a 0 or 1 respectively, this is going to be
considered as metric 1. Metric 2 is defined using the answers
about the player’s overall gameplay experience. “Very bad”
and “Bad” answers result in 0, while the other three answers
are scored with a 1. Metric 3 is based on a player’s preferred
difficulty. This is measured by looking at the answers for
metric 1 and looking at the difficulty category.

4.6 Results
For evaluating the IP model Roberts et. al. were able

to gather 14 people of varying gaming experience and skill
levels. This spread of players should be able to adequately
represent the gaming community fairly well.

Figure 5: The IP model vs other methods. Metric
1(a) Metric 2(b) Metric 3(c). Taken from [1]

Figure 5 shows the results of the models based on the
metrics described above. In Figure 5 (a) we can see that 10
players gave the highest score to the IP model. The random
and skill models on the other hand only received the highest
scores two and three times respectively. This pattern can
be seen again in Figure 5 (b) where 11 players gave the IP
model the highest scores while the random and skill models
got it from three and two players respectively. The results
for Figure 5 (c) were essentially the same; the IP model wins
by a landslide while the other two get bad results.

This experiment works as a proof of concept. The exper-
iment suggest that the method was able to make enjoyable
levels that target content appealing to the players

5. CONCLUSIONS
Machine Learning is an unexplored field in the context of

Procedural Content Generation. But as we witnessed with
both of the methods in this paper, it can be used to generate
interesting content in video games. The first method intro-
duced is able to model training data well while also picking
nuances in said data. This allows it to create levels with in-
teresting interactions between the level and the player. The
second method, on the other hand, is able to create levels
tailored to the players playing the game. This is important
because it creates a more immersing gameplay experience.
If we’re looking at whether we can use Machine Learning to
create content; we definitely can, these methods prove this.
Machine Learning in this field has an amazing amount of po-
tential. Hopefully, in the future, we can see these methods
evolve and actually see practical use.

Acknowledgements
Thank you to Nic McPhee, Elena Machkasova, and Max
Magnuson for their support and feedback.



6. REFERENCES
[1] J. Roberts and K. Chen. Learning-based procedural

content generation. IEEE Transactions on
Computational Intelligence and AI in Games,
7(1):88–101, March 2015.

[2] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games. Springer, 2016.

[3] S. Snodgrass and S. Ontañòn. Learning to generate
video game maps using markov models. IEEE
Transactions on Computational Intelligence and AI in
Games, 9(4):410–422, Dec 2017.

[4] S. Snodgrass and S. Ontañòn. Procedural level
generation using multi-layer level representations with
mdmcs. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), pages 280–287, Aug
2017.

[5] A. Summerville, S. Snodgrass, M. Guzdial,
C. Holmg̊ard, A. K. Hoover, A. Isaksen, A. Nealen, and
J. Togelius. Procedural content generation via machine
learning (pcgml). IEEE Transactions on Games,
10(3):257–270, Sep. 2018.

[6] Wikipedia. Markov chain.
https://en.wikipedia.org/wiki/Markov chain.


