
Solving the Security Problems of Free-Floating Car
Sharing

Nicholas R. Bushway
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

bushw011@morris.umn.edu

ABSTRACT
Free-Floating car sharing is an emerging approach to ride-
sharing where people can rent cars (or share their own) for
a short period of time using tracking technology to locate
available vehicles nearest to them. This kind of system has
a number of security risks associated with it, such as making
sure users cannot be impersonated, or that malicious users
cannot gain access to somebody’s car.

This paper will be analyzing the security-related issues
that must be solved to have an effective free-floating car
sharing system. This will be done by establishing a high-
level overview of a proposed car-sharing system, as well as
the necessary security requirements of such a system. The
paper will then go over two different proposed systems that
utilize existing security protocols to address the established
security requirements of a free-floating car sharing system.

Keywords
Car Sharing; Cryptography; Security

1. INTRODUCTION
Individuals living in large cities are finding it less worth

it to own a vehicle. The time spent driving it is minimal,
and one often has to pay a monthly fee for parking. For
this reason, people are beginning to seek out alternative so-
lutions for the times they need to use transportation. With
a growth trajectory of 34% for the car-sharing market from
2016-2024[1], this desire for alternative transportation solu-
tions can be seen.

Free-floating car sharing is a form of car sharing that al-
lows users to make use of tracking software to“book”vehicles
that are near their location (typically with an application on
the user’s mobile phone)[6]. Though free-floating car sharing
has not been widely implemented in the United States, there
are a number of free-floating car sharing services appearing,
such as BMW’s DriveNow in Germany, or Evo Car Share
in Canada. The more available these systems become, it is
possible that the number of individuals who choose to own
cars in the future may decrease significantly. With this in
mind, it is necessary that these systems are safe and secure
for the people using them.

This paper lays out how we ensure that free-floating car

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

sharing systems accomplish these secure properties through
proposed models and subsequent systems.

2. BACKGROUND
Free-floating car sharing systems requires a number of dif-

ferent building blocks to be effective in protecting users’
identity as well as their vehicles.

2.1 Security Concepts
The first of these building blocks are authentication pro-

tocols. Authentication is used by a server in order to obtain
information regarding who a user is, as well as proof that
this user is who they are saying they are. This is coupled
with authorization, which is the act of ensuring a user is
allowed to access something.

When we want to keep a piece of data hidden from others
we employ encryption. When we encrypt data, we trans-
form it from its readable form (plaintext), to an indecipher-
able form (ciphertext) with some type of cryptographic key.
When we turn the data back into plaintext, we decrypt it.
The most basic type of key would be a symmetric key, which
is a key that essentially works in the typical way we think of
keys. A symmetric key used to encrypt data is the same key
used to decrypt it. If we encrypt a piece of data with this
type of key, we can give someone else a copy of this same
key if we want them to be able to access it.

An example of encryption in use in an online system would
be a Secure Sockets Layer (SSL) protocol. The SSL protocol
is the standard method for keeping information transferred
between two entities (this could be two servers, a client and
a server, two clients via a central server, etc.) protected
and unreadable to any other entity. This is most typically
done by installing a server-side certificate, which is a small
file installed onto a web server that serves to both verify the
identity of a web page and encrypt any data transferred to
or from the web-server.

An SSL protocol utilizes public key cryptography, which is
a method of encryption that uses two keys: a public key and
a private key. These two keys are a mathematically related
pair. What is encrypted by one can only be decrypted by
the other. Which key does what depends on the task being
performed. Public keys can be freely shared, whereas private
keys are known only to the owner. If we are receiving a piece
of data we want hidden, we can give the sender a copy of
our public key to encrypt that data, so that we are the only
ones who can access it via our private key.

Another method of public key cryptography would be dig-
ital signatures, which are the encrypted cipher text of a piece



of data, sent along with the plain text in order to determine
the origin of that data. The way it works is that the sender
would use their private key to encrypt the signature (also
known as signing the data). This way, if the recipient is
able to decrypt the signature with the sender’s public key,
it is ensured that the data came from that sender.

A necessary component in cryptography are cryptographic
hash functions. Hashing is a mathematical operation per-
formed on a piece of data that irreversibly converts it into a
unique piece of text. You could input something to a hash
function and see the result, but you would not be able to de-
cipher the original input from any unique hash [3]. Hashed
data is mainly different from encrypted data due to the lack
of any key that could be used to decipher it. This is used
when you create any kind of online profile attached to a
password. The service would ideally not store the password
itself, but instead the hash of that password. When the user
goes to input their password, the hash of that input can be
checked against the stored hash to determine if the entered
password is correct.

A key use of cryptographic hash functions is message au-
thentication. Message authentication is fairly similar in func-
tionality to digital signatures, though rather than one party
having a private key and the other a public key, both indi-
viduals have a copy of the sender’s key. The sender creates
a hash of a pairing of the message and the key (denoted the
authentication tag). The sender sends the plaintext message
along with this authentication tag to the other party. The
recipient can then use the plaintext message along with the
previously possessed key to verify the integrity of the tag.

Secret Sharing is a method employed on data intended to
be kept secret where it is shared among a group of entities,
who each receive a share of the secret. These shares are
distributed in such a way that if there are n total shares, any
entity with fewer than all n shares has no more information
than someone with 0 shares [7]. Once the n shares are put
back together the original secret can be obtained.

2.2 Analysis Concepts
A threat is anything that can potentially cause harm to

any system related to computers. Similarly a vulnerabil-
ity is an area of flaw in a system that would allow for a
threat to turn into actual damage being done against the
system. This could be sensitive information being exposed,
or a malicious user bypassing necessary authentication/ au-
thorization steps to get to something they should not have
access to. Threats and vulnerabilities together make up the
aspects of a system that must be acknowledged and properly
assessed in order to avoid disaster.

A threat model is a way that we can establish the threats
facing a system. This includes the components that could
possibly contain vulnerabilities and how they may be ex-
ploited from the perspective of an attacker.

3. HIGH LEVEL OVERVIEW
To establish the security problems facing free-floating car

sharing, a high-level overview of a car sharing system along
with the security requirements must be established. Syme-
onidis et al. propose a high level model called the keyless
sharing system as well as something called a keyless shar-
ing management server. As the name suggests, it proposes a
system for car sharing where physical keys are not used. The
reason for this is that the exchange of keys would add time

and inconvenience to any given transaction (and would make
actual theft dangerously easier). That being said, eliminat-
ing the use of physical keys is an additional constraint that
introduces more potential security related concerns.

3.1 Components of a Keyless Car Sharing Sys-
tem

The keyless car sharing system proposed in the paper has
a number of necessary components to it. These components
introduce concepts that will be shared in all solutions within
this paper. This includes:

• Users, that consist of consumers seeking to rent a car
for use, and owners, who own a car and are willing to
rent it out to a consumer for a period of time.

• Keyless Sharing Management Server (KSMS). This is
either the central server (or a number of interacting
servers) where car booking is handled (finding nearby
cars and the interaction between consumer and owner),
“access rights”are distributed and revoked when neces-
sary. It is also where general user authorization takes
place regarding what car a user has access to, and if
they still have access to it.

• Keyless Sharing On Board Unit (KS-OBU) is the phys-
ical device that will actually be installed onto all cars
used within a car sharing system. It will have wireless
functionality (either Bluetooth, WiFi, or LTE)[5] that
would work in regards to the system’s access manage-
ment for the vehicle itself.

• Keyless Sharing Application (KSApp) would be some
type of web/mobile app that the users use to inter-
act with eachother and handle car booking from an
interface.

• Portable device is a device that people use to access
the KSApp and overall car sharing system.

Figure 1 can be seen as a visual aid for the interaction
between these components.

3.2 Threat Model
In this section we establish a threat analysis of a keyless

car sharing system via a threat model. Users are defined as
untrustworthy/ malicious. This does not mean that users
have inherently ill-intent or anything. It simply means that
it is possible for users to have these motives, and if they do
it must be considered what they could be capable of. What
users could be capable of is collecting and then manipulating
information stored within the system in order to jeopardize
the information that owners and consumers receive.

The KS-OBU is defined as “untrustworthy but tamper-
evident” [5]. What this means is that the KS-OBU contains
data that could compromise the user’s privacy such as the
vehicle’s location, or where it’s going. However, the tamper-
evident part means that the device has security measures in
place in order to prevent the user’s privacy from being com-
promised. This involves storing cryptographic keys, per-
forming cryptographic operations, as well as the functional-
ity to regularly roll out software updates in order to keep
up with newly discovered breaches to keep the users (both
consumer and owner) safe.



Figure 1: A visual overview of the KSS [5]

The KSApp is also defined as “untrustworthy but tamper
evident”[5]. This component would be equipped with secu-
rity measures in order to protect against data breaches and
malware. This would be in the form of encrypting and stor-
ing user’s sensitive information such as passwords or private
keys. Furthermore, access to this mobile app would require
authentication steps in order to ensure that the individual
accessing it is actually the established user.

The KSMS is defined as “honest-but-curious or even semi-
honest.”[5] This means that both of these entities may try to
access information from the KSS in order to gather booking
details (or preferences), who they are booking with, or how
often they are sharing their car. However, the paper assumes
that these entities will not attempt to tamper with the data
received from the KSS.

Finally, we also need to protect the system from any third
party that may attempt to eavesdrop, or modify, data trans-
ferred among any participants, or try to disrupt service.

3.3 Threat Analysis
There are a number of different threats that can face the

KSMS.

• Spoofing : This is when a malicious user takes on the
identity of a different individual that another user trusts,
and attempts to use this fake identity for malicious
gain.

• Tampering with Data: This is the act of an adversary
changing data stored within the KSS, such as profile
information of a user, availability information of a car,
details of a car (such as year, number of seats) in or-
der to manipulate others, or to just undermine the
integrity of the KSS.

• Information Disclosure: If information stored within
the KSS is not kept confidential, an adversary could
disclose the information of another user. This could
include sensitive profile information (access keys, per-
sonal information), or booking details such as vehicle
location to a party that should not have this informa-
tion.

• Repudiation: Information exchanged between parties
must be non-repudiable. The definition of repudiate
is to deny. Non-repudiable information means that
a party should not be able to deny that they per-
formed a certain action or agreed to certain booking
details. This could result in monetary disputes re-
garding distance traveled, someone agreeing to (and
paying for) a booking that they now deny doing, etc.
Non-repudiation is necessary to be able to resolve these
disputes effectively.

• Denial-of-Service (DoS): A DoS attack is an attempt
to make a service inaccessible to others. This could be
done by targeting one of the components within the
KSS, such as the KSApp, or the KS-OBU in order to
make that component unable to perform network oper-
ations. For this reason the various components should
have anti-malware software to safeguard against these
attacks.

• Elevation of Privilege: This would be when a user ele-
vates their access to resources within the KSS, or sim-
ilarly bypasses authorization steps in the software to
access data they are not allowed to access.

3.4 Security Requirements
With the noted security threats, there are a number of

requirements that the software of a KSS must meet in order
to curb the possibility of these threats arising, and minimize
vulnerabilities.

The first security requirement is Entity Authentication.
This“assures to an entity that the identity of a second entity
is the one that is claiming to be”[5]. This would be done by
having steps that require entering a password and/or pin
before sensitive steps during any process within the KSS.
This also entails the requirement of access tokens to use the
different components of the KSS, such as the KSApp, and
the KS-OBU. This would allow prevention of spoofing, as
defined above.

Similarly, authorization is a necessary requirement in or-
der to ensure users have rights to access certain data. Also,
what kind of access they have rights to, such as if they can
just read from the data or also write to it. Authorization



would prevent the aforementioned elevation of privilege at-
tacks.

Tampering with data can be prevented in the KSS by
establishing integrity by way of hash functions, message au-
thentication, and digital signatures.

Unwanted information disclosure can be prevented in the
KSS by establishing confidentiality. By functionality, confi-
dentiality is coupled with authorization because it involves
ensuring that users can only access information that they are
allowed to access. This information could be sensitive data
passed from a user’s KSApp to the KS-OBU, or between
the KSMS and the KSApp. Achieving confidentiality can
be done by a number of different encryption methods such
as message authentication with authentication encryption.

The KSS must be non-repudiable, and this can be done
with things like digital time-stamps, signatures, or audit
trails on certain actions performed. This would allow us to
objectively know when an action was performed, and who
did it.

To prevent Denial-of-Service attacks, the KSS needs to
have safeguarded availability. To achieve this server-side,
firewalls, as well as Intrusion Prevention/ Detection systems
must be put in place. On top of that, the KSApp and KS-
OBU will both individually need anti-malware software, and
bot-detection to prevent DoS attacks on those components.

4. SEPCAR
SePCAR is a proposed free-floating car sharing system by

Symeonidis et al. [4] It uses the Keyless Sharing System
model, meaning that it shares the established components.
This also means that a number of the previously established
security requirements are addressed.

In addition to the already established components of the
KSS, SePCAR has an additional component called the pub-
lic ledger. The public ledger acts as a public bulletin board
that the KSMS posts data to for the users to retrieve.

4.1 Model Overview
In this solution the Keyless Car Sharing Management Sys-

tem is decentralized because it works as a complex of differ-
ent servers that together function to generate and distribute
access tokens for cars to users, as well as update and revoke
them. The servers each have a part of the car key that they
retrieve. Furthermore, each server has its own database in-
dependent of the others and secret sharing is utilized for
anything that is shared with the KSMS.

When the booking details are converted to secret shares
and sent to the KSMS, the servers work together to jointly
encrypt the booking details of a given car-share transaction.
These encrypted shares can then be posted to the public
ledger so that they are kept confidential to any third par-
ties, while allowing the consumer user to safely retrieve the
booking details from the ledger. These booking details are
what will be used to access the car, along with a digital
certificate identifying the consumer user.

Furthermore, SePCAR uses a public-key infrastructure
where each component possesses a public and private key.
There are also a number of symmetric keys in use.

4.2 SePCAR Functions
SePCAR uses a number of functions that will be utilized

during the car sharing process.

• Open() is the function that reconstructs a piece of
data that has been converted to secret shares that can
be called once the caller is in possession of all of the
shares.

• Query an() is the function used by a user in order
to retrieve data posted to the public ledger. It is run
over a secure, anonymous communication channel (Tor
is specifically mentioned) [4] in order to keep the user
calling this query unidentifiable to any third party.

4.3 Car Sharing Overview
This section will cover the necessary steps that take place

in the SePCAR system. SePCAR consists of four steps as
defined in the paper: session key generation and data dis-
tribution, access token generation, access token distribution
and verification, and car access. In addition, there are pre-
requisite steps regarding car key distribution, and car book-
ing. After the four main steps have taken place, access token
update and revocation occur as needed.

Car key distribution occurs after a car owner first regis-
ters their car with the KSMS, and car booking occurs when
a pairing between owner and consumer users agree on a lo-
cation to pick up the car and begin the process.

4.4 Prerequisite Steps
When an owner registers their car within the KSS, an ID

representing the car is created, as well as a symmetric key
owned by the KS-OBU. Both of these are converted to secret
shares and stored within the KSMS.

When an owner and consumer decide to begin the booking
process, the booking details are created. The booking details
consist of a hash of the digital certificate from the consumer,
the pick up location of the car, a list of conditions specifying
how the consumer may use the car, access control rights for
which the consumer may use the car, and a booking ID [4].

4.5 Session Key Generation
After the booking process has completed, the owner sends

a session key generation request as well as the booking ID to
the consumer. This can be seen in Figure 2. The consumer
then generates two symmetric session keys, denoted K1, and
K2. K1 will used by each of the servers to encrypt the access
token to ensure only the consumer can access it. K2 will
be used to create a message authentication code to verify
that the access token contains the booking details agreed
upon during the car booking process [4]. The consumer
then transforms these two keys into secret shares for each
server so that the servers cannot individually have access
to the session keys but can evaluate functions securely in
conjunction. Then the two session keys are encrypted with
the public keys of each server. After all of this, the consumer
sends an acknowledgement along with the booking ID back
to the owner.

The owner waits for the consumer’s message of acknowl-
edgement. While this happens, the owner signs the booking
details with it’s private key, the signature denoted σo. After
this, the owner converts the pairing of σo and the booking
details into secret shares (the amount determined again by
the number of servers in the KSMS) denoted as [Muc] [4].

After the owner receives the message of acknowledgement,
they send each server an access-token generation request,
along with the encrypted shares of the session keys, and the
shares of the signed booking details.



Figure 2: Session key generation and data distribution [4]

4.6 Access Token Generation
In this step, the owner sends an access key generation

request to the KSMS. Each server uses the booking ID to
collectively obtain the shares of the symmetric key of the car.
After this, the servers collectively encrypt [Muc] using the
obtained symmetric key to generate an access key, denoted
[ATcar] in shared form across the servers [4].

After this, each server retrieves their shares of the two
session keys by decrypting the cipher texts using the private
key. Next, the servers encrypt [ATcar] and the car ID with
the K1. This generates [Cuc]. Along with this, the servers
collectively perform message authentication. They make a
hash of the plaintext booking details alongside K2, creating
the authentication tag, [CB ] (in shared form).

The final step of access token creation is each server send-
ing an access-token-publication request to the Public Ledger,
along with [CB ], and [Cuc].

4.7 Access Token Distribution
Now that the public ledger has received the publication re-

quest, an access-token-publication acknowledgement is sent
to one or more servers within the KSMS, to the owner, and
then finally to the consumer. The consumer then retrieves
[CB ], and [Cuc] with query an() so that the consumer is
kept anonymous. After this the consumer can reconstruct
the shares with the open() function.

With the reconstructed authentication tag, CB , the con-
sumer is able to verify it’s integrity due to the consumer’s
ownership of the K2. If the verification is successful, the
consumer can use K1 to decrypt Cuc, giving us ATcar, and
the car ID.

4.8 Car Access
Now the consumer can attempt to access the owner’s car.

The consumer sends ATcar, the car ID, and the unhashed
consumer certificate to the KS-OBU via a secure, close range
communication channel such as bluetooth [4].

Upon receiving the access components from the consumer,
the KS-OBU decrypts ATcar back into the digitally signed
booking details with the KS-OBU’s symmetric key, Kcar.
After this the identities of the owner and consumer can be
verified. The owner’s identity is verified by decrypting the

booking detail’s digital signature with the owner’s public
key, ensuring that it was indeed signed by the owner’s pri-
vate key (and that the contents of the booking details were
not altered). Next, the identity of the consumer is verified
by comparing the hash of the consumer certificate contained
within the booking details to the hash of the consumer cer-
tificate obtained directly from the consumer. This way we
know the consumer currently accessing the KS-OBU is the
same from when the booking details were initially created.
If these verification steps are successful, the consumer is al-
lowed access to the car. After the consumer has been allowed
access to the owner’s car, a timestamp is created and this,
paired with the booking details are signed by the KS-OBU
and sent to the owner.

4.9 Security Analysis
We will go over how the security requirements laid out in

the previous section are met with the SePCAR system.

• Confidentiality in the system is met in three different
ways. The booking details are kept confidential due to
the fact that they are only shared with the KSMS in a
secret shared form. Confidentiality is also established
in the access token (AT car), due to the fact that it
is generated as secret shares within the KSMS. Fur-
thermore, when it is posted to the public ledger, it is
only revealed through its encrypted shared form [Cuc].
Lastly, confidentiality is established in the KS-OBU’s
symmetric key (Kcar) due to the fact that only the
car’s KS-OBU has access to it, and the KSMS only
learns it through distributed secret shares.

• Non-repudiation is established with the access token
at two different points. For the AT car’s origin being
when the booking details are signed by the owner’s
private key, this allows both the consumer and KS-
OBU to verify this origin with copies of the owner’s
public key. The delivery of this access token is also
made non-repudiable through the message sent from
the KS-OBU back to the owner after the consumer is
granted access to the car. This allows the owner to
receive confirmation from the KS-OBU that the con-
sumer was able to get into and use the car.



• Lastly, integrity is established through the owner’s sign-
ing of the booking details with their private key. This
allows the KS-OBU to verify that these booking details
both came from the owner, and haven’t been altered
in any way.

5. CENTRALIZED APPROACH
In this section we will be going over an additional pro-

posed free-floating car sharing system proposed by Alexan-
dria Dmitrienko and Christian Plappert [2]. Unlike SeP-
CAR this system does not follow the Keyless Sharing Sys-
tem model, but rather has its own established model and
proposed security requirements. On top of that, rather than
its backend consisting of a decentralized network of servers,
there is instead a centralized, trusted car sharing provider
that stores and has explicit knowledge of user information.

In addition, there is only a single user considered in this
model. This user would be the equivalent of the consumer
user from the SePCAR model, and the car they are accessing
already exists within the system.

Lastly, prominent to this system is the concept of two-
factor authentication when the user is proving their identity
to the on-board unit of the car.

5.1 Main differences from SePCAR

5.1.1 Two Factor Authentication
Two factor authentication is achieved by requiring two

different authentication factors at the time of car access,
both of which are created at different times in order to make
it more difficult to compromise both.

The first authentication factor is a key created when the
user registers their account with the car sharing system. The
second is an access token created by similar means to the
SePCAR system. When the user attempts to access the
car, they have to prove possession of both of these compo-
nents that have been created at completely different times
[2]. Furthermore, rather than all verification of the user hap-
pening on the car’s on-board unit, both of these components
are instead independently verified on different execution en-
vironments. This is so these verification steps are done in
isolation, further increasing the difficulty of compromising
the car access steps [2].

5.1.2 Centralized Car Sharing Provider
In this system the car sharing provider actively stores and

has explicit knowledge of information exchanged during the
car sharing process. For instance, the provider stores and
gains knowledge of the access policy (availability, location,
intended travel distance) in order to determine if the given
car can meet these requirements [2].

6. CONCLUSION
In this paper we went over the concept of a Keyless Shar-

ing System, and its various components. From there we cov-
ered a threat model of this system in order to identify the
necessary security requirements. With an established high-
level overview of the system and the requirements in place,
we went over two different car-sharing solutions that used
the KSS model in order to propose real-world implementa-
tions, and how they approach the security requirements.

Acknowledgement
Thank you to Elena Machkasova for the helpful feedback
and direction provided towards completing this paper. In
addition, thank you to Shawn Seymour for taking the time
to review my paper and offer detailed advice. Cryptography
and security in general were concepts I had not deeply ex-
plored before. All the help I received assisted immensely in
tackling the concepts covered in this paper, and ultimately
with getting through my senior seminar successfully.

7. REFERENCES
[1] Carsharing market to witness a massive 34% growth

over 2016-2024 | markets insider, Jul 2017.

[2] A. Dmitrienko and C. Plappert. Secure free-floating car
sharing for offline cars. In Proceedings of the Seventh
ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17, pages 349–360, New York,
NY, USA, 2017. ACM.

[3] S. Ray. Cryptographic hashing, Nov 2017.

[4] I. Symeonidis, A. Aly, M. A. Mustafa, B. Mennink,
S. Dhooghe, and B. Preneel. Sepcar: A secure and
privacy-enhancing protocol for car access provision. In
S. N. Foley, D. Gollmann, and E. Snekkenes, editors,
Computer Security – ESORICS 2017, pages 475–493,
Cham, 2017. Springer International Publishing.

[5] P. Symeonidis, Mustafa. Keyless car sharing system: A
security and privacy analysis. In 2016 IEEE
International Smart Cities Conference, ISC2. IEEE,
2016.

[6] B. Tournier. Free floating vs. stationary vs. p2p:
Car-sharing technology providers open the door to new
options.

[7] Wikipedia contributors. Secret sharing — Wikipedia,
the free encyclopedia, 2019. [Online; accessed
12-April-2019].


