
An Analysis of the Goals and Requirements of IoT Systems

David I. Chong
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

chong050@morris.umn.edu

ABSTRACT
In this paper I detail information needed in order to under-
stand and analyze an Internet of Things (IoT) system. To
do this, I describe two applications of IoT systems. The first
examines researchers efforts in designing systems to detect
potentially problematic mosquito populations. The second
addresses security concerns that arise from cloud discon-
nection from the perspective of designing a resilient smart
home.

Keywords
Internet of Things, System analysis

1. INTRODUCTION
The Internet of Things, abbreviated as IoT, can be defined

as an interconnection via the Internet of computing devices
embedded in objects which enables them to send and receive
data. We can think of the IoT as a way of classifying a
system. Due to the definition’s broad nature, IoT has a wide
variety of possible applications. I will be detailing: what an
IoT system is, what goals IoT systems have, how those goals
can be met, and some issues that may arise when working
with IoT systems.

I will be analyzing two use cases of IoT systems. The first
being researchers efforts in designing a system to prevent
potentially problematic mosquito populations. The second
being researchers efforts in identifying and handling poten-
tial problems that may arise when a smart home disconnects
from the network or when cloud computing services become
unavailable. I will discuss the differences both in design and
goals between the systems as well as why certain require-
ments are needed in one system while not in the others.
This could help future designers identify important aspects
of their own system or give a framework for thinking about
an IoT system.

2. BACKGROUND

2.1 Layers
IoT systems are generally described in terms of several

interconnected layers. During my research I ran into many
IoT models, so it is worth noting that this may vary from

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

Figure 1: The three layers of IoT [3]

topic to topic. For my purposes I will be identifying three
distinct layers, which together form a complete IoT system
(see Figure 1).

These layers are:

• the perception layer

• the network layer

• the application layer

2.1.1 Perception layer
The perception layer takes in physical properties of the

things around us collected from sensors that are part of the
IoT system. These devices generate the information which is
later processed by the application layer. These devices typ-
ically have the ability to be interacted with remotely over
the network layer. Actuators are devices that can impact
the state of the system, and also typically reside in the per-
ception layer. The perception layer can be thought of as the
“Things” in IoT. I will talk about some of the devices which
could be a part of the perception layer in a later section.



Figure 2: Examples of various network topologies
[2]

2.1.2 Network layer
The network layer is the connection between the percep-

tion and application layers. It allows the transfer of infor-
mation from one layer to the other. Various network tech-
nologies and communication protocols can be used based on
the system needs. We must also consider the physical and
network connection’s design. This is known as a network
topology. There are a variety of different network topologies
(see Figure 2). Each benefit the network in different ways. I
will talk about these technologies, protocols, and topologies
in a later section.

2.1.3 Application layer
The application layer in these examples can be classified

as one of two types: local computing or cloud computing.
It is important where the data is being computed. In re-
cent years we have seen a rise in cloud computing. This has
also led to researchers finding potential problems related to
the loss of access to cloud computing and what sort of reac-
tion should happen when this access is lost to avoid security
concerns as well as maintaining adequate service. With lo-
cal computing we are able to avoid some of the issues that
have been identified by researchers in relation to cloud com-
puting. I will go into more detail about the advantages and
disadvantages of both of these computation methods and
how they can be used potentially in conjunction to improve
system resilience.

2.2 Optimization
Considering costs in an IoT system tends to relate to com-

putation and communication costs. Decisions about how to
optimize a system depend on factors such as maintenance,
power consumption, and available computational power.

In general, we can describe these optimizations in terms
of the following two categories:

• Software optimization

• Hardware optimization

2.2.1 Software optimization
In the context of this paper I will be focusing on parallel

computing and automatic vectorization and their contribu-
tions to the more efficient operation of a piece of software.

Parallel computing is a type of computation in which
many calculations or the execution of processes are carried
out simultaneously. Large problems can often be divided
into smaller ones, which can then be solved at the same
time [5].

Automatic vectorization, in parallel computing, is a spe-
cial case of automatic parallelization, where operations are
applied to whole arrays of variables instead of individual
element variables.

Software can also be optimized in other ways such as tak-
ing advantage of trading off precision of computational ac-
curacy in favor of quicker computing leading to a reduction
in resource usage. Different decisions about where the com-
putation should happen may depend upon what limitations
are most important in the system.

2.2.2 Hardware optimization
Hardware optimization focuses on improving efficiency by

reducing power consumption and increasing performance and
scalability in the memory system through modification re-
lated to system hardware. It is worth noting that hardware
optimization is different than hardware acceleration.

Hardware acceleration is the process by which an appli-
cation will use other hardware components of a system in
order to perform certain tasks more efficiently. An example
of this would be the use of the GPU to process information
rather than the CPU in Bitcoin mining. The computations
are more efficiently computed by the GPU due to the type
of information needing to be processed.

3. MOSQUITO DETECTION

3.1 Description
The study conducted by Ravi et al. [6] identified the

issue that current mosquito identification methods are in-
effective. It points out that our current methods rely on
human acknowledgement of the issue and physical report-
ing. This is a ineffective method in some cases as locations
where mosquitoes could breed are inaccessible to humans in
spite of being close enough to impact human populations
near and vulnerable to mosquito-borne illnesses. This could
be due to the area in question being remote, but still in
range of humans, or dangerous to monitor. Locations which
are particularly at risk to mosquitoes are also typically have
poorer populations meaning that the solution must be cost
effective.

These reasons point to a need for a system which can
satisfy the following goals:

• Low cost per device

• Able to be deployed to remote locations

• Able to run for extended period of time - highly opti-
mized by:

– High computational efficiency

– High energy efficiency

3.2 System design
In order to identify mosquito populations the researchers

designed a system that uses microphones to record audio
samples and processes that information locally using a single-
board computer such as the Raspberry Pi 3 or Intel Edison.



From there the information is passed through what the re-
searchers describe as a highly optimized algorithm which
identifies the fundamental frequency of the audio sample.
The fundamental frequency data is then compared to the
known data in order to identify whether or not the audio
sample holds mosquito like sounds. I will later detail how
this computation happens.

Now we will identify the technologies involved in the sys-
tem and how those fit in our description of the three layers
of IoT.

• Perception

– Microphones installed on single board computers

• Network

– Various methods were considered like RFID, NFC,
Bluetooth, and WiFi

∗ The researchers had to consider the frequency
and range capability of each of these technolo-
gies

∗ WiFi with mesh topology (see figure 2.)

• Application

– Single board computers, central server node

∗ Raspberry Pi 3 - majority of computation

∗ Intel Edison - classification

Data is collected by the microphones installed on the sin-
gle board computers. This design helps reach the goal of
having low cost per device. Once the information is col-
lected, the majority of computation happens on the single
board computer.

In order to more efficiently process this data the researchers
took advantage of software optimizations. For example in-
stead of sending the information in a continuous stream they
used techniques known as batching and dallying. Batch-
ing is when a computer program collects lots of work to do
at once. Doing this shares computational overhead over a
larger set of work. This works in two ways, the devices are
able to sleep until they have enough data to compute and
they don’t have to send data as often. They instead send
data in chunks when not asleep. The other technique, dally-
ing, is similar to this principle. Dallying is when a computer
program waits to do something. In this case dallying lets us
then use batching to more efficiently run this system. Use of
both of these techniques allows the system to have a better
throughput per energy unit. Throughput is the number of
requests or computations that can be processed in a fixed
amount of time.

After the computation occurs, that data is then passed
over a WiFi mesh network to a central server node where
the classification and storage of finally computed data would
then occur. The researchers chose to do this as it helps
reach the goals of remote deployment, as the devices are
able to communicate while being spread out, and somewhat
resilient in the case of single unit failure. The reason for
this is the use of a mesh network topology. If we refer back
to the topology figure, Figure 2, we can imagine that each
device shown could be a single single board computer. The
interconnections between all or most devices provide a wider
range for communication and help alleviate the burden of

Figure 3: A high level view of computation [6]

single device failure. If a single device fails, it is likely that
other devices will still be available to act as the channel for
communication.

3.3 How the information is processed
While the researchers explain the process in detail, I will

only be going in depth with one of the sections of the com-
putation as that is where almost 90% of the time is spent
when the system is used.

We can think of this from a high level view as seen in
Figure 3. The process of computation runs the steps as
follows:

• Samples are recorded

• Samples are passed through a 1D FFT (Fast Fourier
Transform) and the fundamental frequency is then ex-
tracted

• That information is taken and compared to training
data using k-Nearest Neighbor (kNN) algorithm

• Finally a Bayesian classifier is used to categorize the
information

While I would like to talk about this process in depth
the only part that I will be going in depth with will be the
FFT and fundamental frequency extraction as I said before
around 90% of computation time is in these steps.



3.3.1 FFT and fundamental frequency extraction
FFT stands for Fast Fourier Transform. This can be

thought of as if we were given a smoothie, we would then be
able to identify what ingredients and in what amount they
were added to the smoothie. This process happens by pass-
ing the information through a series of filters. This is all
done in order to help with analyzing, comparing, and mod-
ifying the original data. This makes sense in the context of
mosquito detection and fundamental frequency extraction
as the original sample audio will possibly contain interfer-
ing audio. We must break this audio down into its parts
to identify the unique sound produced by mosquitoes from
the original data. We can also think of FFT as taking a
time-based pattern, measuring every possible cycle, and re-
turning the overall cycle recipe (the amplitude, offset, and
rotation speed for every cycle that was found) [1]. With
this information we are able to pass it to the kNN to find
similar information from the training data and then passing
that to the Bayesian classifier for final categorization. This
computation benefits from the use of parallel computing and
automatic vectorization.

If we look at FFT, it can be represented as:

X(k) =

N−1∑
n=0

x(n).e−j(2π/N)nk; k = 0, 1, ..., N − 1[6] (1)

A simple explanation of this equation would be that the
left output is the frequency recipe, amplitude and phase, a
complex number, which would need to be converted using
rounding from being a complex number into an integer in
order to be processed by a computer. The summation adds
everything up, taking into account each contributing part to
of the frequency, in order to have a single output frequency
value, the amplitude and phase. This brings us to the diffi-
cult part, the right side.

Equation 1:
N = number of time samples we have
n = current sample we’re considering (0 ... N-1)
x(n) = value of the signal at time n
k = current frequency we’re considering (0 Hertz up to N-1
Hertz) [1]

I will be providing a link to a resource which thoroughly
explains this portion as the details are out of the scope of this
paper. What we need to understand though is that it deter-
mines what contributions to the original sample frequency
on a timed interval [1].

3.3.2 Other steps: kNN and Bayesian classifier
The process of classifying frequencies, comparing the com-

puted frequency versus test data, as mosquito or non-mosquito
sounds takes place on a central server. The researchers uti-
lized kNN and a Bayesian classifier to process and categorize
the data. These processes, together, made up about 10% of
the computation time, so I will not be going in depth with
my description. The kNN (k Nearest Neighbor) step takes
the information which has had the fundamental frequency
extracted and compares it to a test dataset. The dataset
contains a thousand audio samples per species for a total of
three thousand samples. The original audio files provided

are used for training the classification models. A subset
of these samples is used for testing and evaluating predic-
tion accuracy [6]. Once similar samples are found, it then
passes the sample onto the Bayesian classifier. The Bayesian
classifier was selected over other probabilistic classification
methods as it performs well at minimizing the probability of
misclassification. It also is stated as being CPU and memory
conservative which both help with reaching the optimization
goals of this system.

3.4 Optimizations
The main aspect of this study focuses on optimization,

with the goal of being able to deploy the mosquito detec-
tion system in remote places for long periods of time. This
system takes advantage of hardware acceleration, precision
reduction, and compiler optimizations all in an attempt to
make the system more efficient both in terms of computation
and energy consumption.

Hardware accelerators help most during the bulk of com-
putation time in this system. As I stated before around 80-
90% of the runtime of the code occurs in the FFT step. This
step benefits from the use of hardware accelerator blocks
made available due to the different devices tested. The re-
searchers found that use of hardware acceleration over tra-
ditional CPU computing lead to up to a 2 times speedup in
computation. The researchers were also able to take advan-
tage of parallel computing given the multiple cores available
on the Intel Edison device. This too led to further perfor-
mance improvements as now multiple audio samples are able
to be processed at the same time instead of serially [6].

Computing data using these methods on the single-board
computers rather than sending the raw data directly to the
central server greatly reduced the size of data needed to
transmit cutting the energy cost required to send data.

3.5 Research findings
Ravi et al. decided against sending data to a central server

as sending raw data over radio communication using Blue-
tooth or WiFi on a radio-capable board was costly to energy
usage. The devices were powered by a 2000 mAh AA battery
and under these conditions of:

• 8K samples of audio data

• Particle Photon board (Single-board computer)

• Broadcom BCM43362 WiFi chip

resulted in only 20 hours of battery life under continuous use
with 300 - 400 mJ of electricity expended per transmission.

Based on these findings they decided to try a different ap-
proach. Instead of using cloud computing they found per-
forming lightweight computation on the embedded board lo-
cally reduced the communication bandwidth needs and low-
ered overall energy use.

Using an optimized implementation of the algorithm [6]
on an Intel Edison platform requires 5 ms of compute time
and under 5 mJ of energy. Approximately 80x reduction in
best-case energy use stretching the battery life to around
2 months. The devices now could be powered for long pe-
riods of time over a battery and be deployed to remote,
hard-to-service locations such as swamps, gutters, and large
construction sites.



The researchers were able to design a possible solution
to detect mosquito populations more effectively than cur-
rent methods. They were able to detect the presence of
mosquitoes in a particular area where the system is de-
ployed. They were able to detect the presence of mosquitoes
with about an 80% accuracy.

4. RESILIENT SMART HOME

4.1 Description
The second study [4] focuses on providing stability for

essential services in a smart home which is controlled and
powered by cloud computing services. Researchers identi-
fied which services a smart home provides and which they
consider essential. Based on the identified services the re-
searchers designed a solution called RES-Hub. RES-Hub
was designed to provide a cloud neutral, meaning it is able
to function without cloud access, solution for smart homes.
It was designed to be able to detect the loss of cloud com-
puting service. At that point it should be able to notify the
user or system in order to allow a reaction to prevent further
issues caused by service loss. It should also be able to pro-
vide an alternative interaction channel in order to allow the
user to continue to interact with smart home devices when
cloud services are down. It should change the security set-
tings of devices as they may now be vulnerable to attacks.
It should transfer the computational service from the cloud
to a local or alternative unit. All of these means that the
device should be able to run a smart home independent of
cloud service connection, in a reasonable but with limited
feature capacity.

Now we will identify the technologies involved in the sys-
tem and how those fit in our description of the three layers
of IoT. It is worth keeping in mind that this study is more
generalized than the first so it will be more loosely defined.

• Perception

– Various: speakers, home hubs, light bulbs, ther-
mostats, security cameras, switches and plugs,
locks, smoke detectors, and many more

• Network

– Various: typically Ethernet, WiFi, or Bluetooth

• Application

– Cloud computing

– Local computing

With the wide variety of perception layer devices we must
consider the priority these devices hold. Since loss of connec-
tion to cloud services may occur it is necessary to maintain
essential functionality with some of these devices prioritized
both by necessity and by the computational ease of data pro-
duced by the device. For some devices, it is more costly to
maintain full service when cloud computing is not available.
This can be due to a variety of reasons, such as the type
of data which the device collects could be difficult to com-
pute, to the point that RES-Hub may not be able to take
over these computations. We also must consider the risks
involved when certain parts of the system are unavailable
when prioritizing. For instance, we would like our locks to

Figure 4: Resource state synchronization and Noti-
fication modules [4]

function in case of a fire. If cloud services are down and the
doors are locked, we would like RES-Hub to be able to au-
tomatically unlock the doors or, at least not prevent manual
unlocking.

I believe this system best follows a tree network topol-
ogy. If we refer back to the a previous figure, Figure 2, we
can think of the RES-Hub device being the central device
with each perception device being the “leaves” of the tree.
Each RES-Hub node can represent a different home, which
all connect to a “root”. This “root” we can think of as the In-
ternet. This information would then be transferred through
the RES-Hub before being connected to a cloud computing
service. If the connection to the “root” is lost each tree can
act self contained, albeit to a lesser extent as computational
power would typically be lessened.

4.2 System Design
When designing a smart home it is worth noting that any

layer of the IoT system may fail. Sensors can break or dis-
connect, the network could go down for a variety of reasons,
or cloud service may become unavailable. These services can
be lost for a variety of reasons like technical problems, natu-
ral causes, scheduled maintenance, or even targeted attacks.
To solve this issue the researchers designed RES-Hub. It
provides users with a local backup service in case of cloud
service loss.

RES-Hub is made of two modules which can be seen in
Figure 4. The first part is a resource state synchronization
module which detects the state of devices from the cloud
at regular intervals. If a response is not received it can be
assumed that the cloud computing service is not available.
The second and final part is the notification module. This
module contacts the smart home owner via SMS, also known
as text messaging.

The researchers were able to design a system which pro-
vides a cloud neutral solution for smart homes in case con-
nection to the cloud computing service is lost. They were
able to do this with the use of RES-Hub.

5. CONCLUSION
We now know that each system has different requirements

and goals.



• Mosquito case

– Optimization and energy efficiency to allow re-
mote deployment and less costly maintenance

• Resilient smart home case

– Secure and resilient to allow for stable services
in the home in the event of cloud computing or
network outage

Both of these systems needed to be cloud independent for
different reasons defined by the other goals and requirements
of the system.

We now know that each layer (perception, network, and
application) can be modified to better serve the function of
an IoT system. These layers are modular. We must consider
each when designing around system requirements and goals.

While these are only two examples of IoT systems, the
goal and requirement based layer analysis which this paper
used can be applied whenever analyzing or designing an IoT
system.

Acknowledgments
I would like to thank professors Lamberty and Machkasova
for there continuous help and feedback throughout this course.
I would like to thank the other professors in the computer
science faculty as well for giving me the knowledge needed
to complete this project.

I would also like to thank my friends and family who have
supported me through the process of my Senior Seminar.
I would like to also thank University of Minnesota Morris
alumnus Justin Mullin for providing useful feedback on this
paper.

6. REFERENCES
[1] An interactive guide to the fourier transform.

https://betterexplained.com/articles/an-interactive-
guide-to-the-fourier-transform/
(visited on 2019-05-3).

[2] What is a network?, Nov 2018.
https://www.computerhope.com/jargon/n/network.htm
(visited on 2019-05-3).

[3] Architectures in the IoT civilization, Mar 2019.
https://www.netburner.com/learn/architectural-
frameworks-in-the-iot-civilization/
(visited on 2019-05-3).

[4] T. T. Doan, R. Safavi-Naini, S. Li, S. Avizheh, M. V.
K., and P. W. L. Fong. Towards a resilient smart home.
In Proceedings of the 2018 Workshop on IoT Security
and Privacy, IoT S&P ’18, pages 15–21, New York, NY,
USA, 2018. ACM.

[5] T. Primya, G. Kanagaraj, V. Suresh, and
G. Selvapriya. A survey paper on various computing to
emerge cloud computing, Oct 2016.

[6] P. Ravi, U. Syam, and N. Kapre. Preventive detection
of mosquito populations using embedded machine
learning on low power IoT platforms. In Proceedings of
the 7th Annual Symposium on Computing for
Development, ACM DEV ’16, pages 3:1–3:10, New
York, NY, USA, 2016. ACM.


