Avionics Software Certification and Regulation

Kyle DeBates
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
debat006@morris.umn.edu

ABSTRACT

As automation was introduced further into the mechanical
world, so too has it found its way into aircraft. While this
introduces many new possibilities, and immense convenience
to the operation of aircraft, the potential for failure in an
aircraft can be high without the proper approach to sys-
tem design. Concerning the relative lack of research into a
field so integral to our modern society and commerce, yet
prone to such costly mistakes, this paper aims to utilize a
conglomerate of sources to establish an understanding of an
avionics design framework. This will include how to iden-
tify the requirements of said framework and the organiza-
tion of these requirements into an wholly inclusive architec-
ture. As a result, an explicit structure of model abstraction,
utilizing state machines, has been applied to the complex-
ity of avionics systems to define a design methodology that
complies with DO-178C avionics design guidelines. Further-
more, referencing specific case studies of avionics design, this
paper will acknowledge effective strategies to strengthen the
system design, as well as recommend general architectural
improvements based on said case studies and appropriate
background for the betterment of DO-178C guidelines.

Keywords

Avionics, Software Design Methodology, Requirements Spec-
ification, DO-178C, Astrée, Universal Modelling Language

1. INTRODUCTION

When software was initially introduced into the field of
aviation, aside from the actual methodology of the time, im-
plementation was fairly simple as automated software com-
ponents were used rarely and influenced a relatively minor
portion of the operation of the aircraft. Today hundreds, if
not thousands of software components can form the integral
operations of any commercial aircraft’s daily operation. This
integration can display massive benefits in terms of scaling
up the use of planes for more cargo or passengers, as well as
helping to lower the failure rate. This scaling however in-
troduces an exponential curve of complexity, as every single
part that is integrated into an existing system often must
have some form of reference or compliance to other systems
already existing in the aircraft. It is expected that in the

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

near future all aviation systems will demand software that
will encapsulate functionality from the aircraft’s power, to
its flight deck, even to the point of being interconnected with
the Air Traffic Management on the ground.[1]

One way in which this issue can be mitigated is through
the use of extensive documentation in the form of architec-
tural design and model based structures. This is done so
that the software can be properly abstracted for modularity
and interconnection in code where necessary, allowing for a
broader understanding of such complex program function-
ality. Thus, strict standards regulating this industry have
been utilized for decades. These standards are known as
the DO-178, a rule set for aviation software and technology.
The DO-178 must be constantly updated as avionics technol-
ogy evolves, causing these standards to grow in complexity
with their associated technology. Partially due to a lack of
explicit and transparent software design methodology, this
industry lacks a generalized, yet exhaustive, software design
process. This complicates the job of avionics software de-
velopers when attempting to create avionics software that
complies with DO-178C standards, for both component and
full system software design.

For this reason, this research, along with its sources, hopes
to provide more explicit insight into the effective design pro-
cess of avionic technology. By offering transparent and con-
cise documentation of the methodology necessary for model
based design utilized in avionics, this paper aims to allow for
more open and accessible information to assist in furthering
research and development in the avionics industry. Expand-
ing on various work in the avionics field, this research will
primarily elaborate on the avionics software design method-
ology presented by Paz and Boussaidi. [4]

This paper will address the necessary terminology, abstrac-
tion, and industry regulation integral to an understanding
of avionics software architecture in Section 2. This will in-
clude expanding on concepts of safety and system failure,
as well as how these system states are categorized, and fi-
nally a brief exploration of DO-178 industry regulations.
Section 3 will elaborate specifically on the software design
methodology, using a concise articulation of specific safety
requirements. This will include how to architecturally struc-
ture these requirements into the software classes, as well as
properly implementing them through the use of Universal
Modeling Language to validate the theoretical models of the
avionics component. Finally section 4 will expand on exam-

ples of avionics system testing and how this testing differs
from typical consumer software, as well as what benefits are
drawn from this difference.

2. BACKGROUND

2.1 DO-178 Avionics Regulations

The DO-178C, released in 2012, is the third and latest edi-
tion of an international avionics design standard that was
first established as the DO-178 in 1982. Since the incep-
tion of DO-178 it has been the flagship in avionics software
regulation, used worldwide for its strict and highly explicit
methodology that is often required in fields with high po-
tential for catastrophic damage resulting from any particu-
lar system failure. Because of the major hazards involved,
avionics design often utilizes what is called a standards based
approach, focusing on a set of standards or rules to guide
design. This is reflected abstractly in the DO-178C, rep-
resented by a form of conceptual scrutiny called Claims-
Argument-Evidence (CAE). CAEs are generalized through-
out the requirements of these guidelines, where claims are
made against potential Contributions to Failure Conditions
(CFCs), arguments are presented as to the effects of these
failures, and evidence is used to weigh the reality of how
much a threat this failure really is. The FAA Advisory Cir-
cular (AC) stipulates a set of five failure conditions, ranging
from Catastrophic to No Effect, where a Catastrophic fail-
ure means the plane cannot safely fly or land. [5] This is
important to note as it is also stipulated that no unique fail-
ure is allowed to produce a Catastrophic failure by itself, by
design.

The DO-178C reflects these failure conditions with a system
called Design Assurance Levels (DALSs), assigning characters
A-E to five failure classes based on their potential CFCs,
Level A being Catastrophic failures and Level E being No
Effect Failures. There is a comprehensive set of 66 objectives
laid out in the DO-178C that must be utilized when design-
ing Level A programming, 65 of which must be applied to
Level B programming, 57 to Level C, 28 to Level D, and
none of which apply to Level E programming. [5] The fo-
cus of DALSs are to acknowledge failure states, where specific
software failures will affect the operation of the aircraft as a
whole. The CAE approach is much of the theoretical frame-
work for the design methodology prescribed by the research
and discussed in section 3, where the goals of the system pri-
oritize different CFCs threatening system functionality so as
to prioritize Level A programming whilst still maintaining
the modularity of the system in a fully comprehensive model.

While the goals and intents of these DO-178C guidelines
do provide an effective idea of what an avionics software de-
signer must aim to achieve, it does not provide an apparent
process or explicit methodology by which to do so. Professor
of Computer Science John Rushby specifically acknowledges
the issue of avionics lacking an explicit and transparent de-
sign methodology by which to navigate the design of such
complex systems, that being the fact that a standards based
approach to avionics works well, but it is not known to what
extent, or why it does work this well at all. [5] While this
is currently feasible, any new components introduced into
the modern avionic system could potentially provide Level A
failures for completely unknown and/or unexpected reasons.

Because of this apparent lack of design practice, the method-
ology in section 3 will display an explicit, model based hi-
erarchy of standards and design practices, which will first
have it’s terminology explored in the following section.

2.2 Avionics Software Design Practices and Ter-
minology

When developing software for avionics that is properly
compliant with DO-178C guidelines, first a set of system
requirements must be determined and categorized that are
necessary for the system to properly operate. These sys-
tem requirements fall into different levels of functionality
differentiated by each component’s CFCs or DALs. Sys-
tem requirements are first defined by their High-Level Re-
quirements (HLRs) that are derived from the CFCs and
the System and Safety Requirements Allocated to Software
(SRATS), which are established requirements of the soft-
ware for the functionality to achieve the goal of whatever
component or system is automated. It is important to note
that SRATS will be the primary goals of the system, for
instance an operational landing gear. The HLRs will de-
scribe necessary functions to achieve these goals in plain
language. These requirements must envelope the entirety of
the software’s data constraints so that no system operation
parameters are unacknowledged, whether it be considering
fuel intake or necessary ‘trim’ of an aileron. In the case study
presented by Paz and Boussaidi regarding a Landing Gear
Control System (LGCS), it was acknowledged that it took
three full iterations of defining SRATS and their necessary
HLRs with industry practitioners to properly identify the
system constraints and to compartmentalize the functions
in a proper safety modularity. [4]

The structure provided by developing the HLRs and the
SRATS is hierarchical, thus naturally corresponding with
object oriented programming languages. Physical compo-
nents, such as a fuel gauge, require a software class that can
emulate the components required functionality. The soft-
ware object instantiated from this class has assigned vari-
ables that represent the expected variables in that compo-
nents run-time environment. In the case of a software class
‘fuel gauge’, this would mean a variable such as ‘fuelLevel’
would exist to accurately describe the actual fuel level in
the components run-time environment. The design of these
software classes will be prescribed in section 3.3, where Low-
Level Requirements (LLRs) will be explained as the frame-
work for design of the software class’ source code.

Relationships that exist between HLRs naturally descend
to abstract relationships between software classes. This is
done so as to represent actual real-world relationships in
the objects established in these classes. The terminology of
the DO-178 describes these relationships as ‘traces’. These
traces allow one class to be validated by another class’ own
run-time objects, such as a fuel tank class seeing no prob-
lem in fuel draining by itself, but the intake class determines
this is not possible because the engine is not currently draw-
ing fuel, thus determining a fuel leak exists between the two
classes combined data objects. This idea can be extended to
the notion of ‘bi-directional traces’, where two classes rely
on data from each other that may predicate a system failure
between their combined data and testing. This organization
and these specificities are the framework for LLRs, which in-

tend to reflect the software that must be implemented in or-
der to meet the demands outlined by the HLRs and software
architecture. This will include the necessary algorithms to
operate functions outlined by an HLR, as well as the proper
traces between classes necessary to process and validate data
in a serial manner, where an example of these requirements
and their structuring are outlined in Figure 1.

[Operational ——
act Software requirements SRATS Context
specification and design I |

Figure 1: Avionics System as Model [4]

This approach to programming methodology requires soft-
ware developers to spend large portions of their time iden-
tifying fully comprehensive requirements before actually at-
tempting to write code for the system in this ‘requirements
specification modelling’. Much of coding today follows dif-
ferent consumer based approaches, such as Agile, which fo-
cuses on continued iterations of source code to reach a de-
sired final product. This requirements specification mod-
elling, often referred to as ‘Big Design Up Front’ or the
‘Waterfall Model’, is common within the engineering field,
where an enveloping design must be done from the ‘outside
in’. That is to say the code should be theoretically proven
on paper, or more preferably in a state machine model, to
make the system perform to expectations before it is ever it-
erated in source code. While this method is often considered
tedious and thorough, it also produces a highly specialized
design through a generalized method.

3. KEY REQUIREMENTS AND PRACTICES
CONFERRING DESIGN TO REGULATION

3.1 Developing High Level and Safety Require-
ments

The process of developing level requirements is partitioned
into three major levels concerning overall system require-
ments, that being to establish HLRs, to establish proper
Software Architecture, and finally to establish and develop
LLRs. This section will focus on the development of HLR
protocol, how it is derived from system requirements, as
well as what Critical Failure Conditions are and how these
conditions affect HLRs. It is notable that because these
requirements are highly predicated on natural language to
determine the engineering prerequisites, it is important to
be unambiguous, clear and concise. This natural language
is used to establish the rule-set to any particular HLR and
that HLR’s goal to change “controllable variables”, or data
values the software directly affects such as how much fuel
to pump into the fuel injection. These controllable variables
are manipulated in response to “monitorable variables”, or

Vo v
N ™
- Develop Software

‘ Develop HLRs ‘ Architacture |-|-| | | Develop LLRs

e AN S
L Software J
HLRs | Architecture
Potential [-
L cFcs LLRs | |

data values contributed by the environment to sensors that
are necessary to operate in said environment, such as the
RPM of the engine based on how much fuel we inject. An
HLR described this way can be more simply understood as a
protocol regarding a specific and necessary system function,
like a landing gear extending, and what variables must be ac-
counted for to achieve the successful operation of said func-
tionality. At no point in the process of defining HLRs should
the designer lose focus of what controllable variables must
exist and be manipulated by the HLR in order to achieve
its goal, or it is prone to becoming ambiguous and unclear
as to what exact manipulation of controllable variables will
be necessary, and more importantly what monitorable vari-
ables will be the context of the system.

Operational Potential
- SRATS
Develop HLRs Context CFCs
| r\q | —
? v l

Review
preclusion of

Review SRATS for }‘ [elsa]
CFCs
. J

. ™
Review level 5
ambiguities, inconsistencies = >
of refinement
\, and undefined :ondmonu \ J

[s RATS need
clarification or correction] |,

[SRATS are

Request clarification or A
not detailed

cofrection to system processes

_ | Clarified/Corrected I'd ™
SRATS received Define SRATS
a; the HI_R_,
[HLR cannot be Develop an HLR in terms of <
) controliable and monitorable =
a derived

traced to SRATS] _‘, '
o Develop variables, and trace to SRATS
,equ,rement [else] r:ltlonale
\
3 Review HLR for ambiguity, Review !
Clarification or comection inconsistencies or undefined }—\‘ preclusion of =
to HLR(s) requested = conditions CFGCs J

Label H LF| n.,

[HLR is detailed enough J—‘

for software design|

Clarified/Comected HLR(s) »—

o, [HLRisnot
detailed
‘ Review completeness enough -
for software Develop HLR into more
. e design] ﬁietalleﬂ HLRis) and trace
[no additional HLFs | 10 SRATS

vy
[additional HLRs are required fo capture the SRATS intent]

are required to capture
i the SRATS' intent]

Figure 2: Develop HLRs Activity [4]

In order to begin establishing HLRs, we must identify the
SRATS potential Contributions to Failure Conditions (CFCs)
as well as manually review the SRATS to confirm they do
not include ambiguity, inconsistency, or undefined states.
An example of a CFC concerning the previous example of a
Landing Gear Control System (LGCS) would be the LGCS
creating and communicating actuation commands whilst an
LGCS sensor is providing incorrect or invalid data. If, dur-
ing this process, it is found that an SRATS is specified
clearly enough to directly represent software design and not
simply set constraints for safety requirements, it is redefined
as an HLR. If a trace cannot be properly established between
an HLR and any existing SRATS, it is labelled a ‘derived
HLR’. This is only important in terms of architectural hier-
archy, where an example of a derived HLR would be if both
the landing gear extending and retracting were defined as
the same HLR, and because there is no higher functional-
ity necessary to operate the landing gear, this HLR would
not be attributed to an SRAT, where otherwise the opera-

tion of the landing gear could be defined as an SRAT and the
retracting and extending as two individual HLRs arbitrarily.

It is at this stage that many bi-directional traces between
different HLRs and SRATS will be mapped onto the require-
ments scheme, which will be determined by the necessary
testing to envelope all possible CFCs, and the relevant data
and class methods that will define the necessary testing for
the CFCs. An example of a bi-directional trace (continu-
ing from the fuel intake example in section 2.1) would be
where the fuel intake class verifies that the fuel intake valve
is closed, and the fuel tank class verifies the fuel tank is
draining, then this collective data would verify an error re-
garding the integrity of the fuel tank. An example of the
HLR activity is abstracted in Figure 2.

3.2 Foundational System Architecture Design

Because the DO-178C requires design models to be inher-
ent to the programming methodology used to design avionic
software, the development of the software’s architecture and
organization is a completely separate activity from deter-
mining how the actual functionality will be established. This
is done so as to help enable a ‘black-box verification’ of the
overall system behavior, meaning the system is judged based
on the inputs and outputs of the software, without neces-
sarily knowing how it achieves these data values. To help
accomplish this, design principles that simplify this abstrac-
tion are encouraged, such as encapsulation, which prescribes
either restricting unnecessary access to certain objects or
binding data to their relevant methods to avoid irrelevant
methods in other classes. This pattern of modularity is
clearly persistent in all layers of system design so as to take
a fairly complex system and parse it into a fairly simple, but
long, abstraction representing the entirety of system func-
tionality.

One principle way in which this modeling is done is to uti-
lize state machines, an abstract mapping used to identify
and outline any systems set of ‘potential states’ by assigning
every ‘process’ a set of states. Every state has trigger condi-
tions that will begin a transition to another state, and all of
these trigger conditions have an associated action that will
affect the transition to the following state, which itself also
has triggers and actions. Paz and Boussaidi recommend an
improvement to this state machine structure, instead assign-
ing 4 characteristics to any state: possible previous states,
destination states, transition actions that can change states,
and actions triggered when a state is reached. This is done
so as to represent an explicit totality of the software, allow-
ing for a much more full and exhaustive understanding of
the software’s usage and realization to be achieved. [4]

The activity of developing software architecture is performed
by designating the software components necessary to achieve
the requirements outlined by the HLRs, and any traces or in-
terdependencies that may exist between these components.
Every component will will be attributed to a particular HLR,
and every component will have data traces defined by ex-
pected data interdependencies with other components that
hold data relevant to its own operation and/or debugging.
Once every requirement outlined by the HLRs is assigned
to a component, and every component is attributed to an
HLR, hierarchies are established for the necessary software

classes for each component. The classes that will be speci-
fied in the next activity will all be attributed to particular
components, which exist under that particular component’s
HLRs. This activity is considered complete upon complete
establishment of components realizing HLR goals, and class
hierarchies realizing component goals.

3.3 Developing Low Level Requirements

Following a thorough assessment and refinement of SRATS
and HLRs that properly define the desired working avionics
system, as well as a proper outline of the necessary archi-
tecture required, it is now time to begin determining the
functionality of LLRs that will reflect the intent of every re-
alized class in the software design architecture necessary to
perform the requirements specified by the HLRs and SRATS
framework. To make this distinction more clear, the SRATS
and HLRs previously defined functional requirements neces-
sary to achieve functional goals such as utilizing a landing
gear. The architectural design specified what classes would
be necessary to execute this code. The LLRs themselves will
specify functions necessary for these classes to achieve their
assigned functionality.

Software
Architecture

' HLRs

Glarifled/Gorrected |_|
‘ HLR(s) received | -
=

Request clarification or
correction of HLR(s)
A

Develop LLRs

oy
[clarifications or Allocate
? corrections element(s) to
requited in HLR(s)] _ HLRs)
v ~ - — _
Allocate state machine [else] [else]
elements to the class’s F

Y
/Define behaviour of a |
realizing class in terms —
\ of a state machine \ associated HLAs

[element(s) cannot
be traced to HLRI(s)]

o ™

[no
additional realizing classes need to be specified]

™

::E;ELZIFS;? .| Review level
LLR{SI) ~ | of refinement
A / A vy
[Source code cannot
- - - be directly implemented |
[additional Refine behaviour of without further information]
realizing realizing class into more |«
classes need to _ specific behaviour [Source code can be
be specified] —, directly implemented
@{ - |k Review completeness J-(: without further information]

Figure 3: Develop LLRs Activity [4]

The design of the LLRs is highly predicated on the con-
trollable and monitorable variables mentioned prior. These
variables will be the data constraints that must be pro-
cessed and/or manipulated by the LLR processes in order
to achieve the desired working system, as outlined by the
SRATS, HLRs and architectural classes. Every LLR will be
attributed to a particular architectural software class, which
itself is attributed to an HLR, as discussed in the previous
two sections. If at any point in the design process it is un-
clear what HLR or architectural class a necessary LLR will
pertain to, it becomes necessary to repeat the design HLRs
activity so as to clarify necessary functionality and properly
assign it to an HLR. If still the LLR still cannot be assigned

to an HLR, it is labelled a ‘derived LLR’. For example, an
encoded ’system clock’, where the software functionality of
a clock is necessary for debugging traces. The system clock
class itself does not validate being attributed to any partic-
ular HLR or software class other than its own class package,
thus being a derived LLR. The activity of defining LLRs
is considered complete upon the moment that a fully en-
veloped source code that designates and realizes all neces-
sary classes of the required code without further refinement
is established. An example of the develop LLRs activity is
given in abstract in Figure 3.

For purposes of black-box verification and abstraction, ev-
ery software class is alternately defined as a state machine,
as discussed in section 3.2. All processes of any particular
software class are represented by an arbitrary set of states
in the state machine, which are used to simulate all possi-
ble and necessary scenarios regarding controllable and mon-
itorable variables that would appear in a run-time environ-
ment. State machines are often used in mechanical fields like
this with such high standards to establish low failure rates.
Particularly when we discuss specific software of such scale,
state machines make it relatively easy to properly establish
traces between classes without false assumptions regarding
this very necessary interconnectivity. The DO-178C stipu-
lates methodology of essential features when designing LLRs
being:

“(i) Layered modelling and hidden decomposi-
tions, (ii) Factorization of commonalities or reuse
of modelled elements, (iii) partial ordering and
concurrent flow of control, (iv) algorithms, (v)
time observation and timing constraints, (vi) in-
terruptions in the flow of control and exception
handling, (vii) explicit interactions between dis-
tinct system parts, (viii) complex trigger condi-
tions and triggered actions, and (ix) flow of data
(usage, production, and storage).” [4]

The authors here utilized a UML state machine, utilizing
Unified Modeling Language, because of the languages natu-
ral efficacy in representing and modelling mechanical LLRs
according to the DO-178Cs specific requirements. These re-
quirements represent many of the endeavored constraints for
other levels of design mentioned thus far, such as modular-
ity, encapsulation, traceability, and unambiguous, envelop-
ing statements of design intent. A specific example of a
UML state machine applied to LLRs, that will be discussed
in detail shortly, is displayed in Figure 4, elaborating on the
qualities and processes assigned to each state. This abstrac-
tion can be organized appropriately by the outlined condi-
tions of the LLRs, such as providing the necessary state for a
specific process, as well as explicitly identifying clear CFC’s
that are considered relevant to the state’s being discussed.
Figure 4 outlines the "Wait For Hydraulic Pressure’ LLR of
alanding gear operation, where it first refers to HLR-6 which
defines the requirement for the hydraulic circuit pressure to
be between 30,000 kPa and 35,000 kPa. This HLR accesses
its necessary traces and executes its associated LLRs, here
being to execute the "Verify Within Operating Range’ LLR
to check the sensor values being within this range. If it is
within the expected range, the "Wait for Hydraulic Pres-
sure’ LLR will terminate successfully, if not it will timeout
according to HLR-12, where the hydraulic system failed to

WaitForHydraulicPressure

HLR-6
e ' ™y
-~ TF | VerifyWithinOperatingRange |
[de SensorManager-fetchHydraulicCircuitPressure{) ‘

Running

.

!
[hep >= 30000 and hcp < 35000] [else])‘

Y
HydraulicPressure

WithinOperating S !
| Range =Z» HLR-6
U l 7 J
@ l after(2 s)

onRevertEvent) -

- failure

HLR-4 ! , detected | | HIR-12

= _®close GEV exit exit ¥~

Figure 4: UML State Machine Example State [4]

pressurize. HLR-4 is stipulated as another terminate and
revert trace midway through the program operation, not
predicated on a particular failure, but for a pilot to revert
the action of extending or retracting a landing gear, made
under the rationale that a pilot may need to do so. All of
these HLRs, their associated LLRs and traces, as well as
the overall architecture of the UML state machine represen-
tation are described in more explicit detail in Paz’s source
material. [4]

4. SAFETY ANALYSIS AND EXAMPLES OF
TECHNIQUES

4.1 Software Hazard Analysis and Resolution
in Design (SHARD)

One of the large benefits of the methodology built thus far
is the modularity of the specified architecture. When con-
sidering different testing or analysis to ensure the validity
of the software once developed focuses on testing the In-
tegrated Modular Avionics (IMA) system as a whole, that
is to say to test many of the aforementioned traces that
will exist between classes, and also to take advantage of the
modularity so as to test individual classes where applicable.
Two testing guides emerged from the University of York,
namely Software Hazard Analysis (SHARD) and Low-level
Interaction Safety Analysis (LISA). SHARD and LISA are
both used in tandem, where SHARD monitors unexpected
changes in data exchanges between classes and functions,
and LISA monitors timed events and system resources for
unexpected system errors. [2]

SHARD and LISA will prescribe one of five particular er-
ror types in the scenario that one occurs: Omission, where
a service is not provided, Commission, where a service is
provided when not required, Early or Late, where a service
is provided before or after its expected time frame, or Value,
where a service receives an unexpected or non-sensical value
for the particular operation.[2] Assuming SHARD or LISA

provide the Omission error on a system sensor, we must now
begin to refer to CFCs to determine what is likely causing
this issue to occur. All mechanisms related to the failing
system are tested for three basic failure categories: incor-
rect functioning of the correct application/IO, incorrect re-
sponse to an application or 10, and inadvertent function of
the IMA system altogether. It is notable that if arguments
can be made against the effects of a failure state to disclaim
its credibility as an actual system failure, that state can be
removed from being considered an error state.

It was found by Conmy and McDermid that four basic er-
ror types are prominent, specifically concerning the origin of
said errors: functional applications errors such as incorrect
calculations, non-functional or behavioral application errors
such as a memory violation, computing hardware failures de-
tected by debugging, or external hardware failures such as a
sensor no longer working.[2] The two authors prescribe that
for every reasonably expectable failure, a set of responses
should be defined in case of this failure occurring. An ex-
ample of this would be to have a backup sensor ready to
take the place of a primary sensor, or have the system be
prepared to ignore no data from that sensor given a failure
so as to avoid improper calculations. [2]

4.2 Astrée Static Analyzer

Another form of testing that largely benefits from the ab-
stract modeling prescribed is Astrée, a static analyzer that is
designed to prove the absence of runtime errors, specifically
for programs written in C. Being a static analyzer means
that Astrée focuses testing on source code inspection, rather
than dynamic analysis where a session of system usage is
logged and studied after the fact for error. The benefits
of this style of testing are broad, where Astrée will always
terminate regardless of whether or not the source code it-
self does. It is fairly efficient at testing, where Astrée takes
only one to two hours of testing per 100,000 lines of code,
and can properly scale up at this rate to millions of lines
of code. Another large advantage of this static analysis is
that this large and comprehensive approach to testing can
theoretically provide a fully exhaustive testing environment
encapsulating the entirety of program execution space.[3]

Astrée prioritizes the idea of traces between programs, men-
tioned throughout section 3 and earlier, where every trace
that maintains communication of dynamic information will
have their executions tested within their expected environ-
mental parameters, such as fuel pressure having to be at
least zero psi. This prioritization is beneficial as it means
that as long as the program’s execution is fully tested, there
will be no false negatives in the theoretical operation of the
system. No system error is ignored in this testing, as op-
posed to dynamic debugging. Operating in two phases, anal-
ysis and verification, Astrée fully computes every potential
operation of every class and function, and then checks that
none of the processed operations would present a runtime
error in a real-time environment. [3] The verification stage
is fairly straightforward, where the values culminated from
analysis will be checked against expected values. The anal-
ysis phases utilizes forms of abstraction to test the actual
modelled operation of the software, an example of this be-
ing trace partitioning, where the program will test that every
single trace embedded in the architecture can send and re-

ceive the appropriate data types, regardless of whether this
data actually exists within said programs parameters.

This form of testing would arguably be exceptionally use-
ful for the prescribed methodology of this paper, namely
if a comprehensive static analyzer was devised in the same
manner for use with UML state machine abstractions of code
as discussed in section 3.3, especially given the sheer abil-
ity of Astrée to effectively reach zero false alarm errors in
conjunction with its wide base of theoretical testing. [3] Fur-
thermore, the generalization of this form of testing into high-
level specifications languages such as SCADE or SIMULINK
and the growing breadth of this theoretical testing, Astrée,
or at least revisions based on it, has been used a fair amount
in the avionics industry and will likely show greater impor-
tance as it is further generalized into other aspects of avion-
ics software testing.

S. CONCLUSION

While the field of avionics continues to enhance the func-
tionality of everyday commercial aircraft, so too does it en-
hance the need for more comprehensive and explicit doc-
umentation that is more transparent to the industry as a
whole. The methodology outlined in this research utilizes an
exhaustive abstraction model that is compatible with UML
state machine representation. It is a recommended adoption
to the DO-178C as a formal methodology to follow through
on the goals that are stipulated by DO-178C, such as using
objective evidence to comply with specific safety protocol.
Further recommendations in generalizing source code testing
and state machine testing by using software such as SHARD
that is adapted to UML state machines could provide lower
levels of expected failure rates to further comply with DO-
178C standards and provide exceptional documentation on
the system in question.

6. REFERENCES

[1] E. Blasch, P. Kostek, P. Paces, and K. Kramer.
Summary of avionics technologies. IEEE Aerospace and
Electronic Systems Magazine, 30:6-11, 09 2015.

[2] P. Conmy and J. McDermid. High level failure analysis
for integrated modular avionics. In Proceedings of the
Sixth Australian Workshop on Safety Critical Systems
and Software - Volume 8, SCS ’01, pages 13-21,
Darlinghurst, Australia, Australia, 2001. Australian
Computer Society, Inc.

[3] P. Cousot. Proving the absence of run-time errors in
safety-critical avionics code. In Proceedings of the 7th
ACM &Amp; IEEFE International Conference on
Embedded Software, EMSOFT ’07, pages 7-9, New
York, NY, USA, 2007. ACM.

[4] A. Paz and G. E. Boussaidi. Building a software
requirements specification and design for an avionics
system: An experience report. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing,
SAC ’18, pages 1262-1271, New York, NY, USA, 2018.
ACM.

[5] J. Rushby. New challenges in certification for aircraft
software. In Proceedings of the Ninth ACM
International Conference on Embedded Software,
EMSOFT 11, pages 211-218, New York, NY, USA,
2011. ACM.

