Avionic Software Certification and Regulation

Kyle DeBates

University of Minnesota, Morris

April 20th, 2019

1/31

What are Avionics?

Introduction

The avionics industry currently lacks an explicit and transparent
design methodology

Commercial guidelines direct the design process, however they do
not determine how to design avionics

A clear need for generalized design methodology as systems
complexity increases, which this research aims to provide

3/31

Outline

@ Avionics Software Design Guidelines
@ DO-178C and Design Assurance Levels
@ Terminology for Proposed Software Development
Methodology

© Implementing Requirements Specification Model
@ Methodology to Establish Level Requirements
@ Use of State Machines for Enveloping Software Scenarios

© Conclusion

4/31

Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

DO-178C Commercial Avionics Guidelines

The DO-178C is the third and newest revision of the industry
guidelines for commercial aviation software approval [BKPK15]

Defines expected functionality and safety requirements as well as
requirements to avoid common errors

Used to establish compliance of avionics components and full
systems of components for commercial airline use

5/31

Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

DO-178C Terminology

System and Safety Requirements Allocated to Software (SRATYS)
are the required goals for software design

This is reflected in the Design Assurance Levels (DALs)
prioritization hierarchy

These assurance levels are heavily influenced by Contributions to
Failure Conditions (CFCs)

6/31

Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

Design Assurance Levels (DALs)

Five distinct Design Assurance

Levels of DO-178C:
Controllable variable: Data
values manipulated arbitrarily by

Level A 71 Obj Catastrophic oftware

Level B 69 Obj Hazardous
Level C 62 Obj Major
Level D 26 Obj Minor
Level E 0 Obj No Effect

Monitorable variable: Data
values recorded in operational
environment

[Rus11]

7/31

Avionics Software Design Guidelines

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

Terminology for Proposed Software Development
Methodology

System functionality categorized
to emulate Design Assurance
Levels:

@ High Level Requirements
(HLRs)

@ Architectural Design Layer

@ Low Level Requirements
(LLRs)

8/31

Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

9/31

Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

@ CFCs define possible issues precluding the failure of any
system component

10/31

Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

@ CFCs define possible issues precluding the failure of any
system component

@ HLRs are used to specify the how and what of the operational
requirements of SRATS

11/31

Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

@ CFCs define possible issues precluding the failure of any
system component

@ HLRs are used to specify the how and what of the operational
requirements of SRATS

@ Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

12/31

Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

@ CFCs define possible issues precluding the failure of any
system component

@ HLRs are used to specify the how and what of the operational
requirements of SRATS

@ Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

@ LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

13/31

. . e . Methodology to Establish Level Requirements
Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

Operational
Gontext CFCs

—

Potential
-~

Develop HLRs.

! .r‘

s ~

Review SRATS for [else] fﬁewew evel Review |
ambiguities, m::cn.mteﬂc\e* >t refinement [Preclusion of
. AN J

@ HLRs are defined by natural
[SRATSHEed

clarfication or correction] |,

g g Request clarification or [SRATS are
comection Io system procssses not detailed
enough for

softwa

design]

__ | clarifiea/Comectea N
SRATS received Define SRATS
{= the HLRs v
[HLA cannot be
aderived

traced to SRATS]
—Qﬁ Develop
[else] rationale
\ requirement jrement | S

—
L= Review HLR for ambiguity, Review
l_‘| prckszonct

Clarification or correction mcoruﬂzv;;\;;; undefined
to HLA(S) requested s
[HLR is detailed enough [;l
tor software design]
Clarified/Corrected HLR(s)

Develop an HLR in terms of
controllable and monitorable
variables, and frace to SRATS

[Cabel HLR a2

- - design]
(o adiforalHLs ‘
| are required to captu
e SRATS iment]

/ ~, [MLRisnot 7
detailed
Review completeness enough
for software Develop HLR into more
(detm\cd HLR(3) and trace

to SRATS
S

[additional HLRs are required to capture the SRATS’ intent]

e

14/31

. . e . Methodology to Establish Level Requirements
Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

PR Operational Potential
" Devalop HLRs ‘ SRATS Gontext CFCs ™
| ‘4 [-
tor
Review SRATS for [else] fﬁewew level (" Review)
O HLR defined b | ambigties, \nccn»p{eﬂc\h}» Fevewierel || ocuconor
S are definea by natura _ 3 tnclfned condtions § VR

ATS need
clarfication or correction] |,

| a n gu a ge Reqguest clarification or

. . . < comection to system processes
@ Refine SRATS to eliminate [comatamas)
SRATS received Define SRATS.
. . as the HLRs. — Yy
ambiguity and envelop T meme o (e :
. . (et LR) 2 0 SRATS deveion T vt and vace 1 ST |5

operations requirements (=] —QM “{

4~L Review HLR for ambiguity, | Review

Crieation or comeston]| | inconsistencies or undefined prechzion of
to HLR(s) requested condtions
[HLR is detailed enough 7
for sofware design]
Clarified/Corrected HLR(g)

[SRATS are
not detailed
enough for
software
design]

v
——————— [HLRisnot 7
(detailed
Review completensss encugh
for software Develop HLR into more
. A/ design] (detm\cd HLR(s) and trace
(o adiforalHLs ‘ 10 SRATS
| are required to captu ~
e SRATS' intent] X\ [ackitional HLRS are requited to capture the SRATS ntent]

e

15/31

Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

PR Operational Potential
" Devalop HLRs ‘ SRATS Gontext ‘ CFCs ‘ ™
! = !
-
Review SRATS for " Review
. ambiguits, inconsistencies }» el R'E“"ew ‘"E“ | precluson ot
@ HLRs are defined by natural et oot |t rtmement || P
[aRATS need
|a nguage clarification of correction] |, b
g g Request clarification or [SRATS are
comection to system processes. ° g% a;:‘anrloe'd
@ Refine SRATS to eliminate [cmmaame) e
SRATS received Define SRATS design]
- - L the HLRs v @
ambiguity and envelop T L —
traced to SRATS] o cnm;name ;\r:ﬁ‘r:wotmlor;:_l[e
. - Label HLFI ar Develop variables, an e to S S
operations requirements aeries “?] “{
\requwemem else]
/ﬁ
. . Review HLR for ambiguity, REWEW
© Refer to SRATS for clarity if L-ncowg;;;;wdeﬁned |H| prcioncr || — |
to HLR(g) requested .
H L R b | d [HLR is detailed enough J;'—
S become convolute Pl
Clarified/Corrected HLR(s) »—
Y [HLRisnet 7
() detailed
Review completeness enough
for software Develop HLR into more
[andt\r A - design] detailed HLR(s) and trace
[no litional s 1o SRATS
| are required to capture ~
the SRATS' mtem] [additional HLRs are required to capture the SRATS’ intent]
N J |

16/31

Implementing Requirements Specification Model iedieititezy i [EEfilih (e [Regpierenis

Use of State Machines for Enveloping Software Scenarios

Establishing Software Architecture

HLAs

Operational

Develop Software Architecture Context Y

I

s
‘ Identify/Define %_[o
L arehitectural style allocate to HLRs

@ Establish what software
components will be

reace necessary for each HLR
Request clarffication or Veuulled in HLRg]
4 N correstion of HLR(s) [¥ ~
‘ Al to HLRe — ‘ Identify and define dependencies
- Clarified/Ci cted
h. vy

etween interms of ‘
"7 HLR(g) received _ provided and required intertaces |

(~
Review compieteness |._{ Define data dictionary <—{ Identity software J
L

design patterns

l. [additional companents
are required to cover the HLRs]

(" identity additional }
s

[no additional components l\“"" allocate fo HLR:
are requited to cover the HLRs]

required to realize the component]
compenent and allocate to the
__ component's associated HLRs |

~ [no additional classes are
(1entity class hierarchies realizing a
®

[additional classes are required o
realize the camponent]

17/31

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Software Architecture

HLRs Operational

Context

(" Dovelop Software Architecturs

I

s v
‘ Identity/Define %_[o i
L arehitectural style allocate to HLAs |

@ Establish what software
components will be
necessary for each HLR

—_— Request clarification o
‘ u ‘ correction of HLR(s|

required in HLRs]

toHLRs Clarified/Corrected ‘ between in terms of

@ lIdentify the necessary
T [e interdependencies and
iﬂwwwmuﬂene |—{ PEN— <—{ ‘j‘;’f‘,‘,’:;jm’f} required interfaces between
components

| lotsonal componera e
are required to cover the HLRs] [idenity addtional J_
and allocate to HLRs jee—r

?\a additional components \\7 v,

are requited to cover the HLRs]

[no additional classes are
required to realize the component]

[adiditional ci; are required to
realize the camponent]

18/31

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Software Architecture

HLRs Operational

Context

(" Dovelop Software Architecturs

s N) v
Identity/Define %_ o i
arehitectural style allocate to HLRs
A e . /

@ Establish what software
components will be
necessary for each HLR

comecions
— Request clarfication or | required in HLRs]
(N correction of HLR(s) | - .
‘ petecomo ‘ Wenty and defne dependencies Q |dent|fy the necessary
- Clarified/Ci cted in'terms of
\"7/ HLR(s) received _ provided and requred intertacss | . .
. interdependencies and

Review completeness [«

Dmdmvww—{ b J required interfaces between
components

l. [additional companents

o
are required 1o cover the HLRs] [\genl\fv additional J_
and allocate to HLRs j&—
?\a additional components \\ g

|are reguired 1 couer the HLRs) - } e ESta bI iSh SOftW& re C/ass
[no additional classes are . . . N
reaured o ealze th camponent_ o h lera rch es Wlth n each H |_ RS
et e cormpenang) components

compenent and allocate to the

T
(1entity class hierarchies realizing a]—\
| component's associated HLRS

J

19/31

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Low Level Requirements

@ Define expected behavior of (" oeveiop Lurs
each software class for their
software components

Software
Architecture

Request clarification or
correction of HLR(s)
)

Clarifies/Corrested | _|
HLR(S) received |

P
[clarifications or } N‘oc(a[\T‘
corrections: el QTC{ELV;:{ (s) 1o
required in HLR(s)] N s)
v)

[else] [else]
realizing class in terms > elements to the class’s 5

N of a state machine

e ™~ ™~
Define behaviour of a Allocate state machine

N assucw;\t)\ed HLRs J

cannot
be traced to HLR(3))
I Y e ™
::D:‘u:lﬂsg | Review level
e of refinement
.) AN

[Source code cannot
— - ~, bedirectly implemented |
[additional Refine behaviour of | without further information]
realizing

classes need to

realizing class into more
specific benavieur
AN ~

[Source code can be

be specified] - directly implemented
[Review | without further information]
= AN
o 7
___ additional realizing dlasses need to be specified] /

20/31

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Low Level Requirements

@ Define expected behavior of (" oeveiop Lurs
each software class for their
software components

Clarifies/Corrested | _|

Software
Architecture
HLR(s) recsived
Request clarification or __|
correction of HLR(s) il

7

)
i i 1 [clarifications or (eé‘\lm\gﬁa\: .
@ Use HLR guidelines to refine ¢ e el

v

e ™~ ™~
Define behaviour of a Allocate state machine felse] [slse]

ambiguous software

realizing class in terms —>| elements to the class's

N of a state machine associated HLRs

H A / cannot
requiremen ts + be traced to HLR(s)]
o =~ s "~
e e Review level
LLR(E‘) 7| of refinement
. J . v

[Source code cannot
= bedirectly implemented |

Refine behaviour of

fadditional f without further information]
\ealizing realizing class into more
classes need to __ Specific benaviour) [Source code can be
be specilied] - directly implemented
_ Review | without further information]
@< —)
o
___ addtional realizing classes need to be specified])

21/31

Implementing Requirements Specification Model

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Low Level Requirements

@ Define expected behavior of
each software class for their
software components

@ Use HLR guidelines to refine
ambiguous software
requirements

© Determine if more
information is necessary to
implement source code and
refine where necessary

(" DevelopLLRs

Clarifies/Corrested | _|

Software
Architecture
HLR(s) recsived
Request clarification or __|
correction of HLR(s) il

7

P
[clarifications or } N‘oc(a[\T‘
corrections: el 9”;{5&{ 5) 10
required in HLR(s)] N s

v oo

Y
/DEHHB behaviour of a
realizing class in terms
|_ of astate machine

A)
Allocate stats machine el
elements to the class’s

associated HLRs
~ - / cannot
7 be traced to HLA(3))

[else]

s = ~

-
::D:‘d:'r'sg Review level
LLR(E‘) | of refinement

. J . v

[Source code cannot
be directly implemented |

e y - h
Refine benaviourof | without further information]

realizing class into more <

__ specific benaviour [Source code can be
P — directly implemented
[Review | without further information]
L J

o

additional realizing classes need to be specified]

[additional
realizing
classes need to
be specified]

.

22/31

Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

State Machines in Unified Modeling Language

A state machine is a mathematical model of computation

Every state has a previous state, destination states, and the
necessary conditions to change states

Unified Modeling Language is used to visualize system design

UML state machines represents the status of a system

23/31

Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running }
-
[VerifyWithinOperatingRange

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure() ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating ~@

Range Z2 HLR6
~ l l, - J

® afterl25)

onRevertEvent .,

failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa

24/31

Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running B
-
[VerifyWithinOperatingRange \

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure() ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating N
Range 22 HLR6
o 7 I 2 J
® afterl25)
onRevertEvent .,
a failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
@ Initiate Verify Within Operating Range LLR

25/31

Implementing Requirements Specification Model

Example of LLR in UML Notation

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

WaitForHydraulicPressure

HLR-6

Running

]

”‘—»

-

VerifyWithinOperatingRange

[n:p =

do/ SensorManager:-fetchHydraulicGircuitPressure()

30000 and hep <35000] : [e\.'se]

(" Hydraulicpressure |

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -

35,000kPa

WithinOperating -

Range =34 HLR-6
— y

® after(2 5)
onRevertEvent ..

= failure

HLR-4 detected .4 HLR-12
exit -

l close GEV exit

@ HLR-4: Terminate and Revert Requirement
@ HLR-12: Hydraulic System Failure Requirement

26/31

Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running B
-
[VerifyWithinOperatingRange \

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure() ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating N
Range 22 HLR6
o 7 I 2 J
® afterl25)
onRevertEvent .,
a failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa

@ Else HLR-6 terminates successfully
27/31

Conclusion

Conclusions

The lack of transparency in avionics industry design methodology
and documentation are shortcomings in current design practices

An explicit and generalized design methodology similar to what as

presented outlines the importance of a transparent requirements
specification model

28/31

Conclusion

Acknowledgements and Special Thanks

I'd like to give thanks to:
Family and friends
Computer Science Professors and Colleagues

Audience

29/31

Conclusion

References

@ Erik Blasch, Paul Kostek, Pavel Paces, and Kathleen Kramer,
Summary of avionics technologies, |IEEE Aerospace and
Electronic Systems Magazine 30 (2015), 6-11.

[@ John Rushby, New challenges in certification for aircraft
software, Proceedings of the Ninth ACM International
Conference on Embedded Software (New York, NY, USA),
EMSOFT '11, ACM, 2011, pp. 211-218.

30/31

Conclusion

Discussion

Questions?

31/31

	Avionics Software Design Guidelines
	DO-178C and Design Assurance Levels
	Terminology for Proposed Software Development Methodology

	Implementing Requirements Specification Model
	Methodology to Establish Level Requirements
	Use of State Machines for Enveloping Software Scenarios

	Conclusion

