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What are Avionics?




Introduction

The avionics industry currently lacks an explicit and transparent
design methodology

Commercial guidelines direct the design process, however they do
not determine how to design avionics

A clear need for generalized design methodology as systems
complexity increases, which this research aims to provide
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Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

DO-178C Commercial Avionics Guidelines

The DO-178C is the third and newest revision of the industry
guidelines for commercial aviation software approval [BKPK15]

Defines expected functionality and safety requirements as well as
requirements to avoid common errors

Used to establish compliance of avionics components and full
systems of components for commercial airline use
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Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

DO-178C Terminology

System and Safety Requirements Allocated to Software (SRATYS)
are the required goals for software design

This is reflected in the Design Assurance Levels (DALs)
prioritization hierarchy

These assurance levels are heavily influenced by Contributions to
Failure Conditions (CFCs)
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Avionics Software Design Guidelines DO-178C and Design Assurance Levels

Terminology for Proposed Software Development Methodology

Design Assurance Levels (DALs)

Five distinct Design Assurance

Levels of DO-178C:
Controllable variable: Data
values manipulated arbitrarily by

Level A 71 Obj Catastrophic oftware

Level B 69 Obj  Hazardous
Level C 62 Obj Major
Level D 26 Obj Minor
Level E 0 Obj No Effect

Monitorable variable: Data
values recorded in operational
environment

[Rus11]
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Avionics Software Design Guidelines

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

Terminology for Proposed Software Development
Methodology

System functionality categorized
to emulate Design Assurance
Levels:

@ High Level Requirements
(HLRs)

@ Architectural Design Layer

@ Low Level Requirements
(LLRs)
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Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality
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Avionics Software Design Guidelines SOHITEE e e A Lok
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Avionics Software Design Guidelines SOHITEE e e A Lok

Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

@ SRATS are the general requirements of any system to achieve
desired functionality

@ CFCs define possible issues precluding the failure of any
system component

@ HLRs are used to specify the how and what of the operational
requirements of SRATS

@ Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

@ LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture
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. . e . Methodology to Establish Level Requirements
Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements
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. . e . Methodology to Establish Level Requirements
Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements
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Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements
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Implementing Requirements Specification Model iedieititezy i [EEfilih (e [Regpierenis

Use of State Machines for Enveloping Software Scenarios

Establishing Software Architecture
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Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Software Architecture
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Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Software Architecture
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Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Low Level Requirements
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Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Implementing Requirements Specification Model

Establishing Low Level Requirements
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Implementing Requirements Specification Model

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Low Level Requirements
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Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

State Machines in Unified Modeling Language

A state machine is a mathematical model of computation

Every state has a previous state, destination states, and the
necessary conditions to change states

Unified Modeling Language is used to visualize system design

UML state machines represents the status of a system
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Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running }
-
[ VerifyWithinOperatingRange

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure( ) ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating ~@

Range Z2 HLR6
~ l l, - J

® afterl25)

onRevertEvent .,

failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
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Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running B
-
[ VerifyWithinOperatingRange \

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure( ) ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating N
Range 22 HLR6
o 7 I 2 J
® afterl25)
onRevertEvent .,
a failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
@ Initiate Verify Within Operating Range LLR
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Implementing Requirements Specification Model

Example of LLR in UML Notation

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

WaitForHydraulicPressure

HLR-6

Running

]

”‘—»

-

VerifyWithinOperatingRange

[n:p =

do/ SensorManager:-fetchHydraulicGircuitPressure( )

30000 and hep <35000] : [e\.'se]

(" Hydraulicpressure |

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -

35,000kPa

WithinOperating -

Range =34 HLR-6
— y

® after(2 5)
onRevertEvent ..

= failure

HLR-4 detected .4 HLR-12
exit -

l close GEV exit

@ HLR-4: Terminate and Revert Requirement
@ HLR-12: Hydraulic System Failure Requirement
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Methodology to Establish Level Requirements

Implementing Requirements Specification Model Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

WaitForHydraulicPressure

HLR-6 Running B
-
[ VerifyWithinOperatingRange \

‘—’ do/ SensorManager--fetchHydraulicGircuitPressure( ) ‘

[n:p = 30000 and hp <35000] : [e\.'se]

Hydraulmpressure
WithinOperating N
Range 22 HLR6
o 7 I 2 J
® afterl25)
onRevertEvent .,
a failure
HLR-4 | detected || HLA-12
close GEV exit exit ¥ -

@ HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa

@ Else HLR-6 terminates successfully
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Conclusion

Conclusions

The lack of transparency in avionics industry design methodology
and documentation are shortcomings in current design practices

An explicit and generalized design methodology similar to what as

presented outlines the importance of a transparent requirements
specification model
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