
Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Avionic Software Certification and Regulation

Kyle DeBates

University of Minnesota, Morris

April 20th, 2019

1 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

What are Avionics?

2 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Introduction

The avionics industry currently lacks an explicit and transparent
design methodology

Commercial guidelines direct the design process, however they do
not determine how to design avionics

A clear need for generalized design methodology as systems
complexity increases, which this research aims to provide

3 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Outline

1 Avionics Software Design Guidelines
DO-178C and Design Assurance Levels
Terminology for Proposed Software Development
Methodology

2 Implementing Requirements Specification Model
Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

3 Conclusion

4 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Commercial Avionics Guidelines

The DO-178C is the third and newest revision of the industry
guidelines for commercial aviation software approval [BKPK15]

Defines expected functionality and safety requirements as well as
requirements to avoid common errors

Used to establish compliance of avionics components and full
systems of components for commercial airline use

5 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Terminology

System and Safety Requirements Allocated to Software (SRATS)
are the required goals for software design

This is reflected in the Design Assurance Levels (DALs)
prioritization hierarchy

These assurance levels are heavily influenced by Contributions to
Failure Conditions (CFCs)

6 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

Design Assurance Levels (DALs)

Five distinct Design Assurance
Levels of DO-178C:

Level A 71 Obj Catastrophic
Level B 69 Obj Hazardous
Level C 62 Obj Major
Level D 26 Obj Minor
Level E 0 Obj No Effect

[Rus11]

Controllable variable: Data
values manipulated arbitrarily by
software

Monitorable variable: Data
values recorded in operational
environment

7 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

Terminology for Proposed Software Development
Methodology

System functionality categorized
to emulate Design Assurance
Levels:

High Level Requirements
(HLRs)

Architectural Design Layer

Low Level Requirements
(LLRs)

8 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

SRATS are the general requirements of any system to achieve
desired functionality

CFCs define possible issues precluding the failure of any
system component

HLRs are used to specify the how and what of the operational
requirements of SRATS

Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

9 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

SRATS are the general requirements of any system to achieve
desired functionality

CFCs define possible issues precluding the failure of any
system component

HLRs are used to specify the how and what of the operational
requirements of SRATS

Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

10 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

SRATS are the general requirements of any system to achieve
desired functionality

CFCs define possible issues precluding the failure of any
system component

HLRs are used to specify the how and what of the operational
requirements of SRATS

Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

11 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

SRATS are the general requirements of any system to achieve
desired functionality

CFCs define possible issues precluding the failure of any
system component

HLRs are used to specify the how and what of the operational
requirements of SRATS

Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

12 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

DO-178C and Design Assurance Levels
Terminology for Proposed Software Development Methodology

DO-178C Vs. Software Development Methodology

Primary Differences:

SRATS are the general requirements of any system to achieve
desired functionality

CFCs define possible issues precluding the failure of any
system component

HLRs are used to specify the how and what of the operational
requirements of SRATS

Architectural Layer is abstracted to assure necessary
interconnectivity and further exhaustion of SRATS

LLRs are the specific software classes and methods required to
actualize the HLRs with the proper outlined architecture

13 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

1 HLRs are defined by natural
language

2 Refine SRATS to eliminate
ambiguity and envelop
operations requirements

3 Refer to SRATS for clarity if
HLRs become convoluted

[?]
14 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

1 HLRs are defined by natural
language

2 Refine SRATS to eliminate
ambiguity and envelop
operations requirements

3 Refer to SRATS for clarity if
HLRs become convoluted

[?]
15 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing High Level Requirements

1 HLRs are defined by natural
language

2 Refine SRATS to eliminate
ambiguity and envelop
operations requirements

3 Refer to SRATS for clarity if
HLRs become convoluted

[?]
16 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Software Architecture

1 Establish what software
components will be
necessary for each HLR

2 Identify the necessary
interdependencies and
required interfaces between
components

3 Establish software class
hierarchies within each HLRs
components

17 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Software Architecture

1 Establish what software
components will be
necessary for each HLR

2 Identify the necessary
interdependencies and
required interfaces between
components

3 Establish software class
hierarchies within each HLRs
components

18 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Software Architecture

1 Establish what software
components will be
necessary for each HLR

2 Identify the necessary
interdependencies and
required interfaces between
components

3 Establish software class
hierarchies within each HLRs
components

19 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Low Level Requirements

1 Define expected behavior of
each software class for their
software components

2 Use HLR guidelines to refine
ambiguous software
requirements

3 Determine if more
information is necessary to
implement source code and
refine where necessary

20 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Low Level Requirements

1 Define expected behavior of
each software class for their
software components

2 Use HLR guidelines to refine
ambiguous software
requirements

3 Determine if more
information is necessary to
implement source code and
refine where necessary

21 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Establishing Low Level Requirements

1 Define expected behavior of
each software class for their
software components

2 Use HLR guidelines to refine
ambiguous software
requirements

3 Determine if more
information is necessary to
implement source code and
refine where necessary

22 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

State Machines in Unified Modeling Language

A state machine is a mathematical model of computation

Every state has a previous state, destination states, and the
necessary conditions to change states

Unified Modeling Language is used to visualize system design

UML state machines represents the status of a system

23 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
Initiate Verify Within Operating Range LLR
HLR-4: Terminate and Revert Requirement
HLR-12: Hydraulic System Failure Requirement
Else HLR-6 terminates successfully

24 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
Initiate Verify Within Operating Range LLR
HLR-4: Terminate and Revert Requirement
HLR-12: Hydraulic System Failure Requirement
Else HLR-6 terminates successfully

25 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
Initiate Verify Within Operating Range LLR
HLR-4: Terminate and Revert Requirement
HLR-12: Hydraulic System Failure Requirement
Else HLR-6 terminates successfully

26 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Methodology to Establish Level Requirements
Use of State Machines for Enveloping Software Scenarios

Example of LLR in UML Notation

HLR-6: Hydraulic Circuit Pressure Requirement 30,000kPa -
35,000kPa
Initiate Verify Within Operating Range LLR
HLR-4: Terminate and Revert Requirement
HLR-12: Hydraulic System Failure Requirement
Else HLR-6 terminates successfully

27 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Conclusions

The lack of transparency in avionics industry design methodology
and documentation are shortcomings in current design practices

An explicit and generalized design methodology similar to what as
presented outlines the importance of a transparent requirements
specification model

28 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Acknowledgements and Special Thanks

I’d like to give thanks to:

Family and friends

Computer Science Professors and Colleagues

Audience

29 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

References

Erik Blasch, Paul Kostek, Pavel Paces, and Kathleen Kramer,
Summary of avionics technologies, IEEE Aerospace and
Electronic Systems Magazine 30 (2015), 6–11.

John Rushby, New challenges in certification for aircraft
software, Proceedings of the Ninth ACM International
Conference on Embedded Software (New York, NY, USA),
EMSOFT ’11, ACM, 2011, pp. 211–218.

30 / 31



Avionics Software Design Guidelines
Implementing Requirements Specification Model

Conclusion

Discussion

Questions?

31 / 31


	Avionics Software Design Guidelines
	DO-178C and Design Assurance Levels
	Terminology for Proposed Software Development Methodology

	Implementing Requirements Specification Model
	Methodology to Establish Level Requirements
	Use of State Machines for Enveloping Software Scenarios

	Conclusion

