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ABSTRACT

Image super-resolution is a concept with important appli-
cations in law enforcement, digital entertainment, medicine,
and many other fields. The primary focus of this paper is
to examine and explain the use of Gaussian Mixture Mod-
els (GMMs) to aid in increasing the resolution of images.
The GMMs are trained via dictionaries of image pairs with
a low- and high- resolution version of the same image patch.
This paper is a deep dive on a research paper by Dongfeng
Meia et al [10], and it describes in detail the method applied
by those researchers. To do this, several statistical concepts
are covered, such as Gaussian distributions, regression, and
mixed models.

1. INTRODUCTION

There is some disagreement among authorities regarding
the definition of the term ”super-resolution”. To some, it
functions simply as a synonym for "upscaling”, which is the
process of increasing the size (resolution) of an image. To
others, it is only applicable as a term if the smaller (low-
resolution, or LR) version of the image has never had a larger
(high-resolution, or HR) counterpart. For the purposes of
this paper, I use the terms interchangeably.

Image super-resolution serves many purposes and an effi-
cient, automated method of detail restoration and enhance-
ment would have wide-reaching implications throughout nu-
merous fields. For example, details could be recovered from
low-resolution crime scene photos that help identify sus-
pects, or such a technology could be used to increase the
visual fidelity of films, video games, and other forms of visual
entertainment. Due to the broad incentives, this technology
has received substantial attention.

Convolutional neural networks have been shown to ac-
complish image-related tasks very effectively [13], super-
resolution being no exception [5]. Another type of ma-
chine learning applied commonly to image super-resolution
is called sparse dictionary learning; this is an effective way
of performing super-resolution on an image when that image
can be easily divided into patches with specific details, such
as images taken from nature. The paper [10] documents
several successional attempts to use this type of machine
learning for super-resolution, each solving the issues of a
previous attempt.
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The paper [10] then presents a new method: using Gaus-
sian Mixture Models (GMMs), a statistical model for de-
scribing multiple trends within a set of data, to classify
image patches into categories. These categories can then
be used to create multiple pairs of something called dictio-
naries representing what is called a sparse representation of
an image patch category (these terms are explained later).
Using the GMM-classified categories, the dictionaries can
represent more minute details, and the result is an upscaled
image with not only better defined large features, as is easy
to do with sparse dictionary learning, but also better defined
details.

The research in question was performed by Dongfeng Meia
et al[10]. The approach uses many of the same techniques
as the machine learning-based methods, but using image
patches, allows different portions of an image to be processed
in different ways by an algorithm or model, allowing for more
efficient training and more specific details to be recovered.

2. BACKGROUND

2.1 Composition of Images

A pixel is an atomic component of an image which repre-
sents a single point of color data. The majority of images
are formatted as a collection of pixels. The resolution of
an image is the number of pixels that make up a rectangu-
lar image, represented as a product of its dimensions. For
example, a square image with 400 pixels total would have
a resolution of 20x20. The higher an image’s resolution,
the more detail is visible within the image. The goal of
most research into super-resolution is to increase the res-
olution while adding an appropriate level of detail for the
target resolution. It is a difficult task, as the information
required to enhance detail is usually not discernible from a
low-resolution (LR) image.

The RGB system is the most common way of defining
the color of a pixel, but for this method of super-resolution
it is more useful to look at an image as a combination of
luminance and chrominance data. These are sets of data
that define the brightness of color throughout the image,
and the hue, divided into two channels, throughout the im-
age. This is the method in which video signals are broadcast
over analog television [8]. The luminance channel is essen-
tially a black-and-white version of the image, and the two
chrominance channels are collections of hue data.

The luminance channel is denoted Y, and the chrominance
channels are denoted CR and CB. The CR (chrominance-
red) channel is comprised of the red value subtracted from



Figure 1: From left to right: The luminance channel,
the chrominance-red channel, the full image [1]

Figure 2: From left to right: the original greyscale
image, the horizontal gradient, the vertical gradient
(1]

the luminance data, and the CB (chrominance-blue) channel
is comprised of the blue value subtracted from the luminance
data. Humans are considerably more sensitive to luminance
data than to chrominance data [10], so it is more efficient
to perform computationally expensive super-resolution tech-
niques on the luminance data alone, and use less intensive
techniques to upscale the chrominance data. The method
outlined in [10] makes use of this physiological characteris-
tic.

An image patch is a section of an image that is usually
small and rectangular. Typically, image patches are se-
lected to be identical in shape and size. Dividing an image
into patches is useful for the purpose of performing super-
resolution; it can allow a program, algorithm or other com-
putational entity to isolate the features of one specific area
of the image and find an HR equivalent without needing to
consider the rest of the image.

The gradient of an image’s luminance is defined as the
directional change in luminance value; it is the derivative of
the values over a given direction in the image. Taking the
gradient of an image is useful for isolating the overall fea-
tures, or contours, of the image, as can be seen in Figure 2.
This is taken in a single direction, isolating each line of pix-
els as though it were a linear equation, and determining the
change in luminance between each consecutive pair of pixels.
The second-order gradient is the gradient of the gradient. It
is similar to the second derivative of a function.

2.2 Interpolation

Interpolation is the process of finding data points that lie
in between a set of known data points. For the purposes of
image upscaling, this means creating additional pixels with
which to “fill in the gaps” between the original pixels. There
are a substantial number of types of interpolation, but the
most common are nearest neighbor, linear, and cubic.

Nearest-neighbor interpolation is the simplest; it assigns
each pixel a color according to the color of the nearest exist-
ing pixel. This, in effect, causes the original appearance to

be preserved exactly, only at a larger scale. Nearest-neighbor
interpolation provides no smoothing effect and results in the
presence of aliasing and jagged edges (a pixelated appear-
ance, shown in Figure 4).

Linear interpolation defines a linear relationship between
two data points, and fills in the points between the given
data based on the corresponding value on the linear function.
The linear function on a one-dimensional set of data is as
follows, wherein, for our purposes, let us consider only two
data points, x and y:

Y—Y% _ Yo~
X — X0 o o — 1

In this model, x represents the distance between the two
data points and y represents the color as defined on an RGB
scale.

Cubic interpolation utilizes a similar concept, but instead
of defining a linear relationship based on two data points
it instead defines a cubic relationship based on four data
points. By utilizing more data points, it creates a smoother
transition between values.

However, this process only determines data points on a
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Figure 3: Graphs of the data points as calculated
during interpolation [4]
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Figure 4: Comparison of the results of interpolation
methods [17][18][16]



single line; in order to work with a fully two-dimensional im-
age we need to use bilinear or bicubic interpolation. Bilinear
interpolation, when used for upscaling, defines an interpo-
lated relationship between two parallel sets of two points,
then for each relevant point on each defined line, defines an-
other linear relationship. A similar approach is used for bicu-
bic interpolation: using four sets of four parallel points, cu-
bic interpolations are drawn between each, and then drawn
for each relevant point in the perpendicular direction. The
result is an image with smoother value transitions between
established data points, making the image more visually ap-
pealing but also making it more difficult to distinguish the
original values of the given data points. A visual represen-
tation of the lines can be seen in Figure 3.

2.3 Linear combination

A representation of a data set is simply a set of vectors
that can be linearly combined to recreate any member of
that data set. To understand this it is useful to take a step
back and think of vectors in two-dimensional space. It is
common to think of vectors as arrows on a 2D plane; this is
useful for understanding the concept of a linear combination.
A vector on a 2D plane can be split into two components:
an x component, and a y component. The x component
describes the horizontal distance covered by the vector, and
the y component describes the vertical. If one were to take
two vectors, for the sake of argument take (2z + 3y) and (6z
+ 0y), one could combine them by adding together their x
components, and then adding together their y components.
The vector formed by these sums can be called a linear com-
bination of them: (82 + 3y). Let us label the first vector
v, and the second vector w. A visual representation of this
can be seen in the top half of Figure 5.

However, this is not the only linear combination of the two
vectors that is possible. In linear algebra, a linear combina-
tion is not only the combination of the two vectors, but also
any possible constant multiple of the two vectors. For exam-
ple, we can take our second vector (2z + 3y) and multiply
it by a scalar (a constant): 2(6z + Oy). Then we add the
two vectors once more: (2z + 3y) + 2(6z + Oy) = (14z +
3y). This is also considered a linear combination of the two
original vectors, and it can be notated as v + 2w. A visual
representation of this is shown in the bottom half of Figure
5. We can do this with any constant, including negative
constants and including zero constants. For a given set of
vectors, the set of all possible vectors that can be created via
linear combination of those is called the set’s ‘span’. This
set of vectors, which is usually finite, forms what is called a
‘basis’, with which we can define a ‘space’. Any element of
a space can be represented as a unique linear combination
of all of the vectors that form the basis for that space.

In two-dimensional space, any two vectors wherein one is
not a constant multiple of the other span the entirety of the
two-dimensional plane on which they exist. However, as we
consider higher-dimensional vectors, spanning the entirety
of a space becomes considerably more difficult. In fact, we
need at least n vectors, none of which are constant multiples
of one another, in order to span a space of n dimensions.
Sometimes, though, our goal is not to span the entirety of
an n-dimensional space, but instead to span a particular
subsection of that space.

The most common way to represent a two dimensional
plane is with two vectors (z + Oy) and (0z + y). These are
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Figure 5: Visual representation of linear combina-
tions [9]

our standard coordinates for naming a point in 2D space.
Notice that in both vectors, one element is zero; this makes
computations involving the vectors very easy, and it is why
it is easy to think about two-dimensional space in terms of
them. A representation of a data set where many elements
of the representing vectors are zero is called a sparse repre-
sentation of that data.

2.4 Sparse Dictionary Learning

For the purposes of this method, we can think of the lu-
minance data of an image as a vector. Take each pixel as
a component (such as z or y), and consider the image of n
pixels as a vector in n-dimensional space. This is impossible
to visualize as an arrow, but the mathematics are the same
as they are in two dimensions. Much like in two dimensions,
we can create a linear combination of these image vectors
by adding together the luminance values of each pixel, or
multiplying each by a constant before performing this sum.

A dictionary is a set of vector representations of a particu-
lar data format that can represent the entirety of a given set
of input data. Let us consider the data format in question
to be black-and-white images or image patches. In this case,
a dictionary would be composed of a set of image vectors,
structured as described in the previous paragraph, which
span (can be linearly combined to represent any member
of) a given set of input images. The goal of sparse dictio-
nary learning is to find a dictionary that provides a sparse
representation of the given input space. The members of the
dictionary are referred to as ‘atoms’.

A sparse representation of a set of images would be one
in which the majority of the pixels of our vector images are
completely black. Most of the time this isn’t possible, so we
frequently settle for very dark pixels instead of completely
black ones. A sparse representation is useful for representing
the contours of a type of image patch with as few vectors
as possible. An effective method of doing this is to take the
gradient of the image patch, which results in what’s called
a ‘feature vector’. These feature vectors are much sparser
than most image patch vectors because areas in which the
luminance data of the image is relatively consistent become
mostly zero.

In machine learning, training is the process of providing
a learning algorithm with input data and penalizing results
that do not match the desired outcome. A common method
of training a sparse dictionary is an algorithm called K-SVD.
This algorithm uses what is called singular-value decompo-



sition upon the dictionary atoms. Singular-value decompo-
sition is a method of factorization for a matrix (a finite set
of vectors). The algorithm finds a sparse representation by
alternating between two steps. The first is to arbitrarily
select a subset of atoms and form an over-representational
dictionary for the input space. The second is to individually
update the atoms in the dictionary so as to better represent
the input space. A more detailed outline of this algorithm
can be found in [12].

For the purposes of image super-resolution, a common ap-
plication of this is to train a pair of dictionaries: a set of HR
images or image patches, and downsampled or degenerated
LR equivalents of the same image patches. By training a
dictionary that represents a particular image patch, a linear
combination of LR training data can be found that repre-
sents the input image patch. Using that combination, we can
find an identical linear combination of the HR patches that
are analogous to the LR patches that were combined. This
approximates a HR equivalent to the input image patch. A
more in-depth explanation of this process can be found in
[15].

2.5 Application of GMMs

The method described in [10] makes use of these tech-
niques, but in addition, it makes use of the training multiple
pairs of dictionaries for several distinct categories of image
patch. These categories are obtained by use of a Gaussian
Mixture Model (GMM) and the expectation-maximization
(EM) algorithm. The classification is performed using prob-
abilistic analysis; using the aforementioned visual proper-
ties, the EM algorithm can predict which category a partic-
ular image patch falls into.

2.6 Gaussian distribution

A Gaussian, or normal, distribution is a model that de-
scribes a set of data points that is shaped like a bell curve;
the majority of data points fall towards the center of the out-
put range, while a smaller number are outliers. The mean
of a population density curve is represented by pu, and the
standard deviation by o. The variance is the standard de-
viation squared. The standard normal distribution graph
has a variance of 1, as shown in the red curve in Figure 6.
The other curves shown in Figure 6 have differing mean and
variance. The curves are called probability density functions
and they are used to predict with some degree of certainty
the likelihood of a data point being in a particular range.

Gaussian distributions can be multivariate, meaning that
they are described by a set of single-variable Gaussian dis-
tributions relating to two or more variables. An example
of this can be seen in Figure 5. In this case, the probabil-
ity density curve is essentially three-dimensional, and the
data is often most easily represented in image form by an
ellipse with a centered gradient color denoting the variance
of the distribution. The green ellipse filled with the black
data points in Figure 7 creates a similar effect without the
representational use of a third dimension.

2.7 Gaussian Mixture Models

A Gaussian Mixture Model is a probability density func-
tion that is described by more than one Gaussian distribu-
tion. The distributions are referred to as components of
the model, and each has a mean and a variance. A single-
variable example of a GMM may in fact look very similar
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Figure 6: Several data curves with gaussian distri-
butions. The red curve is the standard normal dis-
tribution with mean 0 and variance 1. [7]

Figure 7: An example of a multivariate Gaussian
distribution. [3]. p(z) and p(y) refer to probability
density functions of variables = and y respectively.

to the curves shown in Figure 6. Using this type of model,
it is possible to make statistically-based categorizations of
data points based upon the likelihood that they fall within
a particular component of the model.

GMDMs can also be single-variable or multivariate. Multi-
variate GMMs are what the research utilizes for categoriza-
tion of image patches. The process of categorizing the data
points of the GMM and forming a probabilistic basis for cat-
egorization of future extracted image patches is referred to
as training the GMM, and it is done via the EM algorithm.
After training, the multivariate GMM can be referenced to
predict the likelihood that an image patch falls within a par-
ticular component, after which the rest of the procedure can
be performed on the individual image patches.

2.8 EM Algorithm

The EM algorithm is an algorithm that, via the use of two
distinct steps, produces Gaussian components from a data
set. It is useful for situations in which there are currently
unknown data points that are expected to exist. The algo-
rithm alternates between an expectation step and a maxi-
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Figure 8: Visualization of the GMM training process [10]
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Figure 9: Visualization of the super-resolution process on an input image [10]

mization step. The expectation step estimates a set of com-
ponents to attempt to fit an arbitrarily selected portion of
the data. The maximization step introduces more of the
data and maximizes the likelihood of the parameters being
accurate based on the new data. The process repeats until
the maximum likelihood is the same as the estimated param-
eters. A more detailed explanation of this algorithm can be
found in [2].

3. THE GMM METHOD

The process outlined in [10] begins with the training of a
Gaussian mixture model with some number of components,
K. [10] does not specify how K is found, but there are al-
gorithms that exist for determining the number of Gaussian
components to define for a set of data. For training this
GMM, patches are extracted from a sizable set of “natu-
ral images” [10], and using the data contained within those
patches, GMM components representing the data can be
extracted. The data points in question are luminance and
chrominance values of pixels obtained from the original im-
ages. The paper does not go into meaningful detail regarding
exactly how the data points are represented for the purposes

of data analysis. The visuals provided by the paper suggest
the categories are likely to depend upon what exactly is be-
ing represented in the patch: sky, grass, building walls, fur,
etc.

Following the creation of image patch categories by GMM,
a new set of HR natural images is used to create multiple
pairs of dictionaries. Patches from these training images are
extracted and classified according to the GMM components
discovered in the first step. The following steps are per-
formed upon each category of image patches. The second-
order gradient of the patches’ luminance data is extracted
and used, as a feature vector, to train a HR dictionary with
the purpose of sparsely representing the given image patch
category. In order to attain a pair of dictionaries, the HR
patches are downsampled (lowered in resolution by sampling
evenly spaced pixels throughout the image) and degener-
ated using a fuzzy effect to obtain LR versions of the same
patches. A visual representation of the process up to this
point can be seen in Figure 8.

In order to perform super-resolution on a given input im-
age, the input image is first upscaled to a mid-resolution
(MR) via bicubic interpolation. This MR image is then bro-
ken up into patches, which are classified according to the
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Figure 10: Comparison of results of various methods of super-resolution [10]. ”Our” refers to the result of

the method outlined in the [10].

GMM trained in the first step of the training process. At
this point the chrominance data is upscaled to the target
resolution via bicubic interpolation, to be added back in at
the very end. The following steps are executed only on the
luminance data. The LR dictionary finds a linear combi-
nation to approximately represent the input patch, which
is then combined with the MR luminance data of the orig-
inal patch to get the final HR output patch. Finally, the
patches are combined together, the patch effect is removed
(the paper does not specify the methods used for this) and
the chrominance data is added back in after bicubic inter-
polation. A visual representation of this process can be seen
in Figure 9.

4. RESULTS

The paper [10] compares the results of a variety of meth-
ods of super-resolution, as shown in Figure 10. It shows the
original, interpolated upscaling versions, a few of the other
sparse dictionary learning methods including [5], [14], and
[6], and the GMM method.The GMM method is meaning-
fully more detailed than the other methods, and re-creates
the contours of the original HR image a bit more accurately
without introducing extraneous detail like, for example, the
NCSR [6] result does. The paper [10] describes it as more
visually appealing, which, while not the exclusive goal of
image super-resolution, is an important component of the
process.

5. CONCLUSIONS

The paper in question demonstrates the usefulness of GMMs
for the purpose of image super-resolution. Through the

use of GMM Training, multi-pairs of dictionaries for sparse
learning, and interpolation on a set of “natural images”,
an effective method of automated super-resolution can be
achieved. The paper demonstrates the benefits of this method
by comparing it to various other algorithms intended to
achieve the same goal, and showing visually the advantages
of the newly proposed method.
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