Gaussian Mixture Models and Image Super-Resolution

Spencer Hammersten

Division of Science and Mathematics University of Minnesota, Morris

April 20, 2019

Introduction

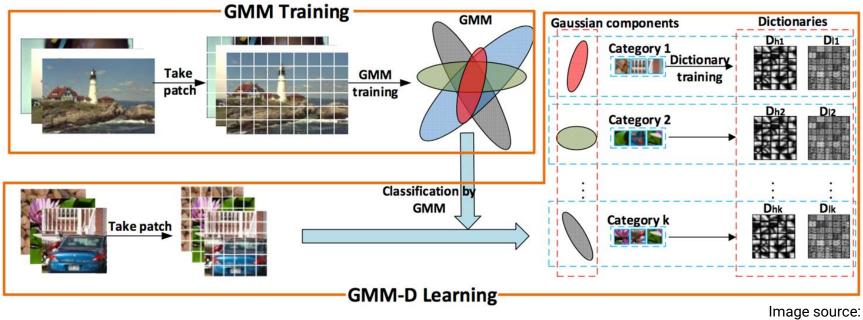
• Images

- Resolution, patches
- Upscaling and Downscaling
- Super-resolution
 - Applications
 - Surveillance
 - Medicine
 - Entertainment
- The Gaussian Mixture Model (GMM) method
 - Machine learning
 - Applications of patches and statistics

Outline

- Background
 - Images
 - Interpolation
 - Sparse Representation
 - Gaussian Distribution
 - Mixture Models
- GMM Method
- Conclusions

Key Image



Mei et. al

Image Formatting

- Chrominance and Luminance
 - Images composed of color and intensity
 - Used in TV signals
 - Red/Green, Blue/Yellow chrominance
- Gradient
 - Change in value between pixels

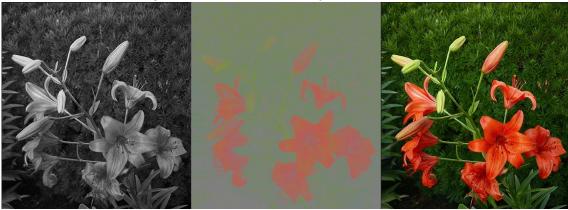
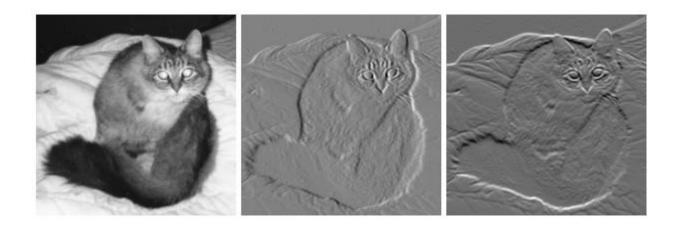


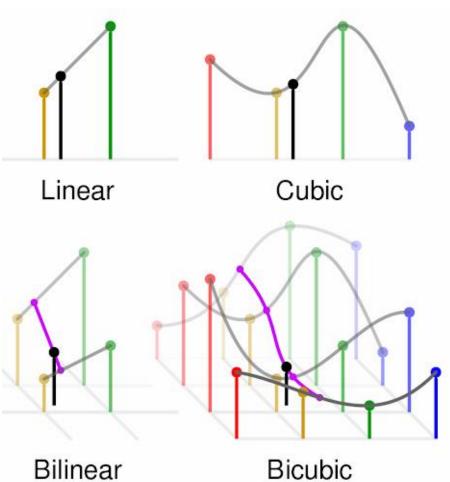
Image source: Algr, Wikipedia

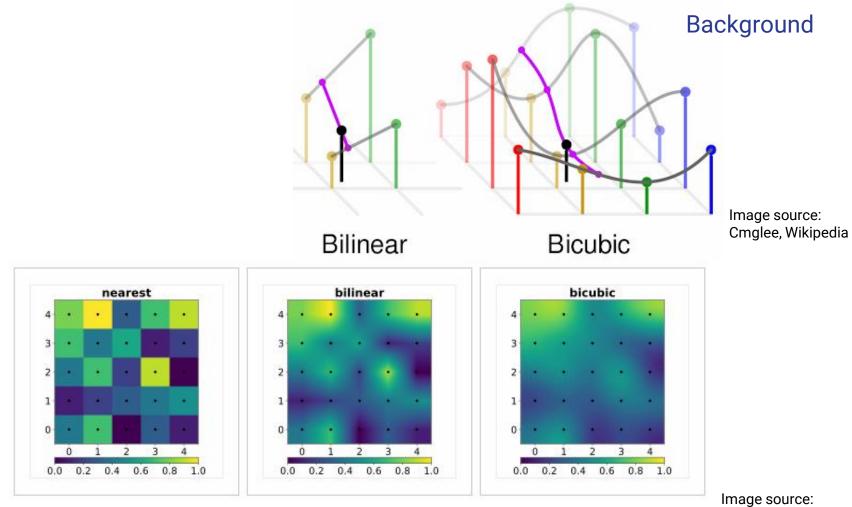


lmage source: Njw000, Wikipedia

Interpolation

- What is it
 - Find values between points
 - Mathematical formulas
 - Linear, cubic, etc
- Applications
 - Fill in pixels
 - Approaches:
 - Nearest neighbor
 - Bilinear
 - Bicubic





Zykure, Wikipedia

Background 0.06 0.04 Censity 0.02 0.00 5 10 15 -5 0 20 25 Value -2

Image sources: Smason79, Wikipedia Bscan, Wikipedia

Gaussian Distribution

- Most common statistical distribution
- Shape defined by mean, variance
- Single-variable or multivariate

Gaussian Mixture Models

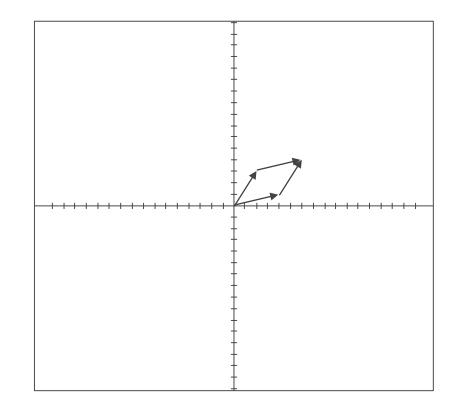
- Represent data described by multiple Gaussian distributions
- Individual distribution: "component"
- Group data into sets, find most likely trend

Machine Learning:

- Use data analysis to accomplish task
- Trained on input data
- Several types
 - Dictionary Learning
 - Find sparse representation of data set
 - Dictionary represents input range
 - Good for image de-noising and compression, etc.
 - Clustering
 - Group data based on traits
 - Use statistics to classify
 - Good for pattern recognition
- Training
 - Dictionary trained on vectors
 - GMM Trained by collecting data points
 - Data shows clusters
 - EM Algorithm to get components

Linear Combinations

- Linear Combination
 - Represent vector as combination of several
 - (2x + 3y) + (4x + y) = (6x + 4y)
 - Any number of vectors/dimensions
 - Can multiply vectors
 - 2(2x + 3y) + 3(4x + y) = (16x + 9y)
- Sparsely representing a space
 - $\circ \quad \ \ {\rm Two \ vectors \ span \ 2D \ plane}$
 - More = over-representation
 - $\circ \quad \text{Trade-off} \quad$
 - Sparsity vs accuracy



Sparse Dictionary Learning

- Dictionary
 - Set of data that spans a given input space
 - Luminance values of pixels as vectors
- Think of images as vectors
 - Pixel = variable
 - Color = value or coefficient
- Linear combinations
 - Represent image space
- Sparse representation
 - Use as few vectors as possible
 - Trade-off, sparsity vs. accuracy

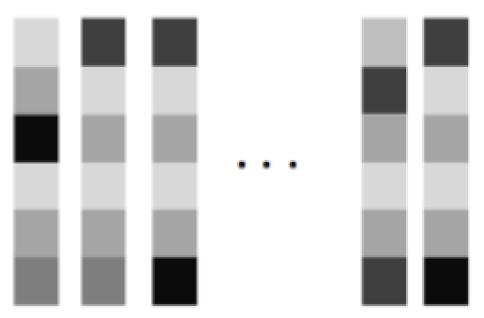
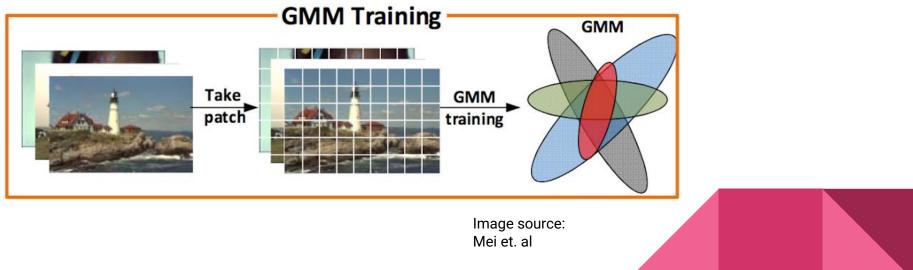


Image source: Mei et. al

Patch Classification

- Break images into patches
- Use GMM to classify patches



Training Multi-Pairs

- Extract feature vectors
 - Patches -> Luminance data
 - Luminance Data -> Gradients
- Train a **pair** of dictionaries GMM-D
 - High resolution, low resolution
 - Train dictionaries for patch categories
 - Find sparse representation of category

Key Image (reprise)

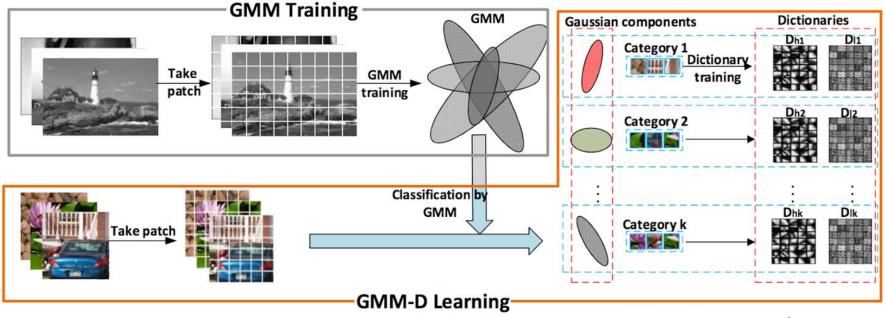
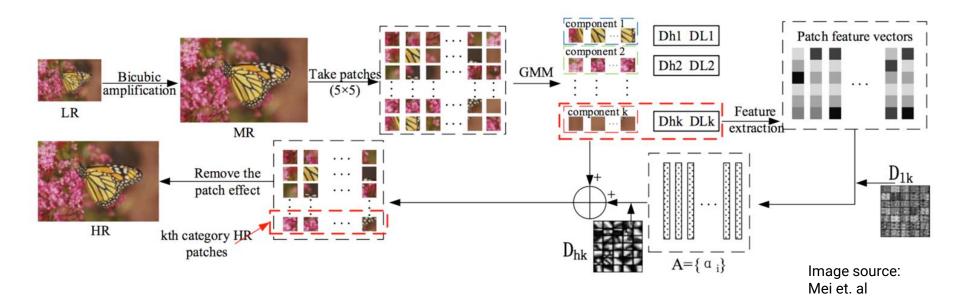


Image source: Mei et. al

Upscaling an image

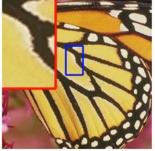
- 1. Linear combination of LR training patches for patch type -> LR input patch
- 2. Same combination of HR training data + interpolated LR input patch -> HR output patch
- 3. Interpolated chrominance input data -> HR output patch -> Final output patch
- 4. Final output patches -> Final HR image

The Process

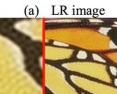


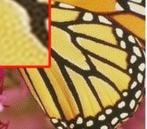
Conclusions

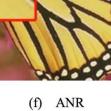
Results

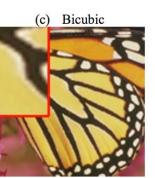


(b) Original









(g) Yang

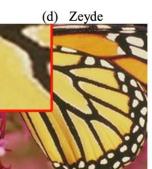


Image source: Mei et. al

Conclusions

Conclusions

- GMMs are effective for patch classification
- Sparse learning on patches recovers considerable detail
- Questions?

References

 D. Mei, X. Zhu, C. Yue, Q. Cao, L. Wang, L. Zhang, and Q. Song. Image super-resolution based on multi-pairs of dictionaries via patch prior guided clustering. In 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA), pages 1–6, Nov 2018.

