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ABSTRACT
Difficulty plays a pivotal role in how players experience video
games. Because of this, implementing a system that pro-
duces a positive experience is very important. This pa-
per will talk about typical video game systems and some
of the problem they present. Dynamic Difficulty Adjust-
ment (DDA) is a concept of handling difficulty in real-time
in which the game can be altered during play to ensure en-
gagement and immersion. Two methods of DDA: orthogo-
nally evolved AI and dynamic scripting look to improve on
prior methods by introducing adaptability and variability.

1. INTRODUCTION
Video games tend to take place in fantastical worlds. This

allows for the use of imaginary forces, and mystical pow-
ers. Characters in games can harness these forces for spells
like fireballs and lightning bolts, as well as fantasy crea-
tures wielding grossly large weapons like swords and guns.
In these games there tends to be conflict between multiple
characters, which can fuel alot of fights, and goals to elimi-
nate your opponents.

It is estimated that over 60% of American's play video
games daily [2], as a source of entertainment, stress relief,
educational benefits, etc. Player experience is vital to video
game success. Video games are sought after for providing
enjoyment, a sense of accomplishment when a challenge has
been overcome [3]. When designing a video game, it can be
hard to create difficulties that are challenging, but achiev-
able to players of different skill levels. Producing systems
that can adapt to various player strategies and change with
player improvements, will be effective for players of differ-
ent skill levels, as well as players with different improvement
rates. As the video game entertainment industry continues
to grow, new and/or improved systems will need to be de-
veloped to help optimize player engagement and enjoyment,
as this determines the success of a product.

2. DEFINITIONS

2.1 Flow
Flow is an extreme state experienced by the player where

the task is so rewarding, they are willing to perform the
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Figure 1: A graph illustrating optimal level of game
difficulty vs player competence [4]

task for the sake of undergoing that experience as if the task
was an excuse to do so [1]. For the purposes of this paper,
this can be thought of as optimal enjoyment in which the
player feels extremely engaged and immersed into a game
to the point where they can lose track of time. This is the
state developers strive to keep the player in, as this level of
engagement is associated with the optimal enjoyment, and in
educational purposes this provides the player with optimal
learning benefits. Flow is achieved when the player has been
sufficiently, but not overly challenged (figure 1).

2.2 Artificial Intelligence (AI)
Artificial intelligence (AI), is intelligence displayed by non-

player characters (NPCs) [10], or agents as they will be re-
ferred to in this paper. AI is used more broadly in video
games, to describe the algorithms used to control how the
agents act. Examples include: How the agent learns from
past experiences, and how the agent determines its next ac-
tions. AI have incentives or goals, often in games that rep-
resent conflict between the player and agents, the AI goal
might be to kill the player, or to slow their progress in some
way. These goals are assessed through a fitness function
which numerically quantifies the AI performance into a fit-
ness value. This is important because using the fitness value
can allow the AI to learn the value of different actions.



3. BACKGROUND

3.1 Difficulty Adjustment and Player Experi-
ence

Difficulty is important in relation to a player's overall en-
joyment in video games. Difficulty is the degree of challenge
the player experiences; a game with a higher difficulty is
harder to complete. Difficulty is based on factors such as in-
ventory e.g. the weapons or spells the player has access to,
agent/opponent skill, environment, etc. Players feel engaged
in the game when they feel they have been challenged, and
overcame an obstacle [3]. A player interacting with content
that has difficulty far away from their skill level will pro-
duce negative results. Figure 1 illustrates this correlation; a
player who is playing at a difficulty that is too hard for their
skill level will become negatively excited causing stress, anx-
iety and frustration. A player who is playing at a difficulty
lower than their skill level will experience boredom. In both
of these cases, difficulty needs to be adjusted, either higher
or lower, to fall into the region of positive excitement.

Due to varying levels of player skill, traditionally, diffi-
culty has been coded statically. A player is presented with
various options such as easy, medium, or hard. This is the
starting point for the difficulty which then increases gradu-
ally (linearly or stepwise [11]). This practice can be helpful
to the developer because it can give them control over how
the player experiences the game, and the story they would
like to tell. However, this system causes some problems:

1. Forces players to self-rate skill level:
Before a player begins the game, the player does not
know their skill level, or what certain difficulty levels
mean.

2. Predictable AI interaction:
A player might notice tendencies in how the agent per-
forms. For instance if the agent uses certain abilities in
the same order, the player might notice this sequence,
and develop strategies that trivialize the content.

3. Player improvement variance:
Players improve at unpredictable, and differential rates.
Two players might start at the same skill level, but
one player might progress significantly faster than the
other, in which the difficulty they have chosen might
not remain suitable for their skill level.

4. Development cost
It can be a long iterative process to create multiple
levels of difficulty, as each new stage needs to have
modifications made to variables such as the health of
the player or agents, or tactics used by agents. These
difficulties need to be tested to make sure values chosen
provide the interactions and results desired, and that
certain combinations do not cause unexpected results.

3.2 Dynamic Difficulty Adjustment (DDA)
Dynamic Difficulty Adjustment (DDA) is a technique for

modifying a game's features, behaviors, or scenarios auto-
matically in real-time to adapt to various player skill levels,
and strategies [11]. It should be noted that different games
will have different variables that can be adjusted. For in-
stance in fighting games, things like health or agent inter-
action might be the manipulable variables, whereas puzzle

Figure 2: Comparison of linear vs. orthogonal evo-
lution of AI [5]

games might not have these variables. So in this scenario
how much time a player has to solve a puzzle might be the
manipulable variable. Adjusting dynamically to the behav-
iors of players helps maintain engagement, by keeping them
in the region of positive excitement (Figure 1), even after
the game has been released [1]. For a DDA to be successful,
there are three requirements [11]:

1. The game needs to track the player ability and rapidly
adapt to it.

2. The game must maintain a balance between the player's
skill and difficulty.

3. The adaptation process must be seamless, not clearly
perceived by players, and coherent with previous game
states.

4. ORTHOGONALLY EVOLVED AI

4.1 Evolving AI
AI can be evolved to learn new tactics beneficial for per-

formance. When evolving AI, there is a starting algorithm
that performs a task with a fitness value that quantifies how
well it performed. The algorithm goes through a series of
iterative changes, each creating a new algorithm referred to
as offspring. The offspring's performance is then measured,
and the best performing offspring is chosen. This chosen
offspring is the new algorithm generation. This done re-
peatedly evolves the AI to have better performance.

4.2 Theory
One method of automating difficulty is through orthogo-

nally evolved AI. Typically, when difficulty is adjusted using
evolved AI, only the opponent AI is evolved. In this method,
two orthogonal axes are co-evolved to control difficulty: col-
laborative AI, which controls agents assisting players, and
opponent AI, which controls agents competing against play-
ers. In this context, orthogonal refers to the fact that the
two AI being evolved have independent incentives.

The advantage of this method is that it allows for an in-
creased variety of experiences. AI from multiple generations,
and axes, with different fitness values, creates a multiplica-
tively larger set of unique experiences/difficulties the player



can encounter. In standard opponent evolved AI implemen-
tations, difficulty adjustment is restricted to a single axis.
While orthogonally evolved AI is able to manipulate these
axes to create unique experiences. For example, when the
difficulty of a game needs to be reduced this can be done in
multiple ways (or a combination). 1) The player is paired
with more evolved collaborative agent(s). 2) The player is
matched against weakly-adapted opponent agent(s).

4.3 Application
To test this method [5] uses a simple predator-prey sim-

ulation. In this simulation, there are two classes of agents:
predator and prey. The predator's goal is to capture as
many of the prey agents, and conversely the prey's goals are
to avoid capture for the entire 120 seconds game duration.

The hypothesis explored is that the use of orthogonally
evolved AIs help expand game difficulty options [5]. To test
this hypothesis, players interact with the game involving
various mixtures of adapted and unadapted AI for both the
opponents and collaborators. These levels of adapted and
unadapted AI can be obtained through the multiple gen-
erations of evolution. Evolution does not occur while the
game is in progress, predator and prey agents are controlled
by previously evolved AI. In this scenario difficulty is not
adjusted in real-time, but the goal is to show that the differ-
ent axes can be manipulated to create different difficulties,
which could in the future be manipulated in real-time.

4.4 Experiment
In the experiment, evolutionary history of the prey as well

as the predator were saved every 25 generations. Eventually
two instances were chosen, generation 900 and 1900, as they
represented two significantly distinguishable levels of adept-
ness. Agents using AI from generation 900 are considered
unevolved, while agents using AI from generation 1900 are
considered evolved. Between these generations there is a no-
ticeable difference in predation capability, and a swarming
technique developed by the prey.

The game was run through a web browser, using 200
Amazon Mechanical Turk participants. Amazon Mechan-
ical Turk is a crowdsourcing marketplace where companies
or individuals can outsource jobs/tasks to allow easier col-
lection of data. At the start of each game, one of the four
difficulty conditions was randomly chosen: evolved prey vs
evolved predator, evolved prey vs unevolved predator, un-
evolved prey vs evolved predator, or unevolved prey vs un-
evolved predator [5]. Each player played for the entire 120
seconds or until caught by the predator. At the end of the
game, two parameters were recorded: length of survival, and
number of prey agents alive.

4.5 Results
Results of this experiment show that average survival time

in each of the four combinations mentioned in section 4.4,
differ significantly (figure 3)[5]. This data shows that the
difficulty of the game is more heavily reliant on the prey's
ability to swarm, rather than the predator's ability to catch.
Difficulty determined by a singular axis, for example prey
evolution, allows for only two game states: unevolved prey
vs predator or evolved prey vs predator. The use of multiple
axes allows use of AI from different evolutionary time peri-
ods, creating more game variability, ultimately resulting in
a smoother difficulty transition.

Figure 3: Comparison of player performance versus
various evolutionary combinations [5]

5. DYNAMIC SCRIPTING

5.1 Theory
Dynamic scripting is another method that can be used

to dynamically adjust difficulty in video games. Dynamic
scripting primarily works to create a behavioral script for
opponents agents [6]. Each class of agent has a set of rules,
called a ruleset that represent each behavior that agent can
undergo. Each time a new opponent agent is generated it
takes a combination of these rules, called a script. Each rule
has its own separate weight, called the rule weight, which
can be used to determine which rules are selected from the
ruleset to create the agent's script, as well as how the agent
uses the rules it has access to. The probability of a rule being
chosen from the ruleset into the generated agent's script is
based on its rule weight, the heavier the rule, the more likely
it is to be chosen. After a conflict, the ruleset changes its
weights based on the outcome of the conflict, determined by
a fitness function.

There are four main components in a dynamic scripting
algorithm [6]:

1. Set of Rules

2. Script Selection

3. Rule Policy

4. Rule Value Updating

The first component of a dynamic scripting algorithm is
a set of rules. These are rules are created by the developer,
though some research has been done to automate rule cre-
ation [7]. Each of these rules can have conditionals that
restrict its use in certain scenarios. For example, a rule in-
volving a blizzard spell that can not be chosen for a script
unless the agent is in an arctic environment.

The next component is the selection of rules that make up
the script. The script has a total capacity n (amount of rules
that the opponent can have) determined by the developer.
At this point rules are chosen probabilistically, based on
their weight, meaning the higher the weight, the more likely
the rule is to be chosen.

The next component is rule policy. This is how the agent
uses the script it was given. Rules can have additional con-
ditional requirements at this stage that apply for the use of
the rule, rather than a conditional applied to the selection
of the rule. For example, a rule that allows for healing spells
may be restricted until a friendly agent's health is below a
X% threshold. Agents use of the script can be determined



Figure 4: Process of Dynamic Scripting [9]

in two ways. 1) Each rule can have a set priority. This
causes a flow chart structure, where the AI will check the
highest priority rule to see if its condition has been met: if
the condition is met, the agent uses that rule, and if the con-
dition is not met it the next highest priority rule is checked.
2) The weights of each rule can be used to probabilistically
determine which rule is used. In this case all rules that have
their conditional requirement met will have their weights to-
talled, and the likeliness of a rule to be used is determined
by how much weight the rule contributes to the sum.

Rule weight updating is the last and defining component
of dynamic scripting. This is done by two functions created
by the developer: A fitness function that determines how
well the agent performed in the conflict (on a scale of 0 to 1),
and a reward function which changes the values of the rule
weights, rewarding positive behavior, and punishing nega-
tive behavior. The fitness function uses variables to mea-
sure its performance. For example, in a battle between two
enemies, health remaining and damage dealt could be two
variables used to determine the performance of the agents.
The reward function then provides feedback to the weights,
based on the fitness value [6]. Only rules that are in the
current script are subjected to weight changes. Once these
weight changes are made, the remaining rules not selected
for the current script have their weight evenly adjusted to
maintain an equal weight total in the ruleset.

The dynamic scripting process promotes positive behav-
ior by increasing script weights when the agent performs
well, and penalizing negative behavior by decreasing script
weights when the agent performs poorly. Over time this
will result in an emerging optimal script comprised of highly
weighted rules. In a video game setting however, balanced
gameplay is desired, where the goal is to create agents that
can keep up, but do not surpass the players skill level. For-
tunately, dynamic scripting can be modified in three ways
to achieve this balance [11]:

1. High-fitness penalizing

2. Weight clipping

3. Top culling

High-fitness penalizing is a form of penalizing optimal be-
havior when the dynamic AI is out performing the player
[11]. In this case, when the dynamic agent defeats the player,
instead of the weights being rewarded for positive behavior,
they are diminished.

Weight clipping is a technique that reduces how much
weight a rule can hold [11]. A rule that is at the set maxi-
mum value can not be rewarded further. This results in bal-
anced gameplay with more variability because when weights
can not reach as high, less optimal rules have an increased
chance of being selected for an agent's script.

Top culling works similarly to weight clipping, but rather
than putting a cap on how high the weight can reach, it
allows the weight to grow above the maximum value [11].
Once the rule has surpassed the maximum, it can no longer
be selected for script generation, forcing other rules to be
selected. This avoids rules that are causing frequent wins
from being reused repeatedly, opening up room for some of
the weaker rules to take their place. Rules can drop below
the maximum again if the dynamic agent's other rules are
rewarded, decreasing its weight percentage.

Figure 5 represents the results from using these modifica-
tions in a study [8] through the game Neverwinter Nights.
The authors found that all three modifications were effective
at forcing a more even game, but that high-fitness penalizing
had high variance in results, meaning that it was unreliable,
with some encounters having extremely high fitness values
and some extremely low. Weight clipping and top culling
provided more consistent results, but still with some vari-
ance, which can be an important trait to produce some sort
of unpredictability, keeping the player engaged. Top culling
stands above the rest, because it has slightly more consis-
tent results, was the only method capable of forcing even
gameplay against inferior tactics, and it continues to learn
strong behavior even while performing scaled behavior [8].

5.2 Application
Daniel Policarpo, Paulo Urbano, and Tiago Loureiro ap-

ply dynamic scripting in the context of a first person shooter
[6]. First person shooter is a genre of video game, involving
agents in conflict, attempting to kill one another. This ap-
plication was designed to show the ability for the dynamic



Figure 5: Results of dynamic scripting modifications [8]

AI to adapt to actions taken against its agent. This im-
plementation does not include a human player, however the
ability for the dynamic AI to quantify how valuable a rule
is compared to the actions of an opponent agent shows that
dynamic scripting can be an effective way of modifying dif-
ficulty, when paired with methods discussed in 5.1.

In this game there are two agents: a static agent, and a
dynamic agent. These two agents are placed in an arena
and fight until either one agent is dead, or they reach the
maximum game time. The arena has a few items: A health
item that bring their health to max (200 health), a barrel
that explodes on contact damaging in an area, and an ammo
box which restores the agents ammo to max. Each agent has
two weapons: A fast firing machine gun which deals 5 dam-
age for each hit, and a slow firing rocket launcher which
deals 100 damage at the center, and less the further away
from the blast. Each agent has equal access to items and
weapons previously mentioned, to ensure that behavior is
the only variable. The dynamic scripting agent has access
to a variety of rules (discussed later), while the static agent
uses the following 4 rules: (1) Patrol - If the opponent is not
in range and not visible, the agent moves to predetermined
locations in search. (2) Approach Opponent - If the oppo-
nent is in sight but not visible, approach the opponent. (3)
Shoot rocket launcher - If the opponent is at half or more
range, use rocket launcher while approaching opponent. (4)
Shoot Machine Gun - If the opponent is less than half range,
use machine gun while staying put.

There are 14 rules the dynamic agents chooses from (here
are three examples)[6]:

Name AdvanceGunAttack
Condition Agent has machine gun ammo and can see an

opponent
Effect Advances towards the opponent and shoots

with the machine gun if opponent is in range

Name TakeAmmo
Condition Agent does not have ammo in at least one of

his weapons and he can see an ammo item
Effect Advance towards the ammo item

Name Idle
Condition Agent cannot see the opponent
Effect Remain stationary

At the beginning of each conflict, the dynamic agent se-
lects four rules, with an additional default rule used in all
scripts: Idle. This action is just the agent standing still.
Having a default rule is important because as in most game
engines, it is required to have at least one action selected
[6]. Rules are used in the priority based system as described
in 5.1, where the agent will go through the rules by order of
its priority and use the first rule that meets its condition.

After each conflict the performance of the dynamic script-
ing agent is evaluated with a fitness function [6]. This is a
function that generates a score for the most recent episode on
a scale of 0 (poor performance) to 1 (perfect performance).

F (a, g) =
4∗H(a) + 4∗D(g) + 2∗T (g)

10
(1)

In this function, these components are used to reflect the
performance. The a parameter refers to the agent, and the
g parameter refers to the current match [6]. The following
components, H(a) represents remaining health of the dy-
namic agent a, D(g) represents the total damage done to
the opponent in the match g, and T (g) represents the time
the match g took. They determined after analyzing differ-
ent weight values over various scenarios that these values
produced the best results [6], which displays health as the
primary factor in the fitness value, rather than the time to
defeat the opponent. The following equations for the com-
ponents are shown below [6]:

H(a) =
ht(a)

h0(a)
(2)

D(g) =
(h0(o) − ht(o))

h0(o)
(3)

T (g) =
tt
tm

, a loss;
(tm − tt)

tm
, a win (4)



Figure 6: Fitness graph for dynamic agent perfor-
mance [6]

In these equations, a refers to the agent, o refers to the
agent’s opponent, and ht(x) refers to the health of the agent
x in time t the end of the match. h0(x) refers to the health
of the agent x at the beginning of the match, tt refers to the
duration of the match, and tm refers to the maximum game
time allowed.

5.3 Results
The researchers in [6] recorded their results in 5 batches of

100 matches. After each batch of 100 matches, the weights
are reset to give the opportunity for new learning to occur.
These 5 batches were then averaged and represented by fig-
ure 6.

These results show that the dynamic agent struggled to
perform during the first 30 matches with average fitness val-
ues below 0.5 [6], indicating it was losing more than winning.
During these matches the dynamic AI is learning which rules
are performing well, and working against the static agent's
tactics. At around the 40 match point the dynamic agent
was consistently able to find victories, with fitness values
rising above 0.7. What this shows is that the dynamic AI
was able to reliably determine which tactics were powerful
against for the rules of the game and/or the static opponents
strategies. In this scenario it took the AI 30 to 40 iterations
to determine which rules were valuable. This could present
a problem for a player being introduced to a game, as during
this period the difficulty might not match their skill level;
because of this it might be beneficial to have multiple sets
of weights established prior to release to help reduce how
long it takes the AI to find an optimal balance. In this case
the most used rule was SidestepRocketAttack [6], which is
a move in which the agent shoots his rocket whilst moving
sideways. This is justified because rocket launchers provide
more damage than the machine gun counterpart, and mov-
ing sideways is an effective measure against incoming fire.

6. CONCLUSIONS
Dynamic Difficulty Adjustment techniques can create a

smoother and more engaging video game experience for play-
ers. These techniques help increase adaptability, by quan-
tifying how the agents are performing in relation to other
agents. When the agent is under or over performing, the
ability to quantify its performance, and the actions that lead

to that performance, allows the AI to be manipulated to bet-
ter align with a desired difficulty. DDA techniques can also
increase variety in gameplay, as agents the player is inter-
acting with can be changed from one encounter to another;
having access to multiple traits or tactics, allows for scenar-
ios where different trait combinations can provide different
experiences, while maintaining a similar difficulty.
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